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Abstract

The aim of this paper is to improve the resolution of low-
quality thermal images obtained from downsampled images
afflicted with noise and blur, alongside high-resolution vis-
ible images, to achieve high-resolution thermal imagery.
Our proposed method, named Flexible Window-based Self-
attention Transformer (FW-SAT), operates across global,
regional, and local scales to effectively enhance the fine
details in the thermal domain. FW-SAT integrates vari-
ous attention mechanisms such as channel and spatial at-
tention, window-based self-attention, and flexible window-
based self-attention. Notably, flexible window-based self-
attention aggregates regional window features based on
window-based self-attention, while channel and spatial at-
tention mechanisms capture global information. Addition-
ally, window-based self-attention is employed to explore
local features within the image. We assess the perfor-
mance of FW-SAT in the PBVS-2024 Thermal Image Super-
Resolution Challenge (GTISR) - Track2. Our extensive
experiments demonstrate that our proposed approach sur-
passes state-of-the-art techniques in both qualitative and
quantitative evaluations. Code will be available at https:
//github.com/jianghongcheng/FW-SAT.

1. Introduction

Optical cameras, which operate by capturing electromag-
netic waves within the visible (VIS) and near-infrared (NIR)
spectrum, encounter substantial challenges when faced with
adverse lighting and weather conditions. Factors such as
low illumination, precipitation, and atmospheric phenom-
ena (e.g., fog) pose significant hurdles to their imaging ca-
pabilities due to the reliance on visible light for image for-
mation. In such conditions, the captured images often lack
detail and clarity, limiting their effectiveness in scenarios
where precise visualization is crucial.

In contrast, thermal sensors function independently of
visible light, detecting infrared radiation emitted by objects.

This unique characteristic enables thermal cameras to main-
tain imaging consistency even in environments character-
ized by fluctuating lighting conditions and atmospheric ob-
structions. By detecting thermal energy emitted by objects,
these cameras can effectively provide augmented and reli-
able imaging under challenging circumstances. Therefore,
thermal cameras are widely utilized across various sectors,
including military, agriculture, and medical fields, serving
numerous surveillance and monitoring tasks [5, 14, 19].
The emergence of the COVID-19 pandemic has also intro-
duced a new use for thermal cameras: body temperature
measurement [11].

Despite their wide utilities, images from thermal cam-
eras suffer from their low spatial resolution. To this end,
high-resolution infrared focal plane arrays, necessary for
detailed imaging, still present a significant cost barrier due
to hardware process limitations. Physically for an ob-
ject reflecting solar illumination and emitting thermal en-
ergy, thermal detectors typically require larger pixel sizes
to gather enough emitted radiation to generate a measurable
signal, since thermal radiation is less intense than the visi-
ble light reflected. For examples, in satellite sensors such as
Landsat 8, the thermal bands have a solution of 100 m/pixel
while visible and near-infrared bands have 30m/pixel. Con-
sequently, thermal cameras typically fall short of matching
the spatial resolution of VIS/NIR cameras; for example, a
modern low-cost RGB camera can readily provide high-
resolution images in the megapixel range. Additionally, in-
creasing spatial resolution in thermal sensors is constrained
by factors such as the Signal to Noise Ratio (SNR) of the
sensor area. Attempts to improve resolution by increasing
sensor size directly correlate with higher costs, making such
technology less accessible and hindering efforts to enhance
spatial resolution [17].

To address these challenges without resorting to costly
hardware upgrades, there is growing interest in leverag-
ing software algorithms to enhance the spatial resolution of
thermal images. Super-resolution (SR) techniques, which
aim to increase image resolution while preserving high-
frequency details, have garnered attention in this regard.
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Particularly, the Single Image Super-Resolution (SISR)
methodology involves upscaling a low-resolution (LR) im-
age to achieve high-resolution (HR) enhancement. Dong
et al.[4] pioneered the adoption of deep learning for their
SRCNN model, which has since propelled CNN-based so-
lutions outperforming traditional SR methods. Noteworthy
advancements in the arena have been made through various
published works [10, 24, 29].

