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Figure 1. We propose evaluating three prompting strategies (bounding box - bbox, centroid, random point - randpt) to assess the effective-
ness of the Segment Anything Model applied to X-ray and infrared imagery for identifying objects of interest. The bbox prompt yields
superior segmentation results, while the other two prompting strategies demonstrate notably higher incorrect/missed predictions.

Abstract

The Segment Anything Model (SAM) is a deep neural net-
work foundational model designed to perform instance seg-
mentation which has gained significant popularity given its
zero-shot segmentation ability.SAM operates by generating
masks based on various input prompts such as text, bound-
ing boxes, points, or masks, introducing a novel methodol-
ogy to overcome the constraints posed by dataset-specific
scarcity. While SAM is trained on an extensive dataset,
comprising more than 11M images, it mostly consists of
natural photographic (visible band) images with only very
limited images from other modalities. Whilst the rapid
progress in visual infrared surveillance and X-ray secu-
rity screening imaging technologies, driven forward by ad-
vances in deep learning, has significantly enhanced the
ability to detect, classify and segment objects with high
accuracy, it is not evident if the SAM zero-shot capabili-
ties can be transferred to such modalities beyond the visi-
ble spectrum. For this reason, this work comprehensively
assesses SAM capabilities in segmenting objects of inter-
est in the X-ray and infrared imaging modalities. Our ap-
proach reuses and preserves the pre-trained SAM with three

different prompts, namely bounding box, centroid and ran-
dom points. We present several quantitative and qualitative
results to showcase the performance of SAM on selected
datasets. Our results show that SAM can segment objects in
the X-ray modality when given a box prompt, but its perfor-
mance varies for point prompts. Specifically, SAM performs
poorly in segmenting slender objects and organic materials,
such as plastic bottles. Additionally, we find that infrared
objects are also challenging to segment with point prompts
given the low-contrast nature of this modality. Overall, this
study shows that while SAM demonstrates outstanding zero-
shot capabilities with box prompts, its performance ranges
from moderate to poor for point prompts, indicating that
special consideration on the cross-modal generalisation of
SAM is needed when considering use on X-ray and infrared
imagery.

1. Introduction
In the domain of security, the strategic deployment of ad-
vanced imaging technologies holds pivotal significance,
contributing significantly to safeguarding national borders,
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airports, public facilities, transportation systems, and na-
tional infrastructure. Infrared-band camera imagery is well
established within visual surveillance, offering extensive
applications in target detection, visual tracking, behaviour
analytics, home monitoring, and automotive environment
perception [9, 31–33, 36, 49, 51]. In the domain of X-
ray imaging, X-ray security screening stands as a widely
utilised method in aviation and broader transportation sec-
tors, detecting prohibited items by scrutinising X-ray im-
ages of baggage, freight, and postal items [18, 54, 64].

The recent rise of Convolutional Neural Networks
(CNN) [29] has revolutionised visual tasks significantly ad-
vancing the state-of-the-art in image understanding tech-
nologies. Within object detection, most efforts have focused
on detecting objects-of-interest in standard colour imagery
by using multi-stage [22, 61, 65], single-stage [47, 59, 62]
and transformer-based [11, 60] detectors. These aforemen-
tioned object detection based CNN methods rely heavily on
architectures that have been trained on large-scale colour
imagery datasets such as ImageNet [14]. Introducing CNN
to object detection within infrared and X-ray imagery is
significantly hindered by the absence of such annotated
datasets of the same scale and variety [30, 52, 63].

To address the challenges in the field of infrared imagery
analysis, methods such as transfer learning [19], generation
of pseudo-RGB equivalents [15], and domain adaptation
[43] have been utilised to enhance existing CNN models
and establish public benchmarks for research. Gaus et al.
[19] concentrate on detecting objects in infrared imagery by
leveraging a transfer learning approach, where the knowl-
edge obtained from the visible spectrum is transferred to the
infrared domain. Devaguptapu et al. [15] employ image-
to-image translation techniques to create pseudo-RGB ver-
sions of infrared images. These pseudo-RGB are then pro-
cessed using CNN models for object detection in infrared
imagery. Munir et al. [43] introduce a method of self-
supervised domain adaptation through an encoder-decoder
transformer network to develop a robust infrared image ob-
ject detector in autonomous driving.

