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Abstract

The various sensing technologies such as cameras, Li-
DAR, radar, and satellites with advanced machine learning
models offers a comprehensive approach to environmental
perception and understanding. This paper introduces an in-
novative Distributed Fiber Optic Sensing (DFOS) technol-
ogy utilizing the existing telecommunication infrastructure
networks for rain intensity monitoring. DFOS enables a
novel way to monitor weather condition and environmental
changes, provides real-time, continuous, and precise mea-
surements over large areas and delivers comprehensive in-
sights beyond the visible spectrum. We use rain intensity
as an example to demonstrate the sensing capabilities of
DFOS system. To enhance the rain sensing performance,
we introduce a Deep Phase-Magnitude Network (DFMN)
divide the raw sensing data into phase and magnitude com-
ponent, allowing targeted feature learning on each com-
ponent independently. Furthermore, we propose a Phase
Frequency learnable filter (PFLF) for the phase compo-
nent filtering and conduct standard convolution layers on
the magnitude component, leveraging the inherent physi-
cal properties of optical fiber sensing. We formulate the
phase-magnitude channel into a parallel network and sub-
sequently fuse the features for a comprehensive analysis in
the end. Experimental results on the collected fiber sens-
ing data show that the proposed method performs favorably
against the state-of-the-art approaches.

1. Introduction
Optical fiber network, serving as the communication back-
bone, are extensively and densely deployed worldwide. The
widespread of optical fiber infrastructures that telecom car-
riers have constructed over the past 30 years has been
aimed to accommodating the surge in internet traffic and
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to facilitating the interconnections of 5G and future net-
works among cities, town, homes, and data centers. Dis-
tributed Fiber Optic Sensing (DFOS) technology leverages
the existing fiber infrastructures as a potential sensing me-
dia [12, 32], enabling a wide-range, real-time, and con-
tinuous monitoring of surrounding environment perception
without the need to introduce additional sensing devices.
DFOS has been successfully employed in diverse applica-
tions including road traffic monitoring [22], intrusion de-
tection [11, 16], earthquake detection [9], pipeline leakage
monitoring [33] and structure change detection [1].

Operational telecom optical fiber cable networks hold
substantial potential for environmental perception and sens-
ing applications. DFOS technology transforms existing
communication cables into individual sensors distributed
every meter along the cable, with all the measurements
being synchronized [12]. The basic principle behind the
DFOS is that cable conditions such as a change of strain or
temperature on the cable can influence the properties of the
light signal traveling through an optical fiber. When pulsed
light is launched into a sensing cable, a small fraction of
light is backscattered and its properties are influenced by the
fiber cable condition. The backscattered light includes three
types of scattering: Raman scattering, Brillouin scattering,
and Rayleigh scattering [12]. Figure 1 shows a schematic
of distributed backscattering along the fiber cable and the
scattering mechanisms inside the fiber cable. In this work
we use a Phase-Optical Time Domain Reflectometer ϕ-
OTDR method to detect backscattering lights. This method-
ology gauges alterations in the phase and amplitude of the
Rayleigh backscattered signal via interferometric interroga-
tion. As a result, the DFOS system retrieves the complex
data from each location along the fiber cable with an im-
pressive meter-level spatial resolution [13].

We employed a Distributed Acoustic Sensing (DAS) sys-
tem utilize ϕ-OTDR detection. Figure 2 shows the DFOS
system experimental setup, which comprising a DAS inter-
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Figure 1. Schematic of backscattering signals that are exploited
in reflectometry based Distributed Fiber Optic Sensing (DFOS)
system.

Figure 2. Distributed Fiber Optic Sensing (DFOS) system exper-
iment setup by collecting Distributed Acoustic Sensing (DAS) to
the aerial fiber cable for surrounding environmental monitoring.

rogator situated at control office, and a fiber cable with one
end connected to a DAS to fortify environmental sensing.
It is important to note that the collected raw data are com-
plex numbers in the time domain, the phase response of the
complex data in ϕ-OTDR systems refers to the change in
the phase of the light signal that is scattered back to the
detector as a result of interactions within the fiber. These
phase changes are induced by external influences, such as
mechanical strain, temperature variations, or acoustic vibra-
tions. By measuring these phase changes, a ϕ-OTDR can
provide detailed information about the environmental con-
ditions along the length of the fiber. The fiber sensing data
is continuously captured from 15 km of aerial fiber cable,
at a sampling rate of 5 kHz, and at a spatial resolution of
1.2234 m.