Transformers, renowned for their self-attention mecha-
nisms enabling the capture of long-range dependencies, are
believed to excel in understanding global context. In re-
cent years, there has been a surge in the development of
Transformers-based SR techniques, aiming to enhance the
quality of SR images [7, 27, 28]. However, Chen et al. [2]
presented a meticulous examination of the comparative ef-
fectiveness between Transformers and Convolutional Neu-
ral Networks (CNNs) in image super-resolution tasks. Ad-
ditionally, they introduced an Overlapping Cross-attention
(OCA) Module to facilitate more direct interaction among
adjacent window features. This novel design enhances the
collaboration between neighboring pixels, resulting in im-
proved reconstruction performance. By activating a broader
range of pixels for reconstruction, the model achieves no-
table performance gains. In addition, Li et al. [8] introduced
the Anchored Stripe Attention (ASA) module, aimed at pro-
cessing images of various resolutions while simultaneously
reducing computational and space complexity.

Building upon this concept, we introduce the Flexible
Window-based Self-attention (FWA) module, which real-
izes an adaptable attention mechanism. By aiming to exam-
ine the features of adjacent windows, this approach can dy-
namically adjust to neighboring regions, facilitating a more
comprehensive understanding of regional features within
the image. It is worth emphasizing that despite employing
a similar overlapping window partition strategy, there ex-
ists a fundamental disparity between the ASA module and
the FWA approach. ASA is primarily intended for the ex-
ploration of global features within images, whereas FWA
is explicitly crafted for exploring regional features. This
highlights a crucial distinction in the objectives and design
principles of the two methods.

The main contributions of this paper are summarized as
follows:
• We introduce the Flexible Window-based Self-Attention

Transformer (FW-SAT) architecture, a comprehensive
framework that combines advanced channel and spatial
attention mechanisms with window-based self-attention
and a flexible window-based self-attention mechanism.
This integrated approach aims to significantly enhance
the performance of thermal image super-resolution by ef-
fectively addressing global, regional, and local contextual
factors with precision and efficacy.

• We propose a Flexible Window-based Self-Attention

(FWA) module specifically designed to collect regional
window features using window-based self-attention. This
innovative approach enables the model to focus and an-
alyze information from specific regions within the input
data, resulting in enhanced performance and precision in
thermal image super-resolution tasks.

• We introduce a Channel Spatial Attention Block (CSAB)
that delves into global features by harnessing the
strengths of both channel attention and spatial attention
mechanisms through concatenation. Channel attention
enhances the model’s capability to emphasize critical fea-
tures across diverse channels, allowing for a concentrated
focus on the most pertinent information. Simultaneously,
spatial attention facilitates the capture of spatial relation-
ships and contextual details within features, thereby en-
hancing the model’s comprehension and refining its per-
formance.

• Extensive experimentation confirms the efficacy of our
FW-SAT in comparison to contemporary thermal super-
resolution techniques, demonstrating superior perfor-
mance across both qualitative and quantitative evaluation
metrics.

2. RelatedWork

2.1. Visible Image Super-Resolution

Visible image super-resolution (VISR) has been a popu-
lar research topic for over a decade, with early methods
predominantly relying on model-based approaches such as
neighbor embedding regression [21] and Random Forest
[18]. However, in recent years, deep learning techniques
have been extended for Single Image Super-Resolution
(SISR). For example, Dong et al. first introduced SR-
CNN [4], paved the way by effectively extracting features
from LR images and learning the mapping between LR and
HR features to reconstruct HR images. EDSR [10] ini-
tially employed residual blocks without batch normaliza-
tion as the fundamental building blocks, forming a deeper
super-resolution network. RDN [30] combined residual
blocks with dense connections, introducing residual dense
blocks. RCAN [29] integrated channel attention into resid-
ual blocks, proposing residual attention modules and deep-
ening the network.