This methodology parallels efforts in the broader domain
of X-ray security imaging, where several benchmarks for
security inspection have been developed [41, 42, 55, 57].
Public datasets such as GDXray [41], SIXray [42], PIDray
[57] or OPIXray [55] have been released, where the main
goal is to advance the developments of prohibited item de-
tection in X-ray images using CNN based methods [3, 12,
20, 37, 50, 54].

The performance of these CNN-based models heavily
depends on the availability of suitable infrared and X-ray
imagery datasets with sufficient object annotations, diver-
sity and scale, which has often been lacking compared to
visible imagery resources. A common solution to address
this issue involves pre-training, which effectively utilizes

a limited volume of target dataset (X-ray and infrared im-
agery). However pre-training on datasets beyond visible
imagery could lead to dataset bias, potentially misaligning
with the idiosyncratic characteristics of the target dataset,
which significantly diverges from visible datasets [25]. For
example, X-ray datasets consist of semi-transparent trans-
mission imagery, where objects appear translucent and
blend visually from front to back, unlike visible images
where foreground objects occlude those in the background.
Conversely, infrared images are not influenced by variations
in visible spectrum illumination and shadows, illustrating
the unique challenges and differences each imaging modal-
ity presents when compared to standard visual datasets.
To address these challenges, the development of compre-
hensive datasets enriched with detailed annotations in non-
visible spectrum imagery becomes essential. This approach
serves not only to enhance model training and performance
but also to ensure broader applicability and effectiveness
across varying imaging modalities. In this context, develop-
ing foundation models [8] and zero-shot learning [56] tech-
niques can significantly alleviate the common challenges
for datasets of different modalities. Foundation models are
neural networks that undergo training on an extensive body
of data, utilising innovative learning and prompting strate-
gies that generally bypass the need for conventional super-
vised training labels. This approach enhances their capa-
bility to apply zero-shot learning to entirely new datasets
across diverse settings.

Whilst foundation models have revolutionised the field
of natural language processing [10, 27, 45], the Segment
Anything Model (SAM) [28] has demonstrated promising
zero-shot segmentation capabilities across multiple datasets
of natural images. Therefore, to address the issue of de-
manding requirement for extensive annotated datasets in
non-visible spectrum, this work examines the application
of SAM and its effects on identifying objects of interest
under X-ray (PIDray [38], CLCXray [58], DBF6 [1]) and
infrared imagery datasets (FLIR [17]). Utilising the varia-
tional prompting capabilities of SAM (bounding box, cen-
troid, and random points), we conduct a thorough quantita-
tive and qualitative analysis of the segmentation results pro-
duced by SAM (Fig. 1). We aim to pave the way for utilis-
ing SAM to enhance the segmentation of object-of-interest
beyond visible spectrum imagery through this evaluative re-
search.

2. Literature Review
Research works on non-visible spectrum imagery have wit-
nessed increased attention in the literature. In this context,
infrared imaging is progressively gaining traction across
various fields, driven by the decreasing size and cost of its
sensors. This trend has positioned it as a preferred choice
for applications in visual surveillance and autonomous driv-
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Figure 2. Given an input image, Segment Anything Model (SAM) initiates the process by generating image embeddings via an image
encoder. These embeddings are subsequently interactively queried by variational prompts (bounding box, centroid, and random points) in
order to generate precise segmentation masks for the objects of interest.

ing [4, 15, 19, 35, 44, 48]. Moreover, there has been a
steady rise in research focused on object-based prohibited
items [6, 7, 54] and anomaly detection [1, 5, 18] within X-
ray baggage security imagery. For a comprehensive review
of X-ray security screening, readers can refer to the works
of [2, 46, 53].

Key public datasets support the utilisation of CNN-based
object detection beyond the visible spectrum. For Infrared
imagery, pivotal resources include the FLIR ADAS dataset
[17] and the Multispectral KAIST dataset [24], while for X-
ray imaging, popular datasets such as GDXray [41], SIXray
[42], PIDray [57], and OPIXray [55] play a crucial role.
Both datasets are designed to emphasize the advancement of
CNN-driven object detection systems by offering detailed
annotations beyond the visible spectrum in both Infrared
and visible imagery.

