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Abstract

Synthetic Aperture Radar (SAR) serves as a vital tool
in various earth observation applications, providing robust
imaging under challenging weather conditions. While the
fine-tuned foundation models excel in many downstream
tasks, they struggle with SAR object recognition because
of SAR’s unique imaging and scattering characteristics. In
this study, we propose a novel approach named Scattering
Prompt Tuning (SPT) based vision foundation model. It
uses SAR image scattering information as a prompt and in-
tegrates learnable parameters into the pre-trained model’s
input space to help learn SAR’s unique information. We
also employ a lightweight Residual AdapterMLP for fine-
tuning, design a Sequential Feature Aggregation (SFA) to
selectively fuse features from different transformer blocks
effectively, and develop a Dynamic Distributional Contrast
loss (DCLoss) to maintain the proper distance between dif-
ferent objects in feature space. Additionally, a four-stage
training strategy, incorporating semi-supervised learning,
is deployed to enhance SAR object recognition performance
further. Our approach reaches a Top-1 accuracy of 37.9%
and an AUROC of 0.83 on the final dataset, winning the
first place in the SAR Classification track of PBVS 2024
Multi-modal Aerial View Object Classification Challenge,
which is better than the latest advanced fine-tuned founda-
tion models.

1. Introduction
Synthetic Aperture Radar (SAR) provides robust imag-
ing unaffected by weather and time, addressing challenges
faced by electro-optical (EO) systems in dealing with
clouds, fog, and lighting changes [1, 2]. It plays an im-
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Figure 1. Comparison of different classes of EO images and SAR
images

portant role in observation applications like smart cities and
ocean monitoring.

Despite its advantages, SAR image object recognition
lags behind EO images for three main reasons [3]: (1) Lim-
ited availability of SAR data compared to the abundant EO
images supporting large model training for learning gener-
alized feature representation; (2) Inferior image quality in
SAR, as shown in Fig. 1, characterized by lower resolu-
tion and higher noise, leading to blurred object details; (3)
Different imaging mechanisms, rendering some EO object
recognition findings inapplicable to SAR images. These
challenges, coupled with the long-tail problem, contribute
to the complexity of SAR object recognition.

Long-tail recognition aims to accurately represent ob-
jects in unbalanced data, where some classes (head classes)
have abundant training samples, while others (tail classes)
have limited samples. In addressing this challenge, various
approaches can be categorized into three groups: 1) data
processing [4, 5]. 2) representation learning [6, 7]. 3) model
output tuning [8, 9]. Despite progress made in improving
object recognition performance, a noticeable gap persists
compared to models trained on balanced datasets [10].

Recently, large foundation models pre-trained on web-

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3056



scale datasets have revolutionized the field of computer
vision, showing powerful zero-shot and few-shot general-
izations [11]. These models have the potential to gener-
alize tasks and data distributions beyond those seen dur-
ing training. They have been successfully applied in vari-
ous fields, including visual recognition [12–15], dense pre-
diction [16–20], Reinforcement Learning (RL) [21–23],
Robotics [24, 25], and etc.

Recent results from BALLAD [26], RAC [27], VL-
LTR [28], and LPT [29] demonstrate that properly fine-
tuning pre-trained foundation models can surprisingly im-
prove the long-tail object recognition accuracy. For in-
stance, LPT fine-tunes the vision transformer pre-trained on
ImageNet, utilizing prompt tuning via two-stage training.

Due to the large differences between general images
and SAR images and the absence of labeled SAR image
datasets, as far as we know, there is no fine-tuned vision
foundation model available for fine-grained object recogni-
tion in SAR images. And existing fine-tuned models are de-
signed from the perspective of the model structure [10, 30],
ignoring the unique scattering information of SAR images.

Building upon these considerations, we propose a fine-
tuned foundation model called Scattering Prompt Tuning
(SPT) specifically tailored for object recognition in SAR
images. The scattering information extracted from SAR
images is converted into a textual description, serving as
the prompt alongside the visual image description. These
inputs are processed by the text encoder to extract seman-
tic features, initializing the model head for better conver-
gence. To guide the image encoder in learning scattering
information, we introduce trainable parameters as a scatter-
ing characteristics prompt in the input space, facilitating the
fine-tuning of the vision transformer model.