Recently, Vision Transformers (ViTs) have emerged as
powerful alternatives to CNNs, overcoming inherent biases
and effectively modeling long-range dependencies, thereby
achieving optimal performance in various high-level visual
tasks. ViT-like structures have also been applied to low-
level tasks, showcasing their versatility and effectiveness.
For example, Niu et al. [12] introduced a Holistic Attention
Network (HAN) for single image superresolution. It dy-
namically captures the global dependencies across various
depths, channels, and positions through the self-attention

3077



mechanism. SwinIR [9] adopted the Swin Transformer’s ar-
chitecture, leveraging a shifted window mechanism to cap-
ture long-range dependencies and achieving enhanced per-
formance with reduced parameter complexity. Addition-
ally, DAT [3] improved single-image super-resolution per-
formance by aggregating spatial and channel features in
both interblock and intra-block dual manners, enhancing
representation competence. Furthermore, GRL [8] intro-
duced a network structure with hierarchies in the Global,
Regional, and Local range, leveraging anchored stripe self-
attention, window-based self-attention, and channel atten-
tion enhanced convolution to yield impressive performance
gains.

2.2. Thermal Image Super-Resolution

The advancements made by deep learning in Visible Im-
age Super-Resolution (VISR) have sparked renewed interest
and research in Thermal Image Super-Resolution (TISR).
Alongside [16], which introduced a novel GAN-based ar-
chitecture called CycleGAN and a comprehensive ther-
mal image dataset, several other notable contributions have
emerged in this domain. Thuan et al. [20] proposed a tech-
nique to enhance the resolution of thermal images by lever-
aging edge features from corresponding high-resolution vis-
ible images, providing an alternative approach to TISR. Pra-
japati et al. [13] introduced Channel Splitting-based Convo-
lutional Neural Network (ChasNet) for thermal image SR,
aiming to eliminate redundant features in the network and
enhance performance. Additionally, Wang et al. [23] pre-
sented a Camera Internal Parameters Perception Network
(CIPPSRNet) which could also be applied to other cross-
camera super-resolution tasks and Compared with existing
state-of-the-arts thermal and natural SR methods. Further-
more, Prajapati et al. [6] presented a CoReFusion archi-
tecture that is computationally inexpensive and lightweight
with the ability to maintain performance despite missing
one of the modalities. These contributions collectively sig-
nify the growing momentum and exploration within the
realm of Thermal Image Super-Resolution research, high-
lighting the diverse methodologies and techniques being ex-
plored to address this challenging problem.

3. Methodology
3.1. Motivation

The HAT model, as demonstrated by Chen et al. [2], has ex-
hibited remarkable performance in image super-resolution.
The authors assert that leveraging more information leads
to improved performance. Additionally, Li et al. [8] in-
troduced the Anchored Stripe Attention (ASA) module, de-
signed to process images of varying resolutions while con-
currently reducing computational complexity and memory
usage. Notably, they introduce the concept of anchors in

addition to the traditional triplets of queries, keys, and val-
ues. Anchors serve as a condensed representation of the in-
formation within the image feature map, possessing lower
dimensionality. Based on the ideas presented in the two
papers, it can be inferred that the efficacy of image super-
resolution techniques can be significantly improved by in-
corporating more information and introducing novel atten-
tion mechanisms. Additionally, there is a clear need to
develop a network architecture that effectively integrates
global, regional, and local features.

To address the modeling of global, regional, and local
features for thermal image super-resolution, we introduce
a novel Flexible Window-based Self-Attention Transformer
(FW-SAT). Our FW-SAT architecture incorporates channel
and spatial attention, window-based self-attention, and flex-
ible window-based self-attention mechanisms. Specifically,
the flexible window-based self-attention is devised to ag-
gregate regional window features based on window-based
self-attention.

This proposed architecture aims to leverage diverse at-
tention mechanisms to effectively capture global, regional,
and local information within thermal images. The channel
and spatial attention mechanisms enable the model to fo-
cus on relevant channels and spatial locations, respectively,
allowing for the selective enhancement of features at dif-
ferent scales. The window-based self-attention mechanism
facilitates the extraction of regional features by attending
to specific windows within the image, thereby capturing
contextually relevant information. Additionally, the flexi-
ble window-based self-attention mechanism further refines
feature representations by adaptively attending to informa-
tive regions based on the learned attention weights.