The effectiveness of object detection methods depends
significantly on the presence of annotated and labelled In-
frared and X-ray images. Such a universal model can be
achieved via foundational models such as SAM, showcas-
ing its remarkable performance across various medical seg-
mentation tasks [13, 23, 39, 40]. The investigations into
SAM performance across a diverse array of medical im-
agery demonstrated that while SAM achieves commend-
able segmentation results on targets with clear boundaries,
it struggles significantly with typical medical subjects that
have weak boundaries or exhibit low contrast [23, 40].
While prior methods utilised the standard SAM directly for
segmentation tasks, MedSAM [39] has adopted a distinct
strategy by fine-tuning SAM on a large dataset containing
over one million medical image-mask pairs. The results
demonstrate that MedSAM significantly enhances the seg-
mentation performance and outperforms specialist models
that were trained from the same modality [26].

Drawing on the success of SAM in medical imagery, this

study seeks to provide a thorough examination into the ef-
ficacy of SAM in segmenting imagery of non-traditional
modalities, specifically Infrared and X-ray images, with-
out the need for re-training or fine-tuning. Our study ex-
plores the zero-shot capabilities of SAM across three pub-
lic X-ray datasets [3, 57, 58] targeted on prohibited items
such as firearms, knives, hammers, etc., alongside one pub-
lic infrared dataset [17] where the detected objects include
pedestrians, cars, bicycles, and similar entities. We as-
pire that this preliminary investigation offers insights into
the performance of SAM beyond the visible spectrum, po-
tentially looking into its applicability for generating high-
quality annotations in infrared and X-ray imagery. Our goal
is to evaluate whether SAM could facilitate the curation and
offer detailed annotation of new datasets beyond the visible
spectrum, fostering further advancements in the field.

3. Methodology

We propose SAM to produce high-quality zero-shot seg-
mentation masks for datasets beyond the visible spectrum.
In Section 3.1, we first briefly review the architecture of
SAM, followed by Section 3.2 which addresses our primary
application of prompting capabilities of SAM to generate
segmentation masks for infrared and X-ray modality im-
ages.

3.1. SAM architecture

The Segment Anything Model (SAM) is a foundation model
that has achieved promising zero-shot segmentation perfor-
mance, trained on a large visible imagery dataset. It is done
by isolating specific objects within an image based on user-
defined prompts. These prompts can vary from a single
point, a full mask, a bounding box or text. SAM mainly
consists of three modules, as depicted in Fig. 2. The first
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module, the image encoder, is composed of a Vision Trans-
former (ViT) [16] backbone for image feature extraction, re-
sulting in image embedding in a spatial size of 64×64. The
second module, the prompt encoder, encodes the interactive
positional information derived from input points, boxes, or
masks, to provide for the mask decoder. The third mod-
ule, the mask decoder, consists of a two-layer transformer-
based decoder which takes both the extracted image embed-
ding with the concatenated output and prompt tokens for fi-
nal mask prediction. The core principle of SAM lies in its
ability to show strong zero-shot generalisation to new data
without the necessity for additional training, since it was
trained progressively on the large-scale Segment Anything
1 Billion (SA-1B) dataset, which contains over 1 billion au-
tomatically generated masks (400× more masks than any
existing segmentation datasets [21, 34]) and 11 million im-
ages.

3.2. SAM application

A key feature of SAM in the second module, as explained in
Section 3.1, is the selection of the appropriate segmentation
prompts (Fig. 2). While automatic mask generators with-
out manual prompts can be derived, this work focuses on
isolating only particular objects of interest, rather than seg-
menting every object present. Therefore, an auto-prompt
approach does not align with this task.

