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Abstract

Object detection on images can find benefit from cou-

pling multiple spectra, each presenting specific useful fea-

tures. However, building an efficient architecture cou-

pling the different modalities is a complex task. Trans-

formers, due to their ability to extract meaningful corre-

lations between the different regions of the inputs appear

as a promising way to perform features fusion across dif-

ferent spectra. This work presents a multi-spectral object

detection architecture based on cross-attention features fu-

sion (CAFF), combined with a transformer based detector

(DINO). We demonstrate here the performance of the pro-

posed approach in object detection compared with state-

of-the-art approaches, on infrared-visible multi-spectral

datasets. Moreover the robustness to systematic misalign-

ment between image pairs is studied. The proposed ap-

proach is generic to any mono-spectrum transformer based

detectors. The model developed in this study will be avail-

able in a dedicated github repository.

1. Introduction

Visible spectrum object detection can suffer lacks of infor-

mation, due to environment change thought time (day ver-

sus night for example), inducing missed detection or false

alarms as illustrated in Figure 1. Multi-spectral information

fusion, combining complementary information from vari-

ous modalities, is important to improve object detection in

such challenging situations. Therefore multi-spectral fusion

is studied in the literature in many application fields such as

surveillance, remote sensing or robotic vision. Several ef-

ficient deep learning models based on convolutional neural

networks adapted to multi-spectral infrared (IR) and visible

fusion brought strong performance in object detection by

combining both of these modalities on well aligned image

pairs [1].

The emergence of transformers using the attention mech-

anism to extract associations between the different regions

of the input, opened new possibilities for fusion [2]. In

the context of text-image multi-modal fusion, the cross-

attention operation has demonstrated great capabilities in

text-image fusion [3, 4]. However, to the best of our knowl-

edge, this operation hasn’t been a lot investigated in the lit-

erature of IR-visible image pairs fusion. Besides, if trans-

former based detectors are now used in many applications

in computer vision, their benefit for the task of image fu-

sion has not yet been studied. Finally, image acquisition

can be prone to alignment errors and robustness to imper-

fect alignment of both images of the pairs is not explored in

the literature.

In this paper we propose a new IR-visible object detec-

tion transformer based on features fusion method (called

CAFF) using cross-attention mechanism, and a modern

transformer-based detector (DINO). We show that this

model outperforms the state-of-the-art approaches on sev-

eral public datasets. The proposed model is generic,

able to be rapidly implemented on most of mono-modal

transformer-based detectors of the literature. We also study

the robustness of CAFF-DINO to systematic misalignment

between the image pairs.

Figure 1. From left to right: visible and IR image patches from

LLVIP dataset in low-light situation [5]. The reduced enlighten-

ment illustrates the benefit of IR: the third pedestrian, framed in

red, is barely noticeable in the visible spectra.
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2. Related work

Multi-spectral image fusion using deep learning is an open

research field, with paired datasets in open access since sev-

eral years [1]. One of the first work deploying convolutional

neural networks to fuse multi-spectral data was proposed in

[6]. Following works have focused their studies on where

to fuse features from both modalities in order to give the

most important performance increase, using concatenation

or other standard matrix operations [7]. Especially, follow-

ing the terminology used in [8],early, mid-fusion and late

fusion, have been compared in [9], considering similar ar-

chitectures. It is generally admitted that mid-fusion and

late fusion generally gives better localization performances,

whereas earlier feature fusion struggles more to fuse effi-

ciently features[8, 9]. However later fusers can become eas-

ily computationally expensive, needing generally the equiv-

alent of two complete models for each modality. Fea-

tures fusion (mid-fusion) is lighter, but it requires to guide

the general learning behavior of the model to meaning-

fully associate both input spectra. Cyclic fuse-and-refine

approach is one of the first approach developed to fuse

representations extracted at backbone-level: a convolution-

based fused-and-refine module enriches features extracted

by the model at several levels of abstraction [10]. Sev-

eral approaches, engineering correlated features extraction

between both spectra were developed, as through the con-

catenation of modality-wise channels or the shuffling be-

tween mono-modal features channels and spatial patches

[8]. Several features fusion using self-attention or com-

parable operation applied at the level of the features ex-

traction has been developed in the literature, performing

backbone features fusion based on cyclic-fused and refined

paradigm [2, 11]. However, these methods have been design

for a specific detector head and would require adaptation to

new detection module.