Acknowledging the disparities between web images and
SAR images, we introduce a lightweight module named
Residual AdapterMLP (RAMLP) within each transformer
block. The pre-trained transformer is fine-tuned by up-
dating RAMLP. Additionally, we implement a sequential
feature aggregation module to selectively fuse feature out-
puts from different transformer blocks. This module adapt-
sively extracts rich hierarchical information from SAR im-
ages. To address the challenge of extreme inter-class sim-
ilarity and intra-class differences, we develop the Dynamic
Distributional Contrast Loss. This loss function ensures
that features of objects from the same class and different
classes maintain appropriate distances, enhancing class dis-
tinguishability while preserving intra-class differences to
some extent.

Our fine-tuned foundation model, SPT, diverges from ex-
isting methods by effectively leveraging the scattering prop-
erties of SAR images. SPT mitigates domain shift issues be-
tween general web images and SAR images, proving to be
effective and well-suited for fine-grained object recognition

in SAR images.
In summary, our contributions are outlined as follows:

1. We propose a Scattering Prompt Tuning (SPT) based
foundation model. As far as we know, it is the first fine-
tuned foundation model for recognizing fine-grained ob-
jects in SAR images.

2. Different from existing methods, our method uniquely
leverages SAR image scattering properties to markedly
improve object recognition performance.

3. We combine and design novel modules like Residual
AdapterMLP and Sequential Feature Aggregation with a
Dynamic Distributional Contrast Loss, significantly en-
hancing semantic feature learning in SAR images.

2. Related Works

In our proposed SPT, we design modules for efficiently fine-
tuning the current vision transformer model from the per-
spective of utilizing the scattering properties of SAR im-
ages and dealing with the long-tail recognition challenge.
In this section, we perform a literature review of related
works from two perspectives: the foundation models and
long-tailed recognition.

2.1. Foundation Models

In recent years, there have been significant advancements
in natural language processing (NLP) with the develop-
ment of large language models (LLMs) [11] like GPT-
3 [31], GPT-4 [32], and ChatGPT. These breakthroughs
have sparked a revolution in the computer vision field,
prompting researchers to explore vision foundation mod-
els [33–36]. These models leverage self-supervised, unsu-
pervised, and image-text contrastive learning on vast web-
scale datasets to pre-train vision transformers. They demon-
strate robust generalization to downstream transfer learning
tasks, even in few-shot or zero-shot scenarios [30]. How-
ever, training these state-of-the-art models from scratch or
fully fine-tuning them for specific datasets, especially mod-
els like ViT-G/14 [33] with over 1.8 billion parameters, is
impractical. To overcome this challenge, there is growing
interest in parameter-efficient learning strategies (PETL).
PETL aims to leverage pre-trained foundation models as a
starting point and fine-tune only a subset of their parame-
ters to achieve comparable or superior performance to fully
tuned models [37–41]. Current PETL methods predomi-
nantly include adapter-based [39, 42] and prompting-based
approaches [30]. However, these methods primarily focus
on the model structure perspective. Different from existing
methods, our proposed SPT uniquely leverages SAR image
scattering properties to markedly improve object recogni-
tion performance.
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Figure 2. The framework of our proposed SPT.

2.2. Long-tail Recognition

Long-tail recognition aims to learn an accurate representa-
tion of objects within highly imbalanced datasets. Existing
methods can be broadly classified into two categories: train-
ing from scratch (TFC) and fine-tuning (FT) pre-trained
models. TFC methods involve training convolutional neural
networks directly on long-tail datasets, incorporating strate-
gies such as 1) data preprocessing [4, 5]. 2) representation
learning [6, 7]. and 3) model output tuning, with notable
contributions by [8, 9]. Conversely, recent FT approaches
capitalize on the strong representational capabilities of pre-
trained foundation models like CLIP [43] and ViT [12],
fine-tuning them to improve performance in long-tail ob-
ject recognition, with key studies by [26–28]. Despite these
advancements, to our knowledge, there is currently no foun-
dation model explicitly tailored for long-tail object recogni-
tion in SAR images, primarily due to the large difference
between general images and SAR images and the lack of
labeled SAR datasets.

3. Approach

3.1. Overall Framework

The framework of our SPT foundation model is shown in
Fig. 2. (1) We convert scattering information extracted
from SAR images into textual descriptions, used as prompts
alongside visual descriptions. These inputs undergo pro-
cessing by a text encoder, extracting semantic features to
initialize the classifier for better convergence. (2) To guide
the image encoder in learning scattering information, we

introduce a small set of trainable parameters into the input
space as scattering characteristics prompt. (3) A lightweight
Residual AdapterMLP (RAMLP) module fine-tunes the vi-
sion transformer by updating its weights. (4) The sequential
feature aggregation module selectively fuses outputs from
different transformer blocks, capturing comprehensive in-
formation. (5) An optimized dynamic distributional con-
trast loss is designed to effectively address challenges posed
by extreme intra-class differences and inter-class similari-
ties in SAR image object recognition.