Compared to camera-based imaging, Distributed Fiber
Optic Sensing (DFOS) provides enhanced coverage for en-

vironmental monitoring across vast distances, offering de-
tailed insights through vibration, acoustic, and temperature
modalities that extend beyond the visible spectrum. This
advantage inspires us to employ DFOS as a complement
to camera-based imaging, as it captures a diverse range
of physical parameters in various modalities, along with
spatiotemporal data in a 2-dimensional (2D) format. Mo-
tivated by the studies that transform acoustic and vibra-
tion sensing data into 2D images [25, 40], our work simi-
larly presents the fiber sensing data into 2D location-time
matrices to enable more comprehensive analysis. Simi-
lar to natural images, adjacent spectrogram bins in fiber
sensing data exhibit correlations in both time and spatial
dimensions. This correlation renders convolutional neu-
ral networks (CNNs), traditionally used in computer vision
tasks, well-suited for analyzing fiber sensing data. More-
over, similar to the representation of audio data in 2D for-
mats, fiber sensing data also demonstrates additional cor-
relations among frequencies that are harmonics of a base
frequency. This phenomenon is attributed to the physical
principles underlying acoustic production [23]. Consider-
ing the raw fiber sensing data matrix are complex numbers,
we introduce a Deep Phase-Magnitude Network (DFMN)
divide the raw data into phase and magnitude component,
enabling targeted feature learning on each component inde-
pendently. To capitalize on the inherent physical properties
of fiber sensing data, we propose a Phase Frequency Learn-
able Filter (PFLF) dedicated to filtering the phase compo-
nent, while conducting standard convolutional layers on the
magnitude component. The main contributions of this work
are summarized as follows:

1. We introduced a Distributed Fiber Optic Sensing
(DFOS) solution for weather monitoring and environ-
mental understanding. Compared to camera-based imag-
ing, our solution offers extended monitoring coverage
and provides rich information (vibration, acoustic, and
temperature) across different modalities beyond the vis-
ible spectrum.

2. We showcase rain intensity monitoring as an illustra-
tive example to demonstrate the environmental percep-
tion capabilities of DFOS. We introduce a Deep Phase-
Magnitude Network (DPMN) to separate the raw data
into phase and magnitude components, enabling tar-
geted, fine-grained feature learning on each component
independently.

3. We propose a Phase Frequency Learnable Filter (PFLF)
dedicated to filtering the phase component. The PFLF
module incorporates learnable filters to determine the
frequency components crucial for rain intensity monitor-
ing. Our analysis and experimental results demonstrate
that the PFLF module achieves superior performance.
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Figure 3. Visualization of the fiber sensing data in response to the increase of rain intensities. (a) Ambient data (No rain); (b) light rain; (c)
Moderate rain; (d) Heavy rain. The raw fiber sensing data is captured over a two-minute duration with the fiber cable’s location extending
from 450m to 940m.

2. Related Works

Rain Intensity Monitoring. Rain detection and intensity
monitoring are crucial for a wide range of scientific and
industrial applications, such as transportation, agriculture,
water management, weather forecasting, and building en-
ergy estimation. For instance, precipitation nowcasting pro-
vides high-resolution forecasting of rainfall and hydrome-
teors zero to two hours into the future, which is crucial for
weather-dependent decision-making [24]. However, current
methods depend on land-based weather stations and satel-
lites are subject to limitations in terms of availability and
accessibility. As climate change leads to more frequent and
intense extreme precipitation events, there is an urgent need
for improved methods to measure rainfall intensity accu-
rately. This urgency highlights the imperative to innovate
and develop sensors that are capable of long-range, wide-
coverage rain data collection, thereby enhancing our abil-
ity to respond to and manage the impacts of these changes
effectively. Various sensing technologies integrated with
advanced deep convolution neural models [3, 8, 29], are
specifically designed to enhance the precision of rain in-
tensity monitoring. Notably, the deep ResNet framework
can learn from the complex patterns in environmental data,
making it highly effective for capturing the nuances of rain
intensity [5, 26]. ConvLSTM offers an efficient way to pro-
cess spatial data, which is essential when analyzing images
or spatial patterns related to precipitation [4].