Transformer based detectors are a growing approach

in the field of computer vision: theses architectures are

able to extract meaningful correlations between regions of

the input image, at various scales [12]. The great abil-

ity of transformers to process rich information at multiple

scales gives the opportunity to build simpler and mono-

lithic deep neural models for object detection and local-

ization, avoiding the need for intermediate structures such

as region proposal sub-networks. The earlier detection-

localization model based on transformers and available in

the literature is DETR (DEtection TRansformer), which

consists in a monolithic transformer encoder-decoder head

based on the attention mechanism [13]. The architecture

is built upon a features extractor, then attention mecha-

nism applied on features maps to perform object detections.

Deformable-DETR increases performance of the original

DETR model by using pyramidal features extraction and

deformable-attention instead of conventional attention [14].

Deformable attention uses flexible kernels instead of static

ones, strengthening the capability of the model to handle

various object sizes, whereas it was a limitation of the orig-

inal DETR [15]. Finally, DINO model introduces a denois-

ing process between encoder object queries and decoder

queries, much stronger data augmentations and denoising

self-supervised learning approach [16]. This model is one

of the state-of-the-art detection transformers available in the

very recent detection transformers literature, followed by

several challengers [17, 18]. To the best of our knowledge,

these detectors have not yet been widely studied in the liter-

ature for IR-visible fusion, and particularly in combination

with cross-attention features fusion.

3. Paper organization

The present paper proposes a new architecture perform-

ing backbone features fusion using cross-attention opera-

tion and generic to any detection transformers models (Sec-

tion 4). We show that the proposed features fusion out-

performs state-of-the-art object detection performance on

standard visible-IR fusion datasets (Section 5.3). To eval-

uate the robustness to error in image pairs registration, we

perform an experiment where image pairs are experimen-

tally misaligned. Localization performance is evaluated for

various misalignment (consisting in horizontal-vertical sys-

tematic translations of the infrared image), comparing the

robustness of the proposed approach with the CFT-YOLO-

v5 method (Section 5.4). An ablation study is conducted in

Section 5.5, to compare several transformers detectors and

features extractors from the literature. The fusion method

proposed is also challenged by alternative fusion opera-

tions.

4. CAFF-DINO architecture

A crucial point in the IR-visible fusion is how to efficiently

combine the representations from both modalities. The ar-

chitecture proposed in this work is illustrated in Figure 2.

The solution extracts a new fused features map between

the two mono-modal backbones features, at each level of

abstraction before injection into the encoder-decoder of a

transformer based detector. Compared to several features

fusions based on cyclic-fused and refine approach [2, 10],

the fused features extracted are not re-injected into the

mono-modal backbones, isolating each features extractor

from the other. This choice, and the absence of modifica-

tion of the mono-modal features extractors facilitates the de-

ployment of the model through the direct use of pre-trained

weights available online. It also facilitate the interchange-

ability of the modalities. The detection head exploiting

fused features in our proposal is the DINO detector.

The idea behind the proposed fusion is to force the mean-

ingful association and correlations extraction between input
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Figure 2. Illustration of the multi-spectral fusion architecture. The architecture is composed of two mono-spectral features extractor,

combined with several additional fusion modules, and a transformer head that performs the object detection from both fused modalities.