By combining these attention mechanisms within the
FW-SAT architecture, we aim to create a versatile and adap-
tive framework for thermal image super-resolution. This ap-
proach enables the model to effectively exploit global con-
text, capture regional details, and preserve local informa-
tion, ultimately leading to enhanced performance in super-
resolving thermal images.

3.2. Network Architecture

3.2.1 The Overall Structure

Fig. 1 illustrates the overall architecture of our network,
which comprises three key components: shallow feature
extraction, deep feature extraction, and image reconstruc-
tion. This architectural approach is commonly utilized in
the HAT model [2]. The network architecture of the Flex-
ible Window-based Self-attention Transformer (FW-SAT)
for thermal image super-resolution commences with the in-
put of the downsampled thermal image and visible image,
thus reaching the upsampled thermal image resolution. Ini-
tially, bicubic interpolation is applied to enhance the ther-
mal image’s resolution to match that of the visible image.
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Figure 1. The overall architecture of FW-SAT and the structure of FG, AG, CSAB and FWAB

r 0 0.25 0.5 0.75

PSNR/SSIM (×8) 27.87/0.8521 28.05/0.8536 28.56/0.8698 27.95/0.8525
PSNR/SSIM (×16) 23.68/0.7574 23.77/0.7581 24.05/0.7773 23.63/0.7552

Table 1. Ablation study on the different flexible window-based self-attention (FWA) ratio with window size of 8x8 on test dataset.

Figure 2. The structure of the FWA

Subsequently, the upsampled thermal image is concatenated
with the visible image, and convolutional layers (Conv) are
employed to extract shallow features. To enable deep fea-

ture extraction, a deep network is constructed by stacking
several Fusion Groups (FG) with a Conv layer at the end.
This architecture facilitates the bypassing of abundant low-
frequency information through multiple skip connections,
guiding the main network’s attention towards learning high-
frequency information. Each Fusion Group (FG) comprises
several Attention Groups (AG), followed by a combina-
tion of Flexible Window-based Self-attention (FWA) and
a Conv layer. Finally, the image is reconstructed using a
Conv layer, followed by pixel-shuffle layers [15], and an-
other Conv layer. We utilize a sophisticated fusion of L1
loss, SIMM loss, and Perceptual loss to intricately optimize
the network parameters throughout the training process. It
is important to note that, unlike the HAT model [2], which
performs upsampling in the image reconstruction module,
in our approach, we reach the upsampled image size before
the shallow feature extraction module.
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EDSR SwinIR HAN GRL FW-SAT
PSNR/SSIM (×8) 25.66/0.8394 24.98/0.8170 25.86/0.8430 25.59/0.8405 27.80/0.8815
PSNR/SSIM (×16) 22.59/0.7562 21.22/0.7277 22.69/0.7591 22.38/0.75 24.61/0.8116

Table 2. Quantitative comparison with state-of-the-art methods on validation dataset.

Size (8 × 8) (16 × 16)
PSNR/SSIM (×8) 28.56/0.8698 27.93/0.8518
PSNR/SSIM (×16) 24.05/0.7773 23.97/0.7706

Table 3. Ablation study on the different window sizes with a flex-
ible window-based self-attention (FWA) ratio of 0.5 on the test
dataset

3.2.2 Attention Group (AG)

Previous studies have emphasized the benefits of convolu-
tion in enhancing the visual representation and optimiza-
tion capabilities of Transformers [2, 25, 26, 31]. To cap-
ture global information effectively, we introduce a Channel
Spatial Attention Block (CSAB) into the standard Trans-
former block. As illustrated in Fig. 1, the CSAB is seam-
lessly integrated into the standard Swin Transformer block
after the first LayerNorm (LN) layer, positioned before the
Shifted Window-based Self-attention ((S)W-MSA) module.
The process of AG is computed as follows:

Y = (S)W-MSA(CSAB(LN(X))) +X; (1)

Where X denotes a given input feature and Y represents
the output of HAB.