Additionally, radar-based rain sensor [10, 19], camera-
based sensor [38], smart phones [7], satellite [6] and tele-
com fiber cables [5] have been effectively employed for rain
intensity monitoring, significantly improving detection ac-
curacy. In this paper, we aim to extract insights from fiber
sensing data gathered through DFOS system to advance rain
intensity monitoring. Figure 3 provides a visualization of
phase response of complex fiber sensing data with the in-
creasing rain intensities, captured over a two-minute dura-
tion with the fiber cable’s location extending from 450m to
940m. The visualization clearly illustrates that the phase
response of the raw data intensifies accordingly with the in-

crease in rain intensity.

Learning in Frequency Domain. Frequency analysis
has been widely used in conventional digital signal and
image processing for decades. More recently, frequency
domain filtering and transformer based on Fourier trans-
form, has been incorporated into deep learning methods for
solving different aspects of problems. Learned representa-
tions in the frequency domain contain rich pattern for im-
age understanding tasks [34]. For instance, by separating
invariant and specific components based on frequency prior
knowledge, learning in the frequency domain enhances the
trained model’s generalization capabilities and minimizes
the shift in model distribution [18, 30, 35, 36]. Augment-
ing data effectively in the frequency domain, frequency fil-
tering improves the learning of informative representations
of non-local receptive fields [2, 20, 27, 37]. Additionally,
the straightforward application of the Fourier transform not
only accelerates training but also facilitates the optimiza-
tion of deep neural networks [15, 21, 28]. Prior research
in frequency domain learning has revealed the different fre-
quency components possess varying levels of importance
during training, contributing distinctively to feature robust-
ness.

Specifically, in [17], a light-weight layer is proposed to
learn attention masks from the frequency representations af-
ter fast Fourier transform to enhance transferable compo-
nents while suppressing the components not conducive to
domain generalization. To solve the ineffective of trans-
former in de-blurred image, [14] proposed a discrimina-
tive frequency domain-based model, where a gated mech-
anism is utilized to discriminatively determine which low-
and high-frequency information of the features should be
preserved for latent clear image processing. In [31], au-
thors designed two learnable frequency filters to extract
domain-invariant spectrum and domain-specific spectrum,
and a new instance-level contrastive loss to guide the net-
work training. The success in frequency domain learning
motivate us to further refine frequency domain analysis for
fiber sensing data, aiming to automatically modulate vari-
ous frequency components for enhanced performance.
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Figure 4. Overview of the proposed Deep Phase-Magnitude Network (DPMN). The DPMN consists of a magnitude component channel (the
top branch) and a phase component channel (the second branch). The magnitude channel is designed to capture the amplitude information
of raindrops impacting the fiber cable, while the phase channel concentrates on extracting the characteristics of how the impact of raindrops
is transmitted through the fiber cables. We thus propose a Phase Frequency Learnable Filtering (PFLF) module (the bottom branch) delicate
to phase channel.

3. Proposed Method
Our goal is to develop an effective and efficient method to
explore the properties of frequency domain filtering for ac-
curate rain monitoring and improve the domain generaliza-
tion for environmental perception. By leveraging the in-
herent physical properties of DFOS fiber sensing data, we
propose a Deep Phase-Magnitude Network (DFMN) divide
the raw sensing data into phase and magnitude component,
allowing targeted feature learning on each component in-
dependently. We introduce a Phase Frequency Learnable
Filtering module (PFLF) specifically designed for filter-
ing the phase component, while applying standard resid-
ual blocks to the magnitude component. We formulate the
phase and magnitude branch as parallel networks, and even-
tually merging the features for an integrated analysis. Fig-
ure 4 provides an overview of our proposed methodology,
with the specifics of each component detailed in the subse-
quent section.

3.1. Latent Frequency Learning Representations

Different from frequency-based signal or image processing
methods that applied in the pixel space or original 1-D sig-
nals, we employ the proposed frequency filtering operations
in the feature latent space. We briefly recall the conven-

tional 2D Fast Fourier Transform (FFT) in image process-
ing, and discuss the characteristics of applying it into latent
feature representations.