Figure 3. Illustration of the Caff features fusion module. At each

extraction level, the mono-spectral features maps are correlated

using hierarchical cross-attention operations (1). The IR, Visible,

and correlation features maps are then concatenated (2). These

features are finally fused with 1*1 convolution operations and

adapted to the detection head (3).

modalities. Instead of a previous work using self-attention

operation [2], the operation proposed here is the cross-

attention, developed for vision in [19]: this operation is

directly focused on the extraction of associative informa-

tion between both modality, from the IR features to the

visible ones. For each stage of the features extraction, a

module named Cross-Attention Features Fusion (CAFF)

performs a hierarchical cross-attention from IR features to

visible features.The operations performed on the features

maps, at each level of abstraction, are illustrated in Figure

3. As shown, cross-attention is performed with multiple

kernel size, in order to insist on features extraction at mul-

tiple scales. Then the correlation information obtained is

combined with mono-modal features.

For n features maps extracted by each backbone, the pro-

posed implementation is formalized as follows. Firstly a

cross-attention is performed, correlating information from

thermal modality in visible spectrum as described in Eq. 1.

The operation is applied on features F thermal

i
and F visible

i
. The

queries, keys and values matrices are defined using several

convolution layers with different kernels sizes (hierarchi-

cal attention), increasing the capability of the model to ex-

tract multi-level correlations between the features from each
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modality.

CrossAttn
k

i = softmax

(

Qk

i (F
visible
i ).Kk

i (F
thermal
i )T√

dk

)

V
k

i (F thermal

i ),

∀i ∈ {1, . . . , n}, ∀k, kernel size (1)

The cross-attention matrices obtained are stacked and

compressed using convolution layer (depth C = 256). To

enrich the extracted correlation features, several blocks of

self-attention are applied on top of the fused cross-attention

map. The correlation information is compressed again us-

ing a unitary convolution layer, in a depth of 64 channels

and defined as FCorrelations
i . Visible and thermal features

maps are concatenated with FCorrelations
i to form FStacked

i , in

a depth of 2*C+64 channels as described in Eq. 2.

FStacked
i = F Visible

i + F Thermal

i + FCorrelations
i ,

∀i ∈ {1, . . . , n} (2)

A 1*1 convolution is applied on the concatenated fea-

tures that shapes the dimensionality of the vector to the

shape attended by the transformer heads encoder in Eq. 3.

FFused
i = Convk=1

2C+64→C(F
Stacked
i ),

∀i ∈ {1, . . . , n} (3)

The proposed fusion module is optimized for the Swin-

Large backbone and the DINO detector, and named CAFF

(see Section 5.5 for head and backbones comparison). Ta-

ble 1 describes the fusion module, the backbone type, the

size of the convolution kernels used in the cross-attentions

to compute keys, queries and values, and the number of ad-

ditional attention blocks. The module CAFF corresponds to

the module optimized with a Swin backbone, while CAFF*

is optimized with a resnet50 and is compared with CAFF in

the ablation study.

Fusion Backbones Cross-atn kernels # Cross-atn block

CAFF Swins k = {1, 5, 7} 2

CAFF* Resnets k=1 3

Table 1. Description of the different fusion modules: CAFF and

CAFF*.

5. Experiment

This section introduces the datasets used in the experiment,

the training and evaluation setup, the performance obtained

on aligned and misaligned images and the ablation study.

5.1. Data

Two public datasets defined as a set of IR-visible image

pairs for object detection have been used to evaluate the per-

formance of the architecture.

LLVIP dataset. LLVIP is a reference visible-infrared

paired dataset dedicated to pedestrians detection for surveil-

lance applications, mostly in low-light conditions [5]. The

dataset contains 16.836 IR-visible image pairs, a majority

of which were taken in low-light environments. All the

couples of image of this dataset are strictly spatio-temporal

aligned.

FLIR datasets. The FLIR-ADAS dataset is a multi-

spectral object detection dataset including day and night

scenes [20]. Three object categories are represented in the

dataset: “person”, “car” and “bicycle”. FLIR-aligned. is

the subset of this original dataset mainly used by the com-

munity, cleaned to contain only registered and paired im-

ages. The dataset contains 5,142 image pairs, which is a

relatively limited amount of data considering transformers

training data amounts and task difficulty.