3.2. Scattering information extraction

Figure 3. Python code for scattering information extraction algo-
rithm.

The scattering information of SAR images is the phe-
nomenon of radar wave interaction with ground objects.
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Different objects have different scattering characteristics.
The scattering information describes the characteristics of
the object surfaces, which is important for understanding
their edges and structures in SAR images [44]. Embedding
the scattering information into the prompt encoder may help
to improve the object recognition performance of the model.
We consider the scattering points extracted from the SAR
image as its scattering information, and the python code for
the extraction algorithm is illustrated in Fig. 3.

3.3. Scattering Characteristics Prompt

Figure 4. Comparison of full fine-tuning ViT and our SPT. (a)
Structure of full fine-tuning ViT. (b) Structure of our SPT.

For a plain vision transformer (ViT) [12] with N layers,
an input image is divided into m fixed-sized patches. Each
patch is then first embedded into d-dimensional latent space
with positional encoding. Together with an extra learnable
classification token ([CLS]), it is fed into the transformer for
feature learning. In our SPT, as shown in Fig. 4, we add ex-
tra learnable vectors as the scattering characteristics prompt
(SCP) in the input space to help the pre-trained model learn
the scattering information of unseen SAR images. During
the fine-tuning process, the parameters of scattering charac-
teristics prompt is updated.

3.4. Residual AdapterMLP

Vision transformers are usually trained on large web-scale
datasets and may lack exposure to SAR image informa-
tion. To bridge this gap, as shown in Fig. 4, we introduce
the Residual AdapterMLP (RAMLP) module in each trans-
former block, helping the model effectively capture accu-
rate details from SAR images. With fully-connected lay-
ers, nonlinear activation functions, and residual feature fu-

sion weights, RAMLP dynamically adjusts the vision trans-
former weights during fine-tuning.

Recent studies, like AdapterFormer, highlight the impor-
tance of the MLP in fine-tuned vision transformers for gen-
eral image/video recognition. RAMLP not only prevents
certain issues such as output degradation in vision trans-
formers but also improves its performance. Our version of
the RAMLP module in the fine-tuned vision transformer
differs from AdapterFormer [42] by including more non-
linear layers and deeper embedding dimensions for better
learning

3.5. Sequential Feature Aggregation

Figure 5. Details of our sequential feature aggregation module.

The pre-trained vision Transformer model produces di-
verse features in its different blocks, each containing dis-
tinct levels of semantic information from the SAR image.
Considering these features as a sequential sequence, we de-
sign a sequential feature aggregation (SFA) module to se-
lectively filter and merge the most relevant information for
SAR object recognition. The details are shown in Fig. 5

For the output features {c1, · · · , cN} from the N trans-
former blocks, we initially apply a channel downsampling
convolution (DConv) to get a uniform channel count for the
feature sequence {d1, · · · , dN}. Subsequently, short and
long-term sequence feature screening is performed to de-
rive features fN , encompassing information from various
positions within the sequence. Lastly, an aggregated con-
volution, formed by stacking multiple 1 × 1 convolutional
layers, adapts to fuse the screened features effectively.

fN = LConv(fN−1) + fN−1 (1)

3.6. Loss Function

The loss function L in our SPT model comprises two key
components: LA (Logit-Adjusted loss) [8] and LDC (De-
signed Dynamic Distributional Contrast Loss, DCLoss).
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LA primarily addresses the challenges posed by the long-
tailed distribution of data during training. On the other
hand, LDC is tailored to tackle the difficulties arising from
the extreme inter-class similarity and intra-class differences
in SAR image object recognition. For a detailed explana-
tion of LA, please refer to the paper [8]. Here, we focus on
elucidating LDC .

