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Figure 1. Framework of Hierarchical Noise-Deinterlace Net (HNN) for image denoising. The zoomed-in view (red color) shows specfic
area of exemplar image.

Abstract

In this paper, we propose a hierarchical framework
for image denoising and term it Hierarchical Noise-
Deinterlace Net (HNN). Image denoising techniques aim to
recover clean images from noisy observations by reducing
unwanted noise and artifacts to enhance the clarity and in-
troduce spatial coherence. Images captured during chal-
lenging scenarios suffer from granular noise, inducing fine-
scale variations in the image, which occur due to the limi-
tations of imaging technology or environmental conditions.
This granular noise can significantly degrade the quality of
the image, making it less useful for applications like ob-
ject detection, image restoration/enhancement, face detec-
tion, and image super-resolution. From literature, we infer
learning global-local features significantly contribute in re-
ducing unwanted noise and artifacts within images. Typi-
cally, researchers rely on residual learning, Generative Ad-
versarial Networks (GANs), and Attention Mechanisms to
learn global-local features. However, these methods face
challenges such as vanishing gradients, limited generaliza-
tion of generators in GANs, lack of global context aware-
ness and computation complexity in attention mechanisms
leading to drop in performance. Towards this, we propose
a hierarchical framework to process both global and lo-
cal information across distinct levels of hierarchy. More

specifically, we propose a hierarchical encoder-decoder
network, with a distinct Global-Local Spatio-Contextual
(GLSC) block for learning of fine-grained features and
high-frequency details in an image. The proposed frame-
work improves image denoising, as it allows the model to
capture and utilize information from different scales, ensur-
ing a comprehensive understanding of the image content.
We demonstrate the efficacy of proposed HNN framework,
on benchmark datasets in comparison with state-of-the-art
methods with 5% (↑ in dB) increase in performance.

1. Introduction
In this paper, we propose a hierarchical framework for im-
age denoising and term it Hierarchical Noise-Deinterlace
Net (HNN). Images captured in challenging conditions in-
troduce several degradations due to sensors constraints and
low-lit scenes resulting in noisy observations. These degra-
dations include noise, blur, camera mis-focus, and inap-
propriate exposure. For instance, hand-held cameras and
smartphone cameras offer smaller apertures and sensors
limiting the quality of the capture. Smaller apertures and
sensors introduce noise of varying intensities resulting in
noisy and unpleasant images. In view of this, image de-
noising methods aim to restore the clean image from the
degraded observations.

Researchers in the domain, address image denoising in
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two ways: statistical and learning-based methods. Various
statistical methods, such as sparse 3D transform-domain
collaborative filtering (BM3D) [8], Expected Patch Log
Likelihood (EPLL) [48], K-SVD [2], and Nonlocally Cen-
tralized Sparse Representations (NCSR) [11] are developed
for image denoising. Typically, conventional methods for
image denoising fail to retain high-frequency components
leading to loss of spatial and contextual information. To-
wards this, learning-based techniques [30] [15] [47] [43] are
proposed for exploiting the learning of spatial and contex-
tual features. However, most learning-based methods incor-
porate training of CNNs on single/full-scale resolution. The
image denoising methods employing single-scale features
[40] [45] [10], suffer from limited receptive fields, and fail
to capture both global-local structural and contextual infor-
mation completely. For instance, CNN-based methods like
[40] propose using ResNet [14] with batch normalization
for image denoising. [41] employs a noise map as a clue
towards denoising of image. A few methods also employ
encoder-decoder, GAN-based [19] [3], U-Net based strate-
gies for the task of image-denoising. Encoder-decoder and
U-Net [26] [7][44] based methods progressively downsam-
ple the spatial resolution of the input image to a low resolu-
tion and revert to original resolution.

Statistical and single-scale methods suffice to cap-
ture global details, however are deficit to capture lo-
cal spatial and contextual information. Loss of local
spatial and contextual features, while reverting the low-
resolution representation to the original resolution causes
over-smoothening. To overcome this, several methods [6]
[35] [46] propose to learn features in multiple scales en-
compassing global-local spatial and contextual information
effectively. From literature, we infer multi-scale features
encapsulate finer local contextual information in an im-
age. Authors in, [38] and [6], employ multi-scale feature
learning and show significant improvement in quality of
denosied image. The key idea of these methods include re-
ceptive fields of varying sizes across different scales to ex-
tract substantially more information. However, these meth-
ods compute features along the same scale and not across
the multiple scales. Authors in [46] and [25], propose learn-
ing through hierarchical approach for multispectral image
analysis. More specifically [46] proves, combining infor-
mation in the form of residues across different scales help
capturing of finer local spatial and contextual information.