For the (S)W-MSA, given an input feature of size H ×
W × C, it is initially divided into HW

M2 local windows of
size M × M . Within each local window, self-attention is
computed independently. Let XW ∈ RM2×C denote the
feature matrix within a local window. The query, key, and
value matrices, denoted as Q, K, and V respectively, are
obtained through linear mappings. The window-based self-
attention is then expressed as follows:

Attention(Q,K, V ) = SoftMax
(
QKT

√
d

+B

)
V, (2)

where d denotes the dimension of the query and key matri-
ces. The term B represents the relative position encoding,
computed according to the method described in reference
[22].

To effectively explore global information, a Channel
Spatial Attention Block (CSAB) is devised, comprising two
standard convolution layers with SiLU activation, along
with a Channel Attention (CA) module [29] and Spatial At-
tention (SA) module [1], as depicted in Fig. 1. Channel
attention enhances the model’s ability to emphasize crucial
features across different channels, enabling a focused atten-
tion on the most relevant information. Concurrently, spatial

attention aids in capturing spatial relationships and contex-
tual details within features, thereby enhancing the model’s
understanding and refining its performance. To leverage the
benefits of both modules, we combine them through con-
catenation, harnessing the strengths of both channel atten-
tion and spatial attention mechanisms.

3.2.3 Flexible Window-based Self-attention Block
(FWAB)

To explore regional features, we introduce an additional
concept called a ”flexible pointer” alongside the triplets of
queries, keys, and values. The flexible pointer set serves as
a condensed summary of information from the image fea-
ture map and possesses a high dimensionality. Rather than
directly comparing similarities between queries and keys,
the flexible pointer acts as an intermediary for this compar-
ison. The window size for the flexible pointer is calculated
as follows:

Mo = (1 + γ)×M, (3)

where γ represents a positive constant used to control
the window size of the flexible pointer, ensuring that the di-
mensionality of Mo is much bigger compared to the original
dimensionality M . To clarify this operation further, con-
sider the standard window partition as a sliding partition
with both the kernel size and the stride set to the window
size M . Conversely, the flexible pointer window partition
can be conceptualized as a sliding partition with the ker-
nel size equal to Mo, while the stride remains equal to M .
Zero-padding with a size of γM

2 is employed to maintain
the consistency of flexible pointer windows.

As illustrated in Fig. 2, the Flexible Window-based Self-
attention (FWA) mechanism is proposed, as outlined in the
following equation:

Mf = SoftMax
[(

QFT /
√
d+B

)(
FKT /

√
d
)]

V (4)

Where F ∈ RMo×d represents the flexible pointer, while
Q,K, V ∈ RM×d denote the query, key, and value matri-
ces respectively, where d represents the embedding dimen-
sion. Additionally, the relative position bias B ∈ RM×Mo

is employed to incorporate positional information into the
attention mechanism.
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Baseline
CSAB × × ✓ ✓
FWAB × ✓ × ✓

PSNR/SSIM (×8) 27.45/0.8418 27.65/0.8448 27.86/0.8490 28.56/0.8698
PSNR/SSIM (×16) 23.43/0.7495 23.46/0.7529 23.53/0.7561 24.05/0.7773

Table 4. Ablation study on the proposed channel spatial attention block (CSAB) and flexible window-based self-attention block (FWAB)
on test dataset.

Structure w/o CA w/o SA w/ CA & SA
PSNR/SSIM (×8) 27.82/0.8509 27.74/0.8510 28.56/0.8698
PSNR/SSIM (×16) 23.59/0.7555 23.72/0.7578 24.05/0.7773

Table 5. Ablation study on the channel attention(CA) and spatial attention(SA) modules in channel spatial attention block (CSAB) on test
dataset.

4. Experiments
4.1. Dataset

The PBVS-2024 Thermal Image Super-Resolution Chal-
lenge (GTISR) - Track2 dataset utilized for this Thermal
Image Super-Resolution (TISR) challenge consists of reg-
istered pairs of images captured in both the visible and ther-
mal spectra, ensuring accurate alignment of scenes across
modalities. The dataset comprises a total of 1000 registered
images, simultaneously captured using both the Balster and
TAU2 cameras. Participants have access to 900 images,
with 700 designated for training and 200 for validation. The
remaining 100 images serve as the test dataset for evaluating
outcomes, with ground truth data withheld for assessment.