L = LA + LDC (2)

The primary objective of designing LDC is to ensure that
features from different object classes are widely separated,
while features from the same object class are brought closer
together, aligning with the actual data distribution. To ad-
dress the local clustering issue within classes (intra-class
differences), we incorporate a dynamic distance threshold
screening strategy. This strategy allows for variations in
distances between objects of the same class while ensuring
they are kept distinct from features of other classes. For the
features extracted from n SAR image objects, we measure
their similarity using the Euclidean distance:

distij = ∥∥oi − oj∥∥22 =

C∑
k=1

(oik − ojk)
2 (3)

where i and j denote the index of the sar image, {1 ⩽
i, j ⩽ n} and {i ̸= j}. C is the channel number. To guide
the learning of the similarity measure matrix dist, we build
its ground truth, Gsim, based on the actual labels of each
object. The value is set to 1 when the labels of two objects
are the same and 0 otherwise. The calculation of LDC can
be expressed using the following equation:

LDC = Gsim∗(dist−δp)
2+(1−Gsim)∗max(δq−dist, 0)2

(4)
δp and δq represent the dynamic thresholds for distances

between objects of the same class and different classes,
adapting to various data distributions. In our specific im-
plementation, we use the average values of the distances
between objects of the same class and different classes as
δp and δq , respectively.

3.7. Training Strategy

To gradually adapt the pre-trained vision transformer model
to SAR object recognition, our SPT model undergoes four
stages of training.

In the first stage, we fine-tune our SPT initially on a
mixed dataset of EO and SAR images, followed by another
fine-tuning specifically on SAR images. This process yields
an initial foundation model tailored to the SAR image do-
main.

Moving to the second stage, we create a balanced dataset
by sampling images from various classes in the SAR image
training dataset for further fine-tuning.

In the third stage, our focus is on understanding the dif-
ferences between the training data and the val(development
phase) / test(test phase) data. We capture features, predic-
tion scores, and prediction categories from the model’s last
layer for all val/test data. By applying a threshold, we select
high-scoring samples and employ Gaussian Mixture and K-
means++ algorithms for feature clustering. The overlap of
their results serves as the final clustering outcome. If a high-
scoring sample is within a cluster, we assign the prediction
categories of the high-scoring sample to all cluster mem-
bers. This process generates reliable predictions, and we
construct a balanced dataset by incorporating some training
images for further fine-tuning.

In the fourth stage, we exclusively use high-scoring sam-
ples as reliable predictions to build a balanced dataset for
additional fine-tuning. Since we find that the strategy in the
third stage becomes less effective as the model’s prediction
accuracy improves. Consequently, we iterate through the
fourth stage until the model’s prediction accuracy reaches a
plateau.

4. Experiments
4.1. Experimental Setup

Table 1. Details of the training dataset used in PBVS 2024 Multi-
modal Aerial View Object Classification - C (SAR Classification)
Challenge.

Class ID Class Name Number Percent(%)
0 sedan 364291 79.95
1 suv 43401 9.53
2 pickup truck 24158 5.30
3 van 16890 3.71
4 box truck 2896 6.36
5 motorcycle 1441 0.32
6 flatbed truck 898 0.20
7 bus 612 0.13
8 pickup truck with trailer 695 0.15
9 semi truck with trailer 353 0.08

Dataset. The dataset employed for the PBVS 2024
Multi-modal Aerial View Object Classification - C (SAR
Classification) Challenge encompasses aerial view SAR
images of 10 fine-grained vehicles. Tab. 1 outlines the
specifics of the training dataset, which includes 455,635
images exhibiting a pronounced long-tail distribution. No-
tably, Class 0 constitutes approximately 80% of the dataset,
while Class 9 comprises less than 0.08%. The image sizes
in the dataset exhibit some variability, averaging around
56× 56 pixels.

Evaluation Metrics. To quantitatively evaluate our pro-
posed method, four evaluation metrics are established for
this challenge: (1) Top-1 Accuracy. (2) Area Under the Re-
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ceiver Operating Characteristic curve (AUROC). (3) True
negative rate (TNR) at 95% true positive rate (tpr95). and
(4) Total Score. Total Score is a combination of Top-1 ac-
curacy and AUROC. Higher values of these four metrics in-
dicate better performance of the model. Note that the total
score determines the final ranking in the PBVS 2024 SAR
classification challenge.

Implementation details. All experiments are conducted
using a GeForce RTX3090 GPU. Our baseline model, PEL,
utilize CLIP-ViT-Base as its backbone. We employ the
SGD optimizer with a batch size of 128 and an initial learn-
ing rate of 0.01. The training process involved multiple
stages. The first stage run for 40 epochs. The second and
third stages are each set to 10 epochs. The fourth stage
comprise 7 epochs. Gaussian Mixture is configured with 10
components, and K-means++ utilize 10 clusters with 100
iterations. The threshold for identifying high-score predic-
tion samples ranged from 0.85 to 0.98.