Given the intermediate features of X ∈ RC×H×W, where
C, H and W are the channel, height and weight of the
input feature X , we perform a 2D Fast discrete Fourier
Transform (FFT) to these input features. This process
yields the frequency representation XF ∈ R2C×H×(⌊W

2 ⌋+1).
The transformed XF comprises 2C channels, incorporat-
ing both the real and imaginary parts. Leveraging the con-
jugate symmetric property of the FFT, XF only needs re-
tain the half of spatial dimensions thus has spatial reso-
lution H ×

(⌊
W
2

⌋
+ 1

)
. We express this FFT operation

XF = FFT (X) as below:

XF (x, y) =

H−1∑
h=0

W−1∑
w=0

X (h,w) e−j2π(x h
H +y w

W ). (1)

In the frequency domain, the two primary components of
XF namely the magnitude component XM and the phase
component XP , can be obtained by:

XF
M =

√
Re

{
XF

}2
+ Im

{
XF

}2
, (2)
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XF
P = arctan

[
Im

{
XF

}
Re

{
XF

}] . (3)

where Re and Im correspond to the real and imaginary
parts of XF , Benefiting from the FFT, these two compo-
nents can capture the feature receptive field easily, which
can just meet our need for efficient feature dependency
modeling. The frequency representation XF can be con-
verted to the original feature space using an inverse FFT.
This operation can be expressed as X = iFFT

(
XF

)
:

X (h,w) =
1

H ·W

H−1∑
h=0

W−1∑
w=0

XF (x, y) ej2π(x
h
H +y w

W ).

(4)
As discussed in [2, 14, 17], distinct frequency compo-

nents of the original feature X are decomposed into ele-
ments across different spatial locations of XF , which can
be regarded as a frequency-based disentanglement and re-
organization of X. This property not only makes learning
in the frequency domain practically efficient, but also facil-
itates frequency filtering through simple designed learnable
filters. An additional benefit is that XF serves as a natu-
rally global feature representation, which can facilitate the
suppression of globally distributed domain-specific infor-
mation, such as ambient noise and traffic noise, during data
collection of the DFOS system.

3.2. Overview of Deep Phase-Magnitude Network

The raw fiber sensing data collected from the DFOS sys-
tem comprise a complex number matrix, where the x-axis
represents the range of cable locations, and the y-axis de-
notes the measurement time. It is important to note that this
complex number matrix exists in the time domain, distin-
guishing it from complex numbers typically encountered in
the frequency domain. Previous research on DFOS-based
applications [11, 13] has focused exclusively on the phase
component of the raw data, leading to the loss of signal in-
tensity information related to the event. Here, we propose a
Deep Phase-Magnitude Network (DPMN) designed to inte-
grate both the phase and magnitude components of the data
for more comprehensive learning. As shown in Figure 4,
DPMN is structured with distinct branches for magnitude
and phase.

Given that magnitude and phase represent distinct phys-
ical characteristics inherent to the DFOS system, we care-
fully design different learning modules for each of these two
branches to ensure effective feature extraction of each data
input. Let S be the raw data matrix collected from DFOS.
This matrix can be decomposed into a magnitude response
SM = M (S) and phase response SP = P (S) using Eq. 2
and Eq. 3, where M(·) and P (·) are operations to extract
magnitude and phase, respectively.

The proposed DPMN utilizes standard residual convo-
lutional blocks for feature learning on SM within the time
domain, and introduces a learnable filtering module dedi-
cate to SP in the frequency domain. The raindrops inten-
sity information contained in the magnitude response ren-
ders it analogous to a 2-D intensity map, similar to those
encountered in image processing. Thus we employ residual
blocks within this branch to effectively process and analyze
the data. On the other hand, the backscattering signal aber-
ration such as phase leading or lagging caused by the differ-
ence locations of acoustic event, are captured by fiber cable
and encapsulated within phase response. Correspondingly,
we propose a Phase Frequency Learnable Filtering (PFLF)
module for phase branch learning. Those two operations
can be written as:

XM = ResBlock(SM ), (5)

XP = PFLF (SP ), (6)

where XM and XP represent the feature representations
from the two branches, respectively. We merge these
learned features into a unified feature representation, de-
noted as (XM , XP ). The integrated features contain global
features from both magnitude and phase branches, provid-
ing a comprehensive representation of the raw fiber sensing
data. In the end, the combined feature set is subsequently
processed through a final convolutional block, employing a
standard cross-entropy loss function to accurately assess the
intensity range of the raindrops.