4.2. Experimental Setup

We utilize the PBVS-2024 Thermal Image Super-
Resolution Challenge (GTISR) - Track2 dataset as our
training dataset. During training, we utilize the validation
dataset and incorporate data augmentation techniques by
randomly rotating or flipping the images. Specifically, we
configure the number of Fusion Groups (FG) and Attention
Groups (AG) to 6 each. The channel number is set to 96
to facilitate effective feature processing. Additionally, both
the attention head number and window size are defined as
6 and 8, respectively, for both the (S)W-MSA and Flexible
Window-based Self-attention (FWA) modules. Regarding
the hyperparameters of our proposed modules, we set the
squeeze factor in channel attention to 3 and the FWA ratio
to 0.5.

4.3. Ablation Study

4.3.1 Comparison of HAT and FW-SAT

The HAT model, as introduced by Chen et al. [2], in-
tegrates self-attention, channel attention, and a unique
overlapping cross-attention mechanism. This integration

is achieved through the use of residual Hybrid Attention
Groups (RHAG), which comprise Hybrid Attention Blocks
(HAB) and Overlapping Cross-attention Blocks (OCAB).
By activating more pixels, this method aids in reconstruc-
tion and differs from prior approaches. Notably, HAT uti-
lizes same-task pre-training on large-scale datasets, demon-
strating the effectiveness of this strategy. Furthermore, HAT
scales up the model, setting new state-of-the-art bench-
marks for single-image super-resolution tasks.

In the case of our Flexible Window-based Attention
Transformer (FW-SAT), we made modifications by remov-
ing the multi-layer perceptron (MLP) and CAB module. In-
stead, we incorporated the Channel and Spatial Attention
Blocks (CSAB) before the (S)W-MSA module. This de-
sign decision stems from our aim to enable the network
to learn global information through CSAB, which contains
both Channel Attention and Spatial Attention, and then
transfer these features to the (S)W-MSA module to ex-
plore local features. Finally, the Flexible Window-based
Self-attention Block (FWAB) is employed to capture re-
gional features. This hierarchical learning approach allows
our network to optimize performance by learning local, re-
gional, and global features.

Additionally, we combined the visible image and down-
sampled thermal images before the shallow feature extrac-
tion stage. This enables our network to learn RGB infor-
mation, in contrast to the HAT network, which only takes
downsampled images as input. To maintain a consistent
comparison standard, we kept the input of the shallow fea-
ture extraction module of FW-SAT the same as HAT. There-
fore, we set the upsampling ratio of the image reconstruc-
tion to 1 and maintained the same network configuration for
both HAT and FW-SAT. Our experimental results in Tab.
6 demonstrate that FW-SAT achieves better performance
compared to HAT.
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Figure 3. Visual comparison on validation dataset

Figure 4. The visual comparison x8 upscaled images on the test
dataset

Structure FW-SAT HAT
PSNR/SSIM (×8) 28.56/0.8698 28.48/0.8688
PSNR/SSIM (×16) 24.05/0.7773 24.01/0.7705

Table 6. Ablation study on the flexible window-based self-
attention transformer (FW-SAT) and hybrid attention transformer
(HAT) on test dataset.

4.3.2 Comparison of FWA and OCA

To compare the two modules, we directly replaced the Over-
lapping Cross-Attention (OCA) with Flexible Window-
based Self-attention (FWA) in FW-SAT. The primary dif-

Figure 5. The visual comparison x16 upscaled images on the test
dataset

ference between FWA and OCA lies in their approach to
achieving overlapping windows. While OCA adjusts the
size of keys and values to achieve this purpose, we designed
a flexible pointer to dynamically adjust the key and value
sizes based on the idea proposed in [8].