4.2. Ablation Study

To assess the effectiveness of key components, hyper-
parameters, and modules in our proposed method for SAR
object recognition, we conduct a series of experiments. Un-
less specified otherwise, all evaluations are performed on
the val dataset (development phase) and limited to the first
training stage.

Table 2. Classification performance of different backbones and
image scales in development phase (val dataset).

Backbone
Image Top-1

AUROC
TNR at Total

Scale Accrucy(%) tpr95 Score

ResNet101 56× 56 11.83 0.413 0.02 0.19

ResNet101 112× 112 25.25 0.382 0.003 0.28

ResNet101 224× 224 26.4 0.496 0.03 0.32

CLIP(Vit-B) 224× 224 28.4 0.613 0.07 0.37

Backbone Selection. In the development phase, we
conduct experiments to assess the performance of different
backbone networks. Initially, we adopt ResNet101 [45],
following the approach of the first-place solution in the
PBVS 2023 SAR classification challenge [46]. Addition-
ally, we test the performance of CLIP (ViT-B) [43], a widely
used backbone in foundation models.

As depicted in the Tab. 2, CLIP outperforms ResNet101
across all four metrics—Top-1 Accuracy, AUROC, TNR at
tpr95, and Total Score. This clear superiority highlights the
effectiveness of CLIP, leading us to choose it as our back-
bone network.

Image Scale Exploration. Commonly utilized back-
bone networks like ResNet, CLIP, etc., are typically trained
on images with a scale of 224 × 224 pixels. However, the

PBVS 2024 SAR classification dataset contains images of
approximately 56× 56 pixels.

In Tab. 2, we investigate the impact of different image
scales on SAR object recognition, employing ResNet101
as the backbone network on the val dataset. The results
reveal a gradual increase in object recognition accuracy as
the image scale enlarges. Consequently, for all subsequent
experiments, we standardize the image scale to 224 × 224
pixels.

Table 3. Classification performance of different loss functions in
development phase (val dataset).

Loss
Top-1

AUROC
TNR at Total

Accrucy(%) tpr95 Score

CBLoss [47] 25.83 0.57 0.02 0.34

LDAM [48] 26.70 0.56 0.01 0.34

GRW [49] 27.56 0.59 0.04 0.35

LADE [50] 5.48 0.59 0.16 0.19

LA [8] 28.4 0.613 0.07 0.37

Exploring Loss Functions for Long-Tail SAR Ob-
ject Recognition. In our exploration of the impact of
different loss functions on object recognition accuracy for
SAR images, we utilize PEL as the benchmark method and
CLIP (Vit-B) as the backbone network. The evaluated loss
functions include CBLoss [47], LDAM [48], GRW [49],
LADE [50], and LA [8].

As illustrated in the Tab. 3, CBLoss, LDAM, and GRW
achieve comparable object recognition accuracy, while
LADE exhibits poor performance in SAR object recog-
nition. Remarkably, the LA loss function stands out as
the optimal choice across all evaluation metrics. Conse-
quently, we adopt LA as our base loss function and employ
it throughout all training stages. Our baseline method com-
bines PEL with the LA loss function.

Effect of Different Modules. Tab. 4 illustrates the
impact of different modules on the SAR object recogni-
tion results of our proposed SPT on the val dataset. The
model’s overall object recognition accuracy experiences
significant enhancement when individual modules, namely
SCP, RAMLP, SFA, and DCLoss, are incorporated.

Remarkably, the Top-1 accuracy improves from 28.4%
to 32.75%, and the overall score rises from 0.37 to 0.40
when all modules are combined, compared to the baseline
method. This improvement underscores the effectiveness of
our proposed method.

Results of Different Training Stages. We conduct tests
on the model at different training stages, evaluating its per-
formance on both the val and test datasets. The results, pre-
sented in the Tab. 5, reveal a gradual increase in the model’s
overall accuracy as training progresses.
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Table 4. Classification performance of different modules in development phase (val dataset).

SCP RAMLP SFA DCLoss
Top-1

AUROC
TNR at Total

Accrucy(%) tpr95 Score

28.4 0.61 0.07 0.37

✓ 28.72 0.64 0.08 0.37

✓ 29.29 0.64 0.08 0.38

✓ 29.44 0.64 0.05 0.38

✓ 29.87 0.63 0.06 0.38

✓ ✓ ✓ ✓ 32.75 0.61 0.06 0.40

Table 5. Classification performance of different training stages in development phase and test phase.