5.2. Training and evaluation setup

Models initialization weights, for the backbones of each

modality and the detection head, when available, come from

COCO mono-spectral training. The fusion module is ran-

domly initialized. Backbones are frozen during the training,

for both modalities, preventing the over-parameterization of

the whole model. Hyper-parameters such as the number

of epoch, learning rate, loss are set following the original

DINO recommendations [16]. The metric used for object

detection performance evaluation is the mean average pre-

cision (mAP), calculated using Pycocotools package.

5.3. Object detection on aligned data

CAFF-DINO has been trained on both LLVIP and FLIR

datasets. The comparison of the detection scores with

state-state-of-the-art models is presented in Table 2 for

LLVIP dataset, and Table 3 for FLIR-aligned dataset.

These tables show the scores of each modality individually

and fused. The combination Swin-Large-CAFF + DINO

(called CAFF-DINO) reaches significantly higher perfor-

mance compared with the state-of-the-art mono and multi-

modality models from the literature. On LLVIP an increase

of mAP of 4.9 % is obtained compared with CFT-YOLO-

v5. On FLIR-aligned, an increase of 9.1% is obtained on

the mAP compared with the ICA-Fusion model. The bene-

fit of the information fusion between IR and visible is con-

firmed, considering the increase of performance between

mono-modal DINO and multi-spectral proposal: it is mea-

sured an increase of mAP of 1 % on LLVIP (respectively

6.9 % on FLIR-aligned) between multi-modal DINO and

IR only DINO. The lower benefit of CAFF-DINO on LLVIP
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Dataset Modality Backbone Detector mAP50 (↑) mAP75 (↑) mAP (↑)

LLVIP

Visible CSPD53 YOLOv5 [2] 90.8 51.9 50.0

IR CSPD53 YOLOv5 [2] 94.6 72.2 61.9

Vis+IR - HalfWay [10] 91.4 60.1 55.1

Vis+IR - ProbEn [21] 93.4 50.2 51.5

Vis+IR - GAFF [11] 94.0 60.2 55.8

Vis+IR - CSSA [8] 94.3 66.6 59.2

Vis+IR CFB CFT-YOLO-v5 [2] 97.5 72.9 63.6

LLVIP (our results)

Visible Swin-Large DINO 91.3 59.8 54.4

IR Swin-Large DINO 97.3 79.0 67.5

Vis+IR Swin-Large-CAFF DINO 98.1 79.0 68.5

Table 2. Comparison between CAFF-DINO (swin-Large-CAFF+DINO) and several state-of-the-art fusion approaches on the LLVIP

dataset.

Dataset Modality Backbone Detector mAP50 (↑) mAP75 (↑) mAP (↑)

FLIR-aligned

Visible Resnet-50 Faster-RCNN 64.9 21.1 28.9

IR Resnet-50 Faster-RCNN 74.4 32.5 37.6

Visible CSPD53 YOLO-v5 [2] 67.8 25.9 31.8

IR CSPD53 YOLO-v5 [2] 73.9 35.7 39.5

Vis+IR ResNet18 GAFF [11] 72.9 32.9 37.5

Vis+IR - ProbEn [21] 75.5 31.8 37.9

Vis+IR CFB CFT-YOLO-v5 [2] 78.7 35.5 40.2

Vis+IR - CSSA [8] 79.2 37.4 41.3

Vis+IR - ICA-Fusion [22] 79.2 36.9 41.4

FLIR-aligned (our results)

Visible Swin-Large DINO 75.6 33.5 39.2

IR Swin-Large DINO 77.2 41.3 43.6

Vis+IR Swin-Large-CAFF DINO 85.5 51.6 50.5

Table 3. Comparison between CAFF-DINO (swin-Large-CAFF+DINO) and several state-of-the-art fusion approaches on the FLIR-aligned

dataset.

could be explained by the properties of the data, with a ma-

jority of low-light acquisitions during the night. In this case,

the IR information is the most beneficial and the fusion with

visible spectra is less crucial.