Our experimental results in Tab. 7 demonstrate that FWA
is significantly more effective than OCA. This indicates
that our approach to handling overlapping windows through
flexible adjustment of key and value sizes yields superior
performance compared to the conventional approach em-
ployed by OCA.
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Structure FWA OCA
PSNR/SSIM (×8) 28.56/0.8698 27.67/0.8467
PSNR/SSIM (×16) 24.05/0.7773 23.60/0.7547

Table 7. Ablation study on the flexible window-based self-
attention (FWA) and overlapping cross-attention (OCA) of hybrid
attention transformer (HAT) on test dataset.

4.3.3 Effectiveness of CA and SA in CSAB

Channel attention (CA) and spatial attention (SA) are two
complementary techniques utilized to enhance model per-
formance. CA enables models to prioritize critical features
across different channels, allowing for focused attention on
the most relevant information. Meanwhile, SA captures
spatial relationships and contextual details within features,
improving the model’s understanding and performance. As
shown in Tab. 5, comparative analyses against baseline re-
sults reveal that integrating both CA and SA led to notable
enhancements in performance metrics such as PSNR and
Structural SSIM, with improvements exceeding 0.3 dB and
0.01,

4.3.4 Effectiveness of CSAB and FWAB

The Channel Spatial Attention Block (CSAB) and Flexi-
ble Window-based Self-attention Block (FWAB) are im-
plemented to investigate global and residual features, re-
spectively. Experimental assessments were conducted to
highlight the efficacy of these proposed blocks. Compar-
ative analyses with baseline results in Tab. 4 demonstrate
that both CSAB and FWAB contributed to performance im-
provements of over 0.5 dB on PSNR and 0.02 on SSIM.

4.3.5 Comparison of Different Window Size

The design of the (S)W-MSA and FWA modules serves the
purpose of exploring both local and regional features within
the input features. Our experimentation reveals that overly
large window sizes introduce computational complexities
that hinder the network’s capacity to meticulously examine
window features. Based on our observations in Tab. 3, a
window size of 8x8 emerges as the optimal choice, strik-
ing the right balance between computational efficiency and
performance.

4.3.6 Comparison of Different Ratio of FWA

In the FWA, a constant parameter γ is introduced to regulate
the window size for the flexible pointer. To investigate the
impact of different ratios, a range of γ values from 0 to 0.75
were examined, with γ = 0 representing a standard Trans-
former block. The analysis, detailed in Tab. 1 , indicates
that the model achieves optimal performance when γ is set

to 0.5. Conversely, setting γ to 0.75 results in either mini-
mal performance gains or even a decrease in performance,
highlighting the importance of selecting an appropriate win-
dow size of the flexible pointer to facilitate effective inter-
action among neighboring windows.

4.4. Comparison with State-of-the-Art Methods

In a meticulous evaluation of FW-SAT’s performance, we
rigorously compared it with state-of-the-art methods by
training them on the train datasets. Utilizing the validation
data for evaluation was crucial, as the dataset of 200 images
offered ample opportunity to assess the performance of each
network comprehensively. Notably, since these networks
are optimized for processing super-resolution of downsam-
pled visible images, we maintained consistency by utilizing
downsampled thermal images as inputs. Fig. 3 and Tab.
2 present the qualitative and quantitative comparisons, re-
spectively. The notable consistency in performance across
these methods highlights the effectiveness of FW-SAT in
skillfully addressing the super-resolution task within the do-
main of thermal imaging.

5. Conclusion
The paper presents a novel Flexible Window-based Self-
attention Transformer (FW-SAT) designed specifically for
thermal image super-resolution. The FW-SAT architecture
integrates channel and spatial attention, window-based self-
attention, and flexible window-based self-attention mech-
anisms. Particularly, the Channel Spatial Attention Block
(CSAB) is introduced to exploit global features by combin-
ing the strengths of channel attention and spatial attention
through concatenation. Additionally, the Flexible Window-
based Self-attention (FWA) is developed to effectively ex-
plore regional features by leveraging window-based self-
attention. Extensive experimental evaluations confirm the
effectiveness of the proposed network, showcasing its state-
of-the-art performance both quantitatively and qualitatively.