We propose that SAM can be employed through two dif-
ferent prompting conditions for segmenting objects of in-
terest beyond the visible spectrum. First, we use points as
prompts. In this setup, a series of specific points within the
object of interest in the image is provided to guide the pro-
cessing of SAM. We provide two types of point prompts.
The first type is centroid, where we defined the point as the
centre of the mask given at each object. The second type is
randpt, where we defined the prompt as two random points
inside the mask given at each object. In addition, bounding
box prompts are tested as input prompts for each object of
interest, akin to security inspections. This is conducted by
using the ground truth bounding box given for each image.
The prompting techniques used in this work are:
• SAM-bbox: where we employed ground truth bounding

box as prompt.
• SAM-centroid: where we defined SAM-centroid as the

mass centre of the ground truth mask as the prompt.
• SAM-randpt: as known as SAM-random point, where

we used two random points or coordinates inside the
ground truth mask as the prompt.
In each of these approaches, SAM is directly utilised

on the selected datasets, from infrared to X-ray security
imagery, without any re-training or fine-tuning specific to
those datasets. Moreover, all parameters are set to the de-
fault values [28]. When multiple masks corresponding to
various regions or structures within the image are generated,

we select the mask that exhibits the highest overlap with the
ground-truth mask for evaluating the segmentation.

4. Experimental Setup

This section presents the used datasets and the implementa-
tion details of our experiments.

4.1. Datasets

The following datasets are used in our evaluation:
PIDray [57]: this X-ray imagery dataset comprises a com-
prehensive collection of prohibited items, encompassing 12
distinct classes: baton, bullet, gun, hammer, handcuffs,
knife, lighter, pliers, power bank, scissors, sprayer, and
wrench. With a total of 29, 457 training images sourced
from various environments, including airports, subway sta-
tions, and railway stations, this dataset offers a diverse and
realistic representation of real-world scenarios.
CLCXray [58]: this X-ray imagery dataset offers a sub-
stantial dataset featuring overlapping objects sourced from
real-life scenarios, with a particular emphasis on hazardous
liquids, thus broadening the scope of threat object research.
The dataset comprises 7, 652 X-ray training images, a com-
bination of real subway scenes and synthetically generated
through manual bag design simulations. It encompasses 12
categories, including five types of cutters (blade, dagger,
knife, scissors, swiss army knife) and seven types of liquid
containers (can, carton drink, glass bottle, plastic bottle,
vacuum cup, spray can, tin).
DBF6 [1]: this dataset comprises conventional pseudo-
colour X-ray security images captured by a Smith Detec-
tion dual-energy scanner, featuring four views. It includes
six object classes: firearm, firearm part, knife, camera, ce-
ramic knife, and laptop, with a total of 8, 100 training im-
ages. Each object is meticulously annotated with segmen-
tation masks across all views, enabling accurate identifica-
tion, and is assigned a local index for seamless tracking.
The dataset encompasses images depicting single objects as
well as complex scenarios with multiple objects, providing
diverse and challenging samples for analysis and training.
FLIR [17]: this infrared imagery dataset offers meticu-
lously annotated single-channel grayscale infrared images
covering various object classes. These images are captured
in clear-sky conditions, encompassing both day (60%) and
night (40%) settings. The Infrared imagery is acquired us-
ing a FLIR Tau2 camera, renowned for its Long Wave In-
frared Cameras (LWIR), with a high resolution of 640×512
pixels. For our experiments, we primarily focus on the
training set (totalling 7, 859 images) with three key object
classes: Person, Bicycle, and Car.

4.2. Implementation Details
We use the original implementation of SAM [28] with a
ViT-H [16] backbone without further training or fine-tuning
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Table 1. PIDray: Average Recall comparison using IoU types: {Bbox} with various IoU thresholds.

Prompt AR[IoU=0.50:0.95] AR[IoU=0.50] AR[IoU=0.75] ARS [IoU=0.50:0.95] ARM [IoU=0.50:0.95] ARL [IoU=0.50:0.95]

B
bo

x

↰

bbox 0.767 0.972 0.855 0.767 - -↰

centroid 0.393 0.613 0.401 0.393 - -↰

randpt 0.456 0.687 0.469 0.456 - -

Table 2. CLCXray: Average Recall comparison using IoU type: {Bbox} with various IoU thresholds.