3.3. Frequency-based Learnable Filtering

In this subsection, we introduce the PFLF module for phase
response channel, as illustrated in the bottom branch of Fig-
ure 4. Our goal is to adaptively select various frequency
components within the feature representation space. We
thus propose to employ a frequency learnable filtering on
XP , enabling precise manipulation and enhancement of the
signal characteristics pertinent to rain monitoring. Given
input feature representation XP , we first applied a normal-
ization layer followed by a 1 × 1 convolution layer, aim to
enhance the reusability of feature maps and introduce addi-
tional non-linearities across different parts of the network.
This feature pre-processing step can be written as:

XP = Conv1×1 (N (XP )) . (7)

We then apply a patch unfolding on the feature space,
transforming the input feature maps into a series of smaller,
overlapping patches. This process mainly utilized in vision
transformers, allows the model to better exploit the local
spatial relationships within the data, and learn more com-
plex and hierarchical features [14, 39]. Following the un-
folding of feature patches, a FFT operation, as specified in
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Eq. 1, is applied to transform the phase response into the
frequency domain:

XF
P = FFT (P(XP )), (8)

where P is the patch unfolding operation. To enhance fea-
ture learning within the frequency domain, we decompose
the frequency response into magnitude and phase using Eq.
2 and Eq. 3. Note this response analysis occurs within the
frequency domain, distinguishing from the earlier discussed
branch separation of raw fiber sensing data in time domain.
Set M(XF

P ) and P (XF
P ) as the corresponding magnitude

and phase, we multiply them element-wise with two learn-
able quantization matrices WM and WP . Subsequently, we
integrate the filtered magnitude and phase responses to re-
construct the frequency domain’s complex number matrix:

XF
P = M(XF

P )⊙WM · cos(P (XF
P )⊙WP )+

iM(XF
P )⊙WM · sin(P (XF

P )⊙WP ).
(9)

Finally, we perform inverse FFT and patch folding
P−1(·) to recover the frequency domain features to time
domain:

X
′

P = G(P−1(iFFT (XF
P ))) + XP , (10)

where G denotes Gated Linear Unit (GLU) function, we fur-
ther enhance the process by adding the original input to the
output of the frequency filtering, thereby aiming to facilitate
more effective and robust feature selection.

4. Experiments
This section presents evaluations of the proposed method,
including dataset description, implementation details, do-
main generalization results, ablation analysis on PFLF, and
visualization analysis.

4.1. Dataset and parameter settings

Dataset. We perform experiments with the data collected
from the field trials in the testbed using DFOS system. The
dataset is collected along an optical route spanning over
15 km, with data collection operations running continu-
ously in 24/7. Considering the large volume of collected
data, we segment the raw data into small data matrices size
512×256. The ground truth of rain intensity is collected by
a weather station that installed nearby the fiber cable. We
separate the rain intensity into four categories based on the
rain rate measured in inches per hour (in/h): Ambient condi-
tion (No rain), light rain (0 ∼ 0.1 in/h), moderate rain (0.1 ∼
0.3 in/h) and heavy rain (above 0.3 in/h). Here we formulate
rain monitoring as a classification problem rather than re-
gression due to the discontinuous of the ground truth values
from weather stations, particularly noting the presence of
numerous missing values during data labeling. We choose

Table 1. Performance comparisons of our proposed Phase Fre-
quency Learnable Filter (PFLF) with baselines and other deep fil-
tering models in the time domain and frequency domain. The
“ResNet” refers to the vanilla residual network baseline. “FFC”
refers to the frequency filtering solution proposed in [2], which in-
corporates ResNet-based frequency filtering techniques. “FSAS”
and “DFFN” are frequency filtering modules introduced in [14].