While focusing the GTISR dataset in this work, the pro-
posed technique can be extended to perform SR for multi-
spectral remote sensing images (e.g., Landsat or Sentinel-2)
which feature high- and low-resolution at different band-
widths. By performing SR over these low-resolution bands,
they can effectively enable advanced image understanding
(e.g., semantic mapping for global hazards and impact) us-
ing multiple bands with unified resolution. This capability
is subject to our future effort.
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ence, ICIAR 2018, Póvoa de Varzim, Portugal, June 27–29,
2018, Proceedings 15, pages 353–362. Springer, 2018. 1

[20] Nguyen Duc Thuan, Trinh Phuong Dong, Bui Quang Manh,
Hoang Anh Thai, Tran Quang Trung, and Hoang Si Hong.
Edge-focus thermal image super-resolution using genera-
tive adversarial network. In 2022 International Conference
on Multimedia Analysis and Pattern Recognition (MAPR),
pages 1–6. IEEE, 2022. 3

[21] Radu Timofte, Vincent De Smet, and Luc Van Gool.
Anchored neighborhood regression for fast example-based
super-resolution. In Proceedings of the IEEE international
conference on computer vision, pages 1920–1927, 2013. 2

[22] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 5

[23] Kai Wang, Qigong Sun, Yicheng Wang, Huiyuan Wei,
Chonghua Lv, Xiaolin Tian, and Xu Liu. Cippsrnet: A cam-
era internal parameters perception network based contrastive
learning for thermal image super-resolution. In Proceedings

3084



of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 342–349, 2022. 3

[24] Xuehui Wang, Qing Wang, Yuzhi Zhao, Junchi Yan, Lei Fan,
and Long Chen. Lightweight single-image super-resolution
network with attentive auxiliary feature learning. In Pro-
ceedings of the Asian conference on computer vision, 2020.
2

[25] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu,
Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt: Introduc-
ing convolutions to vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 22–31, 2021. 5

[26] Tete Xiao, Mannat Singh, Eric Mintun, Trevor Darrell, Piotr
Dollár, and Ross Girshick. Early convolutions help trans-
formers see better. Advances in neural information process-
ing systems, 34:30392–30400, 2021. 5

[27] Jinsu Yoo, Taehoon Kim, Sihaeng Lee, Seung Hwan Kim,
Honglak Lee, and Tae Hyun Kim. Enriched cnn-transformer
feature aggregation networks for super-resolution. In Pro-
ceedings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision, pages 4956–4965, 2023. 2

[28] Mingjin Zhang, Chi Zhang, Qiming Zhang, Jie Guo, Xinbo
Gao, and Jing Zhang. Essaformer: Efficient transformer for
hyperspectral image super-resolution. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 23073–23084, 2023. 2

[29] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng
Zhong, and Yun Fu. Image super-resolution using very
deep residual channel attention networks. In Proceedings of
the European conference on computer vision (ECCV), pages
286–301, 2018. 2, 5

[30] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and
Yun Fu. Residual dense network for image super-resolution.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2472–2481, 2018. 2

[31] Yucheng Zhao, Guangting Wang, Chuanxin Tang, Chong
Luo, Wenjun Zeng, and Zheng-Jun Zha. A battle of network
structures: An empirical study of cnn, transformer, and mlp.
arXiv preprint arXiv:2108.13002, 2021. 5

3085


	. Introduction
	. RelatedWork
	. Visible Image Super-Resolution
	. Thermal Image Super-Resolution

	. Methodology
	. Motivation
	. Network Architecture
	The Overall Structure
	Attention Group (AG)
	Flexible Window-based Self-attention Block (FWAB)


	. Experiments
	. Dataset
	. Experimental Setup
	. Ablation Study
	Comparison of HAT and FW-SAT
	Comparison of FWA and OCA
	Effectiveness of CA and SA in CSAB
	Effectiveness of CSAB and FWAB
	Comparison of Different Window Size
	Comparison of Different Ratio of FWA

	. Comparison with State-of-the-Art Methods

	. Conclusion
	. Acknowledgement