Figures 4 and 5 give qualitative examples of detection

on image pairs, from LLVIP and FLIR-aligned respectively,

with ground-truth and network’s detection (CAFF-DINO

model). The model is able to detect efficiently objects in

IR when they are more difficult to identify in visible spec-

trum (night situation). On the contrary, contrast between

the different objects and the environment is more variable

in IR in the FLIR pair (day-time, inducing more thermal

saturation): here objects are easier to distinguish in visible.

Confidence in the FLIR example is reduced due to the pres-

ence of numerous objects, which should explain the missed

instances.

5.4. Object detection with misalignment

In order to evaluate the robustness of CAFF-DINO to er-

ror in image alignment (that can be caused by miscalibra-

tion or even no-calibration of the cameras), CAFF-DINO

has been trained on the datasets with a systematic transla-

tion applied on the IR images. The misalignement has been

applied on both train and test set. Performance of the pro-

posed model is compared with CFT- YOLO-v5 model [2].

This model obtained the best performance in the state-of-

the-art on LLVIP and is publicly available. A systematic

translations of 10, 50, 100, and 200 pixels have been ap-

plied.

Tables 4 and 5 show the mAP and the relative mAP de-

crease associated with the systematic translation applied on

LLVIP and FLIR-aligned. The mAP decrease is generally

less important for CAFF-DINO, highlighting the robustness

of the proposed architecture. The cross-attention operation

could help the model to handle the misalignment between

both modalities. The CFT-YOLO approach struggles more
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Figure 4. Visible and IR images from the LLVIP test-set. Ground-

Truth are framed in red while CAFF-DINO detection are framed

in blue (confidence threshold set to 50 %).

Figure 5. Visible and IR image pairs from the FLIR-aligned test-

set. Ground-Truth are framed in red while CAFF-DINO detection

are framed in blue (confidence threshold set to 50 %).

on misalignment in FLIR data which contains more chal-

lenging environment changes, requiring to perform accu-

rate fusion of both spectra. As expected, both of the mod-

els studied here also converge to performance obtained in

the unaltered spectrum (the visible spectrum) for the larger

misalignment of 200 pixels, as more information is lost in

IR, due to the systematic misalignment.

5.5. Ablation study

Several ablations are conducted in order to identify the con-

tribution of each component of the architecture: transformer

detector head, features extractors and features fusion ap-

proach.

Comparison of several transformers detectors. The

performance of several heads are evaluated on LLVIP and

FLIR in order to estimate the comparative benefit of our fu-

sion approach with the different attention-based detectors

elaborated in the literature. The detectors evaluated here

are the original DETR [13], Lite-DETR [23], Deformable-

DETR [14], H-Deformable-DETR [24] and DINO [16].

The experiment is conducted with Resnet-50 features ex-

traction (CAFF*), due to the larger availability of public

pre-trained weights with this backbone compared to Swin-

Large. Table 6 shows the results of this experiment: the ben-

efits of using modernized and improved transformer heads

such as CAFF-DINO are confirmed. Detection performance

on this dataset follows generally the technical progress of

detection transformers, from the original DETR to DINO

and modern architectures. These results tend to highlight

the generic aspect of the proposed method to a large panel

of detector head.

Comparison of different features extractors. The ex-

periment is here conducted with Deformable-DETR, which

provides public Resnet50, Swin-Tiny and Swin-Large pre-

trained backbones associated to this architecture. Perfor-

mance obtained with DINO are measured too, for compar-

ison between CAFF and CAFF* (only Resnet50 and Swin-

Large weights available).

Table 7 highlights the benefit of using richer features ex-

tractors such as transformers-based compared with Resnet.