Method Accuracy Precision Recall F1

ResNet [8] 0.922 0.902 0.940 0.920
FFC [2] 0.924 0.933 0.917 0.925
FSAS [14] 0.865 0.871 0.845 0.858
DFFN [14] 0.927 0.922 0.935 0.928

PFLF 0.934 0.940 0.932 0.936

five unique days from various seasons to enhance the diver-
sity of the dataset, denoted as D = {D1, D2, D3, D4, D5},
which contains all categories of rain intensities. A total of
over 8,000 raw data matrices are extracted for model train-
ing and evaluation.

Network architecture and parameter settings. As
shown in the Figure 4, the magnitude and phase branch has
symmetric architecture. Each branch contains a convolu-
tional layer, succeeded by three network modules: residual
blocks for the magnitude branch and PFLF modules for the
phase branch. We use cross entropy loss function to con-
strain the network and train it using Adam optimizer with
default parameters. The initial value of the learning rate is
10−3 and is updated with the cosine annealing strategy. The
batch size is set to 16 and patch size for patch unfolding is
set to 8 during training.

4.2. The effectiveness of PFLF

To investigate the effectiveness of the proposed PFLF mod-
ule, we compare it with baseline ResNet [8] and other fre-
quency filtering solutions FFC [2], FSAS [14], and DFFN
[14]. Given that those models are applied across various
tasks, we adapt these approaches to our scenario, maintain-
ing an identical number of network layers to accelerate a
fair comparison. Here we conduct the evaluation using the
phase of the raw data, the network architecture is same as
the phase branch as shown in Figure 4.

Table 1 presents the comparative analysis of the PFLF
module against various baseline models. Clearly, our
method surpasses the performance of other baselines, with
PFLF achieving improvements in classification accuracy
by 1.2%, 1.0%, 6.9%, and 0.7%, respectively. Notably,
the superior performance of PFLF compared to ResNet
demonstrates the advantage of frequency filtering over time-
domain filtering in analyzing the phase response of raw
data.
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Figure 5. Comparison of phase response data patches alongside their corresponding frequency responses in feature space. Figure (a) ∼ (d)
display the input patches with progressively increasing rain intensity from ambient to heavy. (a) No rain; (b) light rain; (c) Moderate rain;
(d) Heavy rain. Figure (e) ∼ (h) depict the corresponding frequency responses of the patches above.

Table 2. Performance comparisons of domain generalization us-
ing proposed method and baseline models. The {D1, D2, D3}
and {D4, D5} represent the source domains and target domains,
respectively.

Method {D1, D2, D3} → {D4, D5}
Accuracy Precision Recall F1

ResNet [8] 0.849 0.833 0.857 0.844
FFC [2] 0.925 0.927 0.911 0.919
FSAS [14] 0.849 0.863 0.855 0.859
DFFN [14] 0.921 0.916 0.928 0.922

PFLF 0.932 0.944 0.920 0.932

Table 3. Ablation study of filtering magnitude response in fre-
quency domain and time domain. Here we use “ResNet” and
“Frequency Learnable Filter (FLF)” as two baselines, where “M-”
means magnitude of the raw data.

Method Accuracy Precision Recall F1

M-ResNet 0.944 0.937 0.951 0.944
M-FLF 0.913 0.912 0.897 0.904

4.2.1 Domain generalization of PFLF module

The baseline comparison given in the Table 1 aggregates
all the data collected over five distinct days. However,
in the real application scenario, it is crucial to depend on
the model trained on previously collected data to predict
current rain conditions. This requires the trained model
exhibits strong generalization capabilities demonstrates re-
silience against diverse background conditions.

Here we formulate our problem within the context of
domain generalization, categorizing the distinct days into
source domains and target domains. The source and tar-
get domains may differ significantly due to various ambient
sounds including wind and traffic. We regard {D1, D2, D3}
as source domains, and set {D4, D5} as target domain for
evaluation. The experiment results are given in Table 2.
Two key observations emerge from our results: (1) The
PFLF outperforms other baseline models in terms of ac-
curacy, demonstrating the efficacy of the proposed method
in retaining general features to enhance classification accu-
racy. (2) Filtering in the frequency domain achieves consis-
tent stability compared to time domain filtering when ana-
lyzing the phase response of raw data. For example, while
conventional ResNet experiences a 7.3% drop in accurac
but PFLF maintains stability.