Prompt AR[IoU=0.50:0.95] AR[IoU=0.50] AR[IoU=0.75] ARS [IoU=0.50:0.95] ARM [IoU=0.50:0.95] ARL [IoU=0.50:0.95]

B
bo

x

↰

bbox 0.797 0.992 0.894 0.704 0.697 0.801↰

centroid 0.597 0.821 0.644 0.512 0.477 0.596↰

randpt 0.282 0.423 0.292 0.544 0.295 250

Table 3. DBF6: Average Recall comparison using IoU types: {Bbox, Segm} with various IoU thresholds.

Prompt AR[IoU=0.50:0.95] AR[IoU=0.50] AR[IoU=0.75] ARS [IoU=0.50:0.95] ARM [IoU=0.50:0.95] ARL [IoU=0.50:0.95]

B
bo

x

↰

bbox 0.660 0.978 0.726 0.449 0.621 0.745↰

centroid 0.399 0.703 0.398 0.281 0.364 0.460↰

randpt 0.400 0.696 0.400 0.249 0.314 0.475

Se
gm

↰

bbox 0.537 0.912 0.533 0.320 0.474 0.572↰

centroid 0.394 0.715 0.387 0.229 0.346 0.427↰

randpt 0.432 0.742 0.441 0.224 0.195 0.459

Table 4. FLIR: Average Recall comparison using IoU type: {Bbox} with various IoU thresholds.

Prompt AR[IoU=0.50:0.95] AR[IoU=0.50] AR[IoU=0.75] ARS [IoU=0.50:0.95] ARM [IoU=0.50:0.95] ARL [IoU=0.50:0.95]

B
bo

x

↰

bbox 0.606 0.991 0.627 0.546 0.688 0.784↰

centroid 0.286 0.606 0.239 0.266 0.303 0.226↰

randpt 0.282 0.565 0.250 0.231 0.353 0.322

to assess its performance for non-visible band datasets. We
evaluate on the training partition of each dataset since they
allow for more statistically significant results. For each ex-
periment, the prompts (bbox, centroid and randpt) are ob-
tained from the ground truth datasets. The centroid is cal-
culated as the mean of all ground truth mask vertices while
the random points are obtained via Monte Carlo sampling
of points within the bounding box and testing whether these
points lie inside the polygon defining the ground truth mask
until the desired number of random points is achieved (in
our experiments, two random points). We report bounding
box average recall (AR) in all our experiments by compar-
ing the bounding box from the predicted mask against the
ground truth bounding boxes. For DBF6, segmentation AR
is also reported since ground truth masks are available. Ad-
ditionally, we report the Recall for different intersection-
over-union (IoU) thresholds and the mean IoU for each
prompt/dataset pairs to evaluate the quality of the predic-
tions. All experiments were run using an NVIDIA 3090Ti
GPU.

5. Results
The resulting metrics for each dataset are summarised in
Table 1 to 4. We compiled our performance on the datasets
across X-ray and infrared imagery, with varying IoU thresh-

olds. The results are reported in terms of AR in two modes,
bounding box (Bbox) mode and segmentation mask (Segm)
mode. Note that only the DBF6 dataset has segmenta-
tion mask ground truth, meanwhile, the other three public
datasets chosen only provide bounding box ground truth.
The results are reported under three prompts, (bbox, cen-
troid, randpt), as explained in Section 3.2.

Having compiled a dataset across X-ray and infrared
imagery, we noted that the segmentation efficacy of SAM
is quantitatively influenced by the chosen prompting tech-
nique. For instance, across all datasets, bbox prompt shows
superior results on object segmentation tasks on all IoU
evaluation metrics, indicating that bbox prompting allows
strong features combination within that particular area, by
covering the entire object, making it more efficient in these
instances.