The performance gap between the Swin features extractor

is more contrasted, both backbones giving comparable

performance. In this paper, Swin-Large has been privileged

in the CAFF-DINO model due its pre-trained weights

availability. The scores using DINO also highlight the

greater benefit of CAFF on Swin based backbone fusion

(respectively CAFF* on Resnet based one).

Comparison of alternative features fusion approaches.

Two alternative fusion modules are proposed as challengers

of the CAFF fusion proposed. Single features concatena-

tion (concat) fusion consists in concatenating the features

maps from both spectra, at each level of abstraction. This

fusion module is illustrated in Figure 6. The pipeline of this

features fusion can be formalized as follows, for n features

extractions performed by each mono-spectrum backbone:

The features maps from each spectrum, named respec-

tively F Thermal

i
and F Visible

i
are stacked, giving a features vector

of depth 2*C (Eq. 4). C is the features map depth attended

by the transformer encoder.

FStacked
i = F Visible

i + F Thermal

i ,

∀i ∈ {1, . . . , n} (4)

A 1*1 convolution layer compresses this concatenated

features vector to the shape attended by the transformer

heads encoder in Eq. 5.
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Model 10px 50px 100px 200px

mAP(CFT-YOLO-v5) 51.3 (-19 %) 50.3 (-21 %) 49.2 (-23 %) 51.8 (-19 %)

mAP(CAFF-DINO) 57.4 (-16 %) 59.7 (-12 %) 57.0 (-17 %) 53.9 (-21 %)

Table 4. Illustration of the detection score (mAP) and the relative score decrease after misalignement on LLVIP. The relative score decrease

is calculated as the relative difference between mAP on aligned data and misaligned data. The misalignment is indicated in pixel (px).

Model 10px 50px 100px 200px

mAP(CFT-YOLO-v5) 34.7 (-13 %) 28.7 (-28 %) 28.7 (-28 %) 29.0 (-27 %)

mAP(CAFF-DINO) 49.8 (-1 %) 37.2 (-26 %) 39.4 (-22 %) 43.7 (-13 %)

Table 5. Illustration of the detection score (mAP) and the relative score decrease after misalignement on FLIR-aligned. The relative score

decrease is calculated as the relative difference between mAP on aligned data and misaligned data. The misalignment is indicated in pixel

(px).

Dataset Backbone Head mAP75 mAP

LLVIP Resnet-50-CAFF*

DETR 65.5 58.9

Deformable-DETR 69.4 61.1

H-Deformable-DETR 75.5 65.0

Lite-DINO 77.7 65.7

DINO 78.2 67.0

FLIR-a Resnet-50-CAFF*

DETR 20.6 15.7

Deformable-DETR 36.4 38.3

H-Deformable-DETR 33.7 34.6

Lite-DINO 33.2 36.8

DINO 40.6 37.9

Table 6. Comparison of different transformer heads from the liter-

ature combined with CAFF*1 on LLVIP and FLIR-aligned.

FFused
i = Convk=1

2C→C(F
Stacked
i ),

∀i ∈ {1, . . . , n} (5)

CAFF has also been compared with the cosine-

similarity operation (cos-sim), performed between the

features maps from each spectrum [25, 26]. The cosine-

similarity is a measure that calculates the similarity between

the two features maps, by estimating the cosine of the an-

gle between them. In Eq. 6, F Thermal
i

and FVisible
i

represent

the mono-spectrum features maps. The operation can be

Dataset Head Backbone mAP75 mAP

LLVIP Deformable-DETR

Resnet-50-CAFF* 69.4 61.1

Swin-tiny-CAFF* 76.2 64.6

Swin-Large-CAFF* 75.7 64.9

LLVIP DINO

Resnet-50-CAFF* 76.3 66.3

Swin-Large-CAFF* 78.1 67.6

Resnet-50-CAFF 74.7 65.1

Swin-Large-CAFF 79.0 68.5

Table 7. Comparison of several fusion backbones using CAFF*

and CAFF combined with deformable-DETR and DINO on

LLVIP.

viewed as a measure of the alignment between these IR and

visible features, at each level of abstraction. A 1*1 convo-

lution is added, reshaping the similarity matrix extracted for

injection into the transformer’s head.