With the motivation to capture finer local and spatial
contextual information, we propose HNN, a hierarchical
network to learn multi-scale features, for simultaneous ex-
change of information. The hierarchy aids in minimizing
the loss of local/fine spatial and contextual information and
maintain high-resolution spatial details. HNN extracts shal-
low features with the hierarchical encoder as shown in Fig-
ure 2. The shallow features are passed through the proposed

Global-Local Spatio-Contextual (GLSC) block, to generate
a set of deep features. Unlike [38], we propose incorpo-
rating a dedicated Global-Local Spatio-Contextual (GLSC)
block for learning the deep features hierarchically across
branches. The deep features are decoded with the hierarchi-
cal decoder and are passed through a series of convolution
layers to obtain the denoised image of the original resolu-
tion.

The main contributions of this work include:
• We propose a hierarchy-based framework (HNN) for

image-denoising (Section 2.1).
– We propose a novel hierarchical feature encoder to ob-

tain features from three distinct scales. (Section 2.2)
– We propose a Global-Local Spatio-Contextual (GLSC)

block for learning of fine-grained features and high-
frequency details. (Section 2.3)

• We introduce LHNN as a weighted combination of L1
loss, VGG-19 perceptual loss, and MS-SSIM to exploit
local spatial and contextual information across scales
while keeping the original resolution of the image intact
(Section 2.5).

• We demonstrate the results of image denoising on bench-
mark, real and synthetic datasets, and compare the per-
formance with SOTA methods using quantitative metrics
(Section 3.3).

2. Hierarchical Noise-Deinterlace Net (HNN)
In this section, we propose a novel hierarchical framework
(HNN) for image denoising. In Section 2.2, we discuss the
mechanism of encoding hierarchical features. In Section
2.3, we focus on the methodology for learning deep fea-
tures. In Section 2.4, we discuss the methodology for de-
coding the deep features with hierarchical decoder.

2.1. HNN Framework

The proposed HNN framework includes three main mod-
ules i.e., hierarchical feature encoder, Global-Local Spatio-
Contextual (GLSC) block, and hierarchical decoder as
shown in Figure 2. Typically, image-denoising networks
employ feature scaling for varying the sizes of the recep-
tive fields. The varying receptive fields facilitate learn-
ing of local-to-global variances in the features. With this
motivation, for HNN, we espouse learning contextual in-
formation from multi-scale features while preserving high-
resolution spatial details. We achieve this via a hierarchical
style encoder-decoder network with residual blocks as the
backbone for learning.

Given a noisy input image x, the proposed multi-scale
hierarchical encoder extracts shallow features in three dis-
tinct scales and is given as,

Fsi = MEs
(x) (1)

where, Fsi are the shallow features extracted at ith scale
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Figure 2. Overview of proposed Hierarchical Noise-Deinterlace Network (HNN). At encoder, we extract the features in three distinct
scales, and pass the corresponding information across the hierarchies (as depicted in green color dashed box). We learn fine-grained
global-local saptial and contextual information through the proposed GLSC Block (as depicted in orange color dashed box). At decoder,
we exchange the information in reverse hierachies (as depicted in blue color dashed box).

from sampled space of input image x and, MEs represents
the hierarchical encoder.

To learn the global-to-local representations from these
shallow-level features, we propose Global-Local Spatio-
Contextual (GLSC) block, with residual blocks as the
backbone. The learnt deep features are respresented as,

Dsi = GLSCsi(Fsi) (2)

where Dsi is the deep feature at ith scale and Fsi are the
shallow features extracted at ith scale and, GLSCsi repre-
sent residual blocks at respective scales.

We decode the deep features obtained at various scales,
with the proposed heirarchical decoder and is given by,

dsi = Mdsi(Dsi) (3)

where Dsi is the deep feature at ith scale and dsi is decoded
feature at ith scale and, Mdsi represents the hierarchical de-
coder.

The decoded features and upscaled features at each scale,
are passed to the reconstruction layers Mr to obtain the de-
noised image ŷ. The upscaled features from each scale are
stacked, and represented as,

P = ds1 + ds2 + ds3 (4)

where, ds1, ds2 and, ds3 are decoded features at three dis-
tinct scales, P represents the final set of features pased to
reconstruction layers to obtain the denoised image ŷ.

ŷ = Mr(P) (5)

where, ŷ is the denoised image obtained from reconstruc-
tion layers Mr.