We compare the result of the AR according to IoU evalu-
ation criteria as shown in Table 1 and Fig. 3 (left) for PIDray
dataset [57]. For each of the given prompts, it consistently
shows that AR decreases as IoU thresholds become stricter.
At lower IoU thresholds, it is easier for SAM to have high
AR because the criteria for correct detection are more le-
nient. As the IoU threshold increases, requiring more pre-
cise overlap, SAM ability to capture all class targets with-
out also increasing false positives becomes more challeng-
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Figure 3. Recall performance using variational prompting strategies across different IoU thresholds and IoU type: Bbox.
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Figure 4. DBF6: Recall performance using variational prompt-
ing strategies across different IoU thresholds and IoU types: Bbox
(left), Segm (right).

ing, leading to lower AR. It can be seen that whilst bbox
prompt gives higher results, randpt gives slightly better re-
sults than the centroid point. The distinct class of PIDray,
as explained in Section 4.1, give more advantages to SAM
with randpt prompt, where having more points inside the
target class is effectively better at segmenting compared to
centroid point, with a small margin.

We further analyse the AR based on IoU evaluation cri-
teria, as presented in Table 2 and Fig. 3 (middle) for the
CLCXray dataset [58]. This analysis reveals a consistent
trend with the PIDray results; however, the centroid prompt
notably outperforms the random point prompt by a signif-
icant margin, unlike the PIDray findings (Fig. 3 (left)). In
this regard, the critical influence of material composition
may influence the effectiveness of prompt selection. The
CLCXray dataset has a class-wise combination which con-
sists of organic material (carton drinks, plastic bottles) as
well as metallic material (spray cans, tin), contrasting with
the PIDray dataset that exclusively consists of metallic com-
position, as discussed in Section 4.1. The presence of clut-
ter, especially involving organic materials, poses greater
challenges for the random point prompt due to the less dis-
tinctive features of these objects. This suggests that increas-
ing the number of prompt points does not automatically
enhance segmentation performance. Instead, strategically
placing a prompt at the centre of the target object signifi-
cantly improves results, as evidenced in Fig. 3 (middle).

In our final analysis of X-ray imagery, we focus on the
DBF6 dataset results, detailed in Table 3 and illustrated in

Table 5. Mean IoU for each prompt/dataset pairs.

Prompt DBF6 (Box) DBF6 (Segm) PIDRay CLCXray FLIR

↰

bbox 0.808± 0.130 0.730± 0.171 0.849± 0.131 0.870± 0.104 0.779± 0.110↰

centroid 0.603± 0.288 0.591± 0.287 0.577± 0.299 0.728± 0.255 0.534± 0.235↰

randpt 0.606± 0.283 0.621± 0.281 0.634± 0.280 0.440± 0.337 0.547± 0.262

Fig. 4. This evaluation considers two modes: bounding box
(Bbox) and segmentation (Segm). While the bbox prompt
maintains consistent performance in the Bbox mode, align-
ing with the patterns observed in Fig. 3, we notice a
marginal decline in its effectiveness in the Segm mode. Al-
though SAM can generate bounding boxes from segmenta-
tion masks, this approach proved to be less efficient, pri-
marily due to difficulty associating the bbox prompt with
Segm mode of SAM. Conversely, the point-based prompt-
ing methods, both centroid and randpt, demonstrated sta-
ble performance across both modes, differing only slightly.
This consistency indicates the robust adaptability of point
prompts to varying segmentation tasks within X-ray im-
agery analysis.

In our analysis of infrared imagery, as presented in Ta-
ble 4 and depicted in Fig. 3 (right), we observe that while
the bbox prompt generally results in higher AR, there is
a notable decrease in AR performance as the IoU thresh-
old increases for all types of prompts. This trend suggests
SAM’s limited ability to understand the characteristics of
class-specific infrared imagery, given its training predomi-
nantly on natural images. We propose that fine-tuning the
SAM model with an infrared imagery dataset could signifi-
cantly enhance its segmentation accuracy and effectiveness,
providing more robust quantitative results.