Figure 5 shows the phase patch inputs and their corre-
sponding frequency response in the feature space. Directly
distinguishing the intensity differences of rain from the in-
put phase patches (Figure 5 (a)∼ (b)) is challenging; how-
ever, in Figure 5 (e) ∼ (h), the distinct patterns in frequency
response become observable after applying the FFT trans-
form, reflecting the variations in frequency components.
For instance, in Figure 5 (e), the presence of bright vertical
lines away from the center indicates high-frequency compo-
nents. Conversely, Figure 5 (h) has a bright spot at the cen-
ter of the frequency response denotes the dominance of low-
frequency components. The central concentration observed
in the frequency response may indicate that the fiber cable
is detecting consistent and regular oscillations, potentially
corresponding to the rhythmic impact of raindrops. Those
transferable characteristics within the frequency domain of
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Table 4. Performance comparisons of the proposed Deep Phase-Magnitude Network (DPMN) with baseline models including “MFCC-
CNN” [26], “ResNet” [8], “FFC” [2], as well as “FSAS” and “DFFN” [14]. Domain generalization evaluations are provided in the right
side of the table, with same experimental configuration as Table 2.

Method Accuracy Precision Recall F1 {D1, D2, D3} → {D4, D5}
Accuracy Precision Recall F1

MFCC-CNN [26] 0.910 - - - 0.647 - - -
ResNet [8] 0.938 0.929 0.940 0.934 0.903 0.921 0.917 0.919
FFC [2] 0.953 0.942 0.962 0.951 0.942 0.937 0.944 0.940
FSAS [14] 0.879 0.884 0.863 0.873 0.886 0.863 0.892 0.877
DFFN [14] 0.946 0.952 0.933 0.942 0.938 0.921 0.949 0.935

DPMN 0.961 0.954 0.955 0.954 0.950 0.942 0.946 0.944

Figure 6. Classification accuracy variation with the increasing the
source domain data for training. In x-axis, label “1” represents
training with D1 and testing with the remaining data, label “2”
indicates training with {D1, D2} and testing with the rest, and
other labels follow this pattern.

phase patch inputs not only reinforce the interpretability of
the data but also underscore the potential of a model to uti-
lize these distinctive patterns to enhance domain generaliza-
tion capabilities.

4.3. Experiments on DPMN model

This subsection we first conduct an ablation study on mag-
nitude response, then we compare the proposed DPMN with
other frequency filtering solutions to evaluate the classifica-
tion performance.

4.3.1 Ablation study on magnitude response

To determine the most effective filtering solution for the
magnitude response branch, we perform an ablation study
comparing the impacts of frequency-domain filtering ver-
sus time-domain filtering. The findings, presented in Table

3, reveal that the conventional ResNet block consistently
outperforms frequency-domain filtering. This suggests that
time-domain feature extraction and selection play a more
significant role than frequency-domain processing for the
magnitude response. This critical insight informs our strat-
egy to utilize distinct filtering methods for the phase and
magnitude branches.

4.3.2 Evaluation on DPMN model

Table 4 presents the comparisons of the DPMN model with
other models for the task of rain intensity classification. For
a fair comparison, we have adapted other approaches into
two branches architecture, same as DPMN solution. We
observe the proposed solution outperforms other models
in frequency filtering and time domain learning. Figure 6
presents the domain generalization results by gradually in-
crease the data in source domain. These results demonstrate
that our solution maintains stability against variations in the
source domain.

5. Conclusion

In this paper, we introduce a Deep Phase-Magnitude Net-
work (DFMN) and point out that combining the filter-
ing in time domain and frequency domain can signif-
icantly enhance the classification accuracy and improve
the domain generalization ability. We divide the raw
fiber sensing data into magnitude response and phase re-
sponse for parallel feature representation learning. Fur-
thermore, we propose a Phase Frequency Learnable Filter
(PFLF) specifically designed for phase component learn-
ing, which effectively determines the frequency compo-
nents crucial for enhancing rain detection accuracy. In the
end, we formulate the phase-magnitude channel within a
dual-path network and subsequently fuse the features for a
comprehensive analysis. Extensive experiments and abla-
tion studies demonstrate the effectiveness of our proposed
method.
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