We optimize the learning with the proposed LHNN .
LHNN is a weighted combination of three distinct losses.
L1 loss to minimize error at pixel level, perceptual loss
to efficiently restore contextual information between the
ground truth image and the denoised image, and structural
dissimilarity loss to restore structural details. The aim is to
minimize the weighted combinational loss LHNN as,

L(θ) =
1

N

N∑
i=1

∥HNN(xi − yi)∥LHNN (6)

where, θ denotes the learnable parameters of the proposed
framework, N is the total number of training pairs, x and
y are the noisy input and denoised image respectively, and
HNN(·) is our proposed framework. LHNN is the pro-
posed loss function.

2.2. Hierarchical Spatio-Context Encoder (HSCE)

Inspired from visual science, primate visual cortex primar-
ily contributes for processing of visual information. How-
ever, in primate visual cortex, the visual information is pro-
cessed in distinct visual areas at different scales with vary-
ing sizes of receptive fields [16] [17] [25] [28]. We repli-
cate the mechanism of processing information in various
scales in the proposed hierarchical encoder as shown in
Figure 2. The mechanism of hierarchy learns significantly
more spatial information [46]. Unlike [46], we incorporate
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downscaling/upscaling the spatial resolution of the image
towards capturing information in distinct scales.

The extracted features at distinct scales is given by:
at scale 1, the features are,

fs1 = MEs1
(x) (7)

at scale 2, the features are,

fs2 = MEs2(
x

2
) (8)

at scale 3, the features are,
fs3 = MEs3(

x

4
) (9)

where, fsi is the shallow feature at ith scale, MEsi(·)
performs convolution at ith scale on the noisy input image
x downscaled by a factor of x

2 , and x
4 respectively.

The multi-scale information is hierarchically exchanged
across the scales as shown below,
at hierarchy 1, the features are,

Fs1 = fs1 (10)

at hierarchy 2, the features are,
Fs2 = fs2 + fs1 (11)

at hierarchy 3, the features are,
Fs3 = fs3 + fs2 + fs1 (12)

where, Fs1, Fs2 and Fs3 are input features to the GLSC
Block for learning of deep features as shown in Equations
10, 11, and 12. In Equations 11 and 12, fs1 and fs2 are the
hierarchically exchanged information across scales 2 and 3
respectively.

2.3. Global-Local Spatio-Contextual (GLSC) Block

The features extracted from the hierarchical encoder, are
provided to N number of Spatio-Contextual Residual
Blocks (SCRB) as shown in Figure 2. The SCRBs yield
a set of deep features of varying scales as shown in 13, 14,
and 15. The number of SCR Blocks is set to two for s1,
four for s2, and ten for s3 (An ablation study is provided in
the Section 3.3). We start with two SCRBs for s1 as CNNs
are known to capture finer spatial details. As we progres-
sively downscale the input image x, we increase the num-
ber of SCRBs to maximize learning of global-local spatial
and contextual information. The deep features learnt at each
scale are represented as,
at scale 1, the deep features are,

Ds1 = GLSCs1(Fs1) (13)

at scale 2, the deep features are,

Ds2 = GLSCs2(Fs2) (14)

at scale 3, the deep features are,

Ds3 = GLSCs3(Fs3) (15)

where, Dsi is the deep feature at ith scale, GLSCsi is
the function (GLSC Block) to learn the deep features Fsi,
at respective scales.

2.4. Hierarchical Spatio-Context Decoder (HSCD)

The deep features Fsi, learnt in the GLSC block are recon-
ciled from multiple scales to match the original resolution.
We upscale and concatenate the learnt spatio-contextual
features of varying scales, in the reverse order of encoder.
The decoded features for each scale are represented as,
at scale 1, the decoded features are,

ds1 = Mds1
(Ds1 +Ds2 +Ds3) (16)

at scale 2, the decoded features are,
ds2 = Mds1

(Ds2 +Ds3) (17)

at scale 3, the decoded features are,
ds3 = Mds1

(Ds3) (18)

where, Dsi is the decoded feature at ith scale, Mdsi
is a

function to decode deep features at ith scale. Here Ds2 and
Ds3 are the reverse hierarchical information from scales 2
and 3 respectively.