Table 5 presents the mean IoU for each prompt/dataset
pair. Overall, it is observed that the bounding box prompts
usually lead to a good bounding box prediction, mean-
ing that SAM can segment the object inside the proposed
bounding box. This is still confirmed for the DBF6 seg-
mentation dataset, with a relatively high mean mask IoU.
Among the bounding box datasets, FLIR obtains the low-
est mean IoU, indicating its challenging nature to SAM,
which is explained by the low contrast of the objects against
the background (see Fig. 7). From the centroid and ran-
dom point prompts, it is observed that, generally, two ran-
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Figure 5. IoU distribution for each prompt/dataset pair.

dom points lead to a better performance than the centroid.
While this might seem counter-intuitive, it indicates that
the centroid is not always the most significant point, while
two random points within the object lead to more cues for
SAM. The contrary is noted for the CLCXray, where sev-
eral objects consist of thin objects and bottles containing
liquids [58], which are difficult to capture by an X-ray ma-
chine and two random points might still be confused with
the background. These trends are further confirmed in the
IoU distribution shown in Fig. 5. It is noted that the three
types of prompts generally yield a good segmentation mask
for DBF6 and PIDRay, where the test objects are metal-
lic. On the other hand, the CLCXray shows a lower perfor-
mance with a high density of low IoU objects for the ran-
dom points prompt. To further investigate this, Fig. 6 shows
the class-wise IoU distribution of the CLCXray dataset. It is
seen that the best-performing classes for the random point
prompt are the tin and the cans, which are metallic and eas-
ily segmented. On the other hand, the worst performances
are obtained for thin objects (scissors, blades and daggers)
and organic material objects (such as plastic bottles), where
the choice of the random point might significantly impact
the prediction. Finally, it is also observed that SAM has the
poorest performance on the FLIR dataset when using point
prompts, which is again attributed to the low contrast of the
dataset.

The qualitative analysis, which examines the variance
in prompts and their alignment with ground truths across
different datasets, is illustrated in Figs. 1 and 7. For the
PIDray dataset (Fig. 7, 1st row), we observe that point-
based prompts often extend beyond the actual object bound-
aries, leading to an increased occurrence of false positives
compared to the bounding box prompts. In the case of the
CLCXray dataset (Fig. 7, 2nd row), which features a high
degree of overlap between organic and metallic materials,
strategically placing a prompt directly at the centre of the
target significantly improves bounding box precision com-
pared to random placement. The randpt prompt particularly
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Figure 6. Class-wise IoU distribution on the CLCXray dataset.

struggles with smaller objects, often exceeding their bound-
aries. Regarding the DBF6 dataset (Fig. 7, 3rd row), point-
based prompts generally achieve better segmentation than
bounding box prompts, although they tend to generate more
false positives for classes with smaller objects. In the FLIR
dataset (Fig. 7, 4th row), while the bounding box prompts
offer superior outcomes, point-based prompts fail to accu-
rately localise distinct classes such as pedestrians and cars,
likely due to the significant domain shift between the in-
frared imagery encountered here and the visible band im-
agery upon which SAM was trained.

6. Conclusion

This work presents a thorough assessment of the Segment
Anything Model (SAM) performance for images beyond
the visible spectrum. We evaluate SAM within three types
of prompts, namely bounding box, centroid and random
points, on three X-ray security imagery datasets and an in-
frared surveillance dataset. Our results suggest that while
SAM exhibits a great capability to segment objects when
given a bounding box prompt, its performance drops when
given point prompts. Specifically, it is observed that SAM
extends objects beyond their boundaries in X-ray images,
with particular difficulty for objects based on organic mate-
rials (which might be confused with the background). Ad-
ditionally, the low-contrast characteristic of infrared images
and the different appearance of the objects impose a sig-
nificant challenge on SAM, with poor segmentation perfor-
mance using the centroid and random point prompts. Fu-
ture directions may include fine-tuning SAM to the assessed
image modalities to increase its segmentation performance.
This would allow to streamlining the dataset annotation pro-
cesses, reducing the reliance on manual labelling. Such
advancements could facilitate the creation and enrichment
of datasets across various image modalities, significantly
broadening the scope and utility of machine learning appli-
cations in areas where data collection and annotation have
traditionally posed challenges.
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Figure 7. The segmentation results obtained by SAM, utilising variational prompting strategies, are examined across PIDray, CLCXray,
DBF6, and FLIR datasets. Notably, the prompt bbox consistently yields the most accurate segmentations. However, the other two prompt-
ing strategies occasionally encounter challenges, particularly in scenarios where objects are overlapped and cluttered, as observed in the
X-ray datasets.
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