Stage development phase (val dataset) test phase (test dataset)

1 2 3 4
Top-1

AUROC
TNR at Total Top-1

AUROC
TNR at Total

Accrucy(%) tpr95 Score Accrucy(%) tpr95 Score

✓ 32.75 0.61 0.06 0.40 21.22 0.67 0.03 0.33

✓ 34.92 0.60 0.04 0.41 23.35 0.68 0.04 0.34

✓ 37.04 0.55 0.03 0.42 31.04 0.55 0.03 0.37

✓ 37.52 0.62 0.07 0.44 33.1 0.61 0.02 0.40

Notably, in the third and fourth stages, where we im-
plement distinct strategies to incorporate reliable samples
from the val/test data into the training set, there is a sub-
stantial and comprehensive enhancement in the model’s per-
formance. After the fourth stage of training, the model
achieves a top-1 accuracy of 37.52% on the val dataset, ac-
companies by an total score of 0.44. On the test dataset,
the model’s top-1 accuracy reaches 33.1%, yielding an total
score of 0.40.

4.3. Comparison with methods for Fine-Tuning
Foundation Model

The object recognition accuracy of different fine-tuning
methods on both the val and test datasets is presented in the
table, with all method codes derived from . Notably, SSF-
LN, SSF-MLP, and SSF-Attention represent LayerNorm,
MLP, and self-attention in the multi-head self-attention
layer (MHSA) within the fine-tuned transformer block.
Team A, Team B, and Team C represent the results of top
methods in the test phase of this challenge.

Observing the results in Tab. 6, SSF-LN, BitFit, VPT,
and PEL, based on the pre-trained base model, achieve the
highest total object recognition score on the val dataset, all
reaching 0.37. However, PEL stands out for its quicker
training, requiring fewer than 20 epochs to achieve com-
parable results.

Our SPT method, after four stages of training, surpasses
all others, achieving optimal SAR object recognition results

https://github.com/shijxcs/PEL

on the val dataset with a total score of 0.44 and on the test
dataset with a total score of 0.40. This represents a signif-
icant improvement over our benchmark method, PEL. Ad-
ditionally, SPT∗ denotes the result of 20 iterations of our
fourth-stage training strategy, boasting an impressive total
score of 0.49. These results affirm the validity and superi-
ority of our proposed method.

5. Conclusion

The fine-tuned foundation models excel in many down-
stream tasks. However, they struggle with SAR object
recognition because of SAR’s unique imaging and scatter-
ing characteristics. In this work, we introduce a novel ap-
proach named Scattering Prompt Tuning (SPT) based vi-
sion foundation model. It utilizes SAR image scattering
information as a prompt, integrating learnable parameters
into the pre-trained model’s input space to help learn SAR’s
unique information. We also introduce lightweight mod-
ules to fine-tune the pre-trained foundation model. Addi-
tionally, a four-stage training strategy, incorporating semi-
supervised learning, is deployed to enhance SAR object
recognition performance further. The experimental results
demonstrate the outstanding performance of our approach.
Future work needs to investigate more effective foundation
model fine-tuning methods for SAR object recognition.
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Table 6. Classification performance of different fine-tuning methods in development phase and test phase.

Method
development phase (val dataset) test phase (test dataset)

Top-1 AUROC TNR at Total Top-1 AUROC TNR at Total
Accrucy(%) tpr95 Score Accrucy(%) tpr95 Score

SSF-LN [41] 29.29 0.61 0.08 0.37 - - - -
SSF-MLP [41] 28.43 0.59 0.05 0.36 - - - -

SSF-Attention [41] 27.71 0.53 0.04 0.34 - - - -
Lora [40] 23.81 0.54 0.07 0.31 - - - -

LN Tuning 28.86 0.53 0.03 0.35 - - - -
BitFit [51] 28.43 0.64 0.06 0.37 - - - -

Adapter [39] 28.57 0.59 0.05 0.36 - - - -
VPT [30] 29.44 0.61 0.06 0.37 - - - -
PEL [10] 28.4 0.61 0.07 0.37 21.22 0.49 0.01 0.28
Team A - - - - 38.80 0.24 0.01 0.35
Team B - - - - 35.10 0.49 0.04 0.39
Team C - - - - 38.85 0.69 0.24 0.46

SPT(ours) 37.52 0.62 0.07 0.44 33.1 0.61 0.02 0.40
SPT*(ours) - - - - 37.9 0.83 0.22 0.49
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