FCorrelations
i =

F Thermal
i

· FVisible
i

∥F Thermal
i

∥ × ∥FVisible
i

∥
,

∀i ∈ {1, . . . , n}
(6)

Table 8 shows object detection scores obtained by the
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Figure 6. Illustration of the fusion module approach with features

concatenation only.

Dataset Head Backbone mAP75 mAP

LLVIP DINO

Resnet-50-CAFF* 78.2 67.0

Resnet-50-concat 77.9 66.9

Resnet-50-cos-sim 77.8 66.5

FLIR-aligned DINO

Resnet-50-CAFF* 40.6 37.9

Resnet-50-concat 35.1 38.9

Resnet-50-cos-sim 38.3 36.6

FLIR-aligned DINO

SwinL-CAFF 51.6 50.5

SwinL-concat 48.6 48.4

SwinL-cos-sim 42.6 43.7

Table 8. Comparison of different fusion approaches:

CAFF/CAFF*, features concatenation and cosine-similarity

on LLVIP and FLIR-aligned.

alternative modules on LLVIP and FLIR. It shows a de-

crease of performance by up to 6.8 % when using cosine-

similarity on FLIR-aligned dataset (SwinL-cos-sim versus

Swin-L-CAFF in the table) instead of the cross-attention

proposal. If CAFF generally performs better, the gap be-

tween the different modules is reduced on LLVIP: the task

is easier, with mostly night, low-light vision data favorable

to IR modality. Single features concatenation (-concat in the

table) gives high performance, close to CAFF and CAFF*

(even outperforming the mAP with Resnet-50 features ex-

traction on FLIR-aligned), highlighting the ability of trans-

formers detectors to extract meaningful correlations directly

on stacked then fused features maps from both modality.

The single concatenation fusion might also give a lighter

alternative module, considering the number of parameters.

Figure 7 gives a qualitative illustration of the detection per-

formance of the different fusion modules, on LLVIP: if the

difference between CAFF (a) and concatenation (b) is lim-

ited considering box quality, there is a general decrease in

detection confidence for the cosine-similarity fusion (c), in-

ducing missed detection.

6. Conclusion

This work presents a method for multi-spectral object de-

tection using a detection transformer combined with cross-

attention features fusion. The proposed method is generic to

Figure 7. Visible and IR image pair from the LLVIP test-set. (a)

is CAFF detection, (b) is concatenation, (c) is cosine-similarity.

Ground-Truth are framed in red while our model’s detection are

framed in blue. Confidence threshold is 50 %. A red triangle

indicates the missed detection.

the detection head. We show that the cross-attention module

CAFF combined with DINO detection head outperforms

the state-of-the-art models for object detection on several

public IR-visible datasets, while being robust to the sys-

tematic misalignment applied on the IR images. In further

works this architecture could be enriched with additional

fusion operation, and spectrum-specific pre-training of the

backbones instead of freezing. As the proposed method

tends to be generic, it can be adapted to next generations of

detection transformers. The extension of this work to more

data starved IR-visible datasets, or to other visual modal-

ity fusion (visible-SAR, visible-LIDAR...) seems also rele-

vant to estimate the generalization capabilities of the fusion

method over the different spectra.
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Avignon. Multispectral fusion for object detection with