2.5. Loss Function

Unlike [38] and [29], we propose a weighted combina-
tional loss function, comprising of L1 loss, MS-SSIM [31],
and VGG-16 perceptual loss [20] towards image denoising.
The inspiration for the loss function is taken from [9, 12].
However, unlike [9], we set the weights to the loss compo-
nents experimentally. In tasks like image restoration and en-
hancement, using L1 loss alone produces a sharper and un-
pleasant image. To overcome the drawback of L1 loss, we
propose a weighted combinational loss function employing
VGG-19 perceptual loss, MS-SSIM and L1 loss. We use
VGG-19 perceptual loss to efficiently restore features like
color and overall structure in the image. MS-SSIM Loss
helps in restoring of local and global structural information
and L1 loss to minimize the generalized error between the
pixels.

VGG-19 Perceptual Loss. Spatial and contextual in-
formation refers to features like colors/contrast, brightness,
and local-global structural details. Spatial and contextual
information in an image contributes majorly for image de-
noising. Towards this, we consider VGG-19 perceptual loss
for restoration of spatial and contextual information. VGG-
19 perceptual loss is a content-based loss built on the ReLU
activation layers of the pre-trained 19-layer VGG network
and is given as,

LV GG =
1

WH

W∑
i=1

H∑
j=1

(ϕ(ŷ)i,j − ϕ(x)i,j) (19)
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Table 1. Performance comparisons of HNN framework with SOTA methods on CBSD68 [21], Kodak24K [27], and McMaster [42] datasets
with varying levels of σ. Cells highlighted in . represents highest values and, cells highlighted in . represents second highest values
respectively.

Datasets CBSD68 [21] Kodak24K [27] McMaster [42]
Noise Levels σ = 5 σ = 15 σ = 25 σ = 50 σ = 5 σ = 15 σ = 25 σ = 50 σ = 5 σ = 15 σ = 25 σ = 50

DnCNN [39] (2017) 23.89 21.86 19.94 18.11 22.31 21.84 19.56 17.40 24.09 22.84 20.11 18.60
CBDNet [13] (2019) 29.21 28.54 26.16 23.19 28.46 26.19 25.16 22.34 29.11 27.49 26.16 23.47
FFDNet [41] (2019) 33.81 32.59 29.66 27.42 32.69 31.09 28.63 25.94 33.94 32.17 30.45 28.44
SADNet [6] (2020) 35.31 34.04 34.10 31.74 36.10 35.44 32.71 31.44 36.40 34.31 32.75 29.97

CycleISP [34] (2020) 37.12 36.48 32.81 29.49 38.45 37.21 35.87 33.01 38.47 36.46 35.02 33.89
DAGL [22] (2021) 34.10 31.69 29.45 27.14 34.49 32.70 31.11 28.94 33.05 31.64 28.74 25.40

HNN (Ours) 42.91 41.63 40.22 39.79 41.55 40.48 39.58 38.94 42.16 41.03 40.29 39.82

where, ϕ(.) is the activation of jth layer of network ϕ when
processing on image x. W and H are width and height of
image.

Multi-scale Structural Similarity Index Measure
(MS-SSIM). VGG-19 perceptual loss, emphasises more on
restoration of contextual information demanding for im-
provement in structural information. Towards this, we con-
sider using MS-SSIM as loss, to learn the global and local
structural information. MS-SSIM computes SSIM in multi-
ple as shown in the Equation 20.

MSSSIM = lm(x, y)αm ·
∏m

j=1[cj(x, y)]
βj [sj(x,y)]

γj

(20)
where, lm is luminance at mth scale, cj is contrast param-
eter, sj is structure parameter. βj and γj define relative
importance between luminance, contrast and structure pa-
rameters.

We formulate LMSSSIM as,

LMSSSIM = 1−MSSSIM (21)

We define LHNN as,

LHNN = (α∗L1)+ (β ∗LV GG)+ (γ ∗LMSSSIM ) (22)

where, α, β, and γ are the weights. We experimentally
set the weights to α = 0.5, β = 0.7, and γ = 0.5.

3. Results and Discussions
In this section, we evaluate the performance of the proposed
HNN both qualitatively and quantitatively (Section 3.3). We
compare the results of the proposed HNN with SOTA meth-
ods on benchmark datasets.

3.1. Dataset Description
For gaussian (synthetic) image denoising, we use
CBSD68 [21], Kodak24K [27], and McMaster [42] as test
datasets.

For real image denoising, we utilize the Smartphone
Image Denoising Dataset (SIDD) [1], which comprises 320
image pairs for training and 1280 image pairs for valida-
tion. For testing, we employ the Darmstadt Noise Dataset

(DND) [23], consisting of 50 images. Note: ground-truth
images for the DNDataset [23] are not publicly available;
reference-based quantitative scores on the DNDataset are
obtained using the online submission system [23].