cyclic fuse-and-refine blocks. In 2020 IEEE International

Conference on Image Processing (ICIP), pages 276–280,

2020. 2, 5

[11] Heng Zhang, Elisa Fromont, Sebastien Lefevre, and Bruno

Avignon. Guided attentive feature fusion for multispectral

pedestrian detection. In Proceedings of the IEEE/CVF Win-

ter Conference on Applications of Computer Vision, pages

72–80, 2021. 2, 5

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is

worth 16x16 words: Transformers for image recognition at

scale. In International Conference on Learning Representa-

tions, 2021. 2

[13] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-

end object detection with transformers. In Computer Vision –

ECCV 2020: 16th European Conference, Glasgow, UK, Au-

gust 23–28, 2020, Proceedings, Part I, page 213–229, Berlin,

Heidelberg, 2020. Springer-Verlag. 2, 6

[14] Zhu Xizhou, Su Weijie, Lu Lewei, Li Bin, Wang Xiaogang,

and Dai Jifeng. Deformable DETR: deformable transformers

for end-to-end object detection. In 9th International Con-

ference on Learning Representations, ICLR 2021, Virtual

Event, Austria, May 3-7, 2021. OpenReview.net, 2021. 2,

6

[15] Zhuofan Xia, Xuran Pan, Shiji Song, Li Erran Li, and Gao

Huang. Vision transformer with deformable attention. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition (CVPR), pages 4794–4803,

June 2022. 2

[16] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun

Zhu, Lionel Ni, and Heung-Yeung Shum. DINO: DETR with

improved denoising anchor boxes for end-to-end object de-

tection. In The Eleventh International Conference on Learn-

ing Representations, 2023. 2, 4, 6

[17] Liu Shilong, Li Feng, Zhang Hao, Yang Xiao, Qi Xianbiao,

Su Hang, Zhu Jun, and Zhang Lei. DAB-DETR: Dynamic

anchor boxes are better queries for DETR. In International

Conference on Learning Representations, 2022. 2

[18] Zhuofan Zong, Guanglu Song, and Yu Liu. Detrs with col-

laborative hybrid assignments training. In Proceedings of

the IEEE/CVF International Conference on Computer Vision

(ICCV), pages 6748–6758, October 2023. 2

[19] C. Chen, Q. Fan, and R. Panda. Crossvit: Cross-attention

multi-scale vision transformer for image classification. In

2021 IEEE/CVF International Conference on Computer Vi-

sion (ICCV), pages 347–356, Los Alamitos, CA, USA, oct

2021. IEEE Computer Society. 3

[20] FREE - FLIR Thermal Dataset for Algorithm Training | Tele-

dyne FLIR, December 2023. [Online; accessed 17. Dec.

2023]. 4

[21] Yi-Ting Chen, Jinghao Shi, Zelin Ye, Christoph Mertz, Deva

Ramanan, and Shu Kong. Multimodal object detection via

probabilistic ensembling. In Computer Vision – ECCV 2022:

17th European Conference, Tel Aviv, Israel, October 23–27,

2022, Proceedings, Part IX, page 139–158, Berlin, Heidel-

berg, 2022. Springer-Verlag. 5

[22] Jifeng Shen, Yifei Chen, Yue Liu, Xin Zuo, Heng Fan, and

Wankou Yang. Icafusion: Iterative cross-attention guided

feature fusion for multispectral object detection, 2023. 5

[23] Feng Li, Ailing Zeng, Shilong Liu, Hao Zhang, Hongyang

Li, Lei Zhang, and Lionel M. Ni. Lite detr: An interleaved

multi-scale encoder for efficient detr. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 18558–18567, June 2023. 6

[24] D. Jia, Y. Yuan, H. He, X. Wu, H. Yu, W. Lin, L. Sun,

C. Zhang, and H. Hu. Detrs with hybrid matching. In

2023 IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 19702–19712, Los Alami-

tos, CA, USA, jun 2023. IEEE Computer Society. 6

[25] Stijn van Dongen and Anton J. Enright. Metric distances de-

rived from cosine similarity and pearson and spearman cor-

relations, 2012. 7

3045



[26] Takumi Nakagawa, Yutaro Sanada, Hiroki Waida, Yuhui
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