3.2. Implementation Details
We train the proposed HNN using Python (v3.8) and Py-
Torch framework on 2x NVIDIA RTX 3090 GPUs with
AMD Ryzen ThreadRipper 3960X CPU. Our model com-
prises 16 residual blocks split into three layers, generat-
ing 256 feature maps per scale. Training is conducted
on SIDD [1] with 600x400 patches using Adam optimizer
(β1 = 0.9, β2 = 0.999, ϵ = 10−8) and a learning rate
of lr = 0.0002, for 200 epochs, optimizing with proposed
LHNN .

3.3. Comparison with SOTA methods
We demonstrate the results of proposed HNN using
reference-based quantitative metrics i.e., PSNR and SSIM
on SIDD [1] and DND [23] as shown in Figure 3. We
quantitatively compare the performance of proposed HNN
framework with SOTA methods like DnCNN, MLP, BM3D,
CBDNet, DAGL [22], RIDNet, AINDNet, VDN [32],
DeamNet, SADNet [6], DANNet, CycleISP [34], MPR-
Net [36], Restormer [37], MIRNet-v2 [38] as shown in Ta-
ble 2.

CBSD68 Dataset [21]: Consists of 68 noisy images with
σ = (5, 10, 15, 25, 50) in each set respectively. We compare
the performance of HNN with SOTA methods for varying
σ values. In Figure 4, we show the denoising performance
of HNN on image 0000.png with σ = 5 from CBSD68
Dataset [21]. Results of authors in [6] and [22] show over-
smoothening of fine structural details in the exemplar (tail
of the airplane). Results from authors in [13] and [34] re-
tain substantially more structral information in comparison
with other methods. We observe HNN outperfoms SOTA
methods as shown in Figure 4 and consistantly retains fine-
grained structural information.

Kodak24K Dataset [27]: Consists of 24 high resolu-
tion images. We synthetically add noise to these images
with σ = (5, 15, 25, 50), and use the same for testing. We
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NoisyInput CBDNet[13] VDN[32] CycleISP[34] SADNet [6]
33.27 dB 31.41 dB 34.44 dB 34.64 dB

Input Noisy Image MPRNet[36] DAGL[22] Restormer[37] MirNetv2[38] HNN
36.98 dB 35.72 dB 35.89 dB 37.31 dB 38.92 dB

NoisyInput CBDNet[13] VDN[32] CycleISP[34] SADNet [6]
34.53 dB 31.10 dB 34.28 dB 33.51 dB

Input Noisy Image MPRNet[36] DAGL[22] Restormer[37] MirNetv2[38] HNN
37.78 dB 34.16 dB 36.41 dB 34.23 dB 38.71 dB

NoisyInput CBDNet[13] VDN[32] CycleISP[34] SADNet [6]
33.76 dB 29.13 dB 32.18 dB 33.26 dB

Input Noisy Image MPRNet[36] DAGL[22] Restormer[37] MirNetv2[38] HNN
37.87 dB 34.72 dB 35.89 dB 34.31 dB 39.31 dB

Figure 3. Qualitative comparisons of HNN framework with SOTA methods on DND [23] dataset. The left most image is an input noisy
image. The zoomed-in view of the highlighted area is shown in 1st row (Noisy input). We observe, the proposed HNN consistently
preserves fine spatial and contextual information in the denoised images.
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Table 2. Performance comparisons of HNN with SOTA methods
on SIDD [1] and DND [23] datasets. † indicates the methods us-
ing additional data during training. Note: the proposed HNN is
trained on SIDD [1] dataset and tested on DND [23] dataset.
Cells highlighted in . represents highest values and, cells high-
lighted in . represents second highest values respectively.

Method SIDD [1] DND [23]

PSNR↑ SSIM↑ PSNR↑ SSIM↑

BM3D [8] (2007) 25.65 0.685 34.51 0.851
MLP [5] (2012) 24.71 0.641 34.23 0.833

DnCNN [39] (2017) 23.66 0.583 32.43 0.790
CBDNet† [13] (2019) 31.25 0.801 38.06 0.942

RIDNet† [4] (2019) 38.74 0.951 39.26 0.953
VDN [32] (2019) 39.28 0.956 39.38 0.952

AINDNet† [18] (2020) 38.74 0.952 39.37 0.951
SADNet† [6] (2020) 38.97 0.957 39.59 0.952

DANet+† [33] (2020) 39.15 0.957 39.58 0.955
CycleISP† [34] (2020) 39.52 0.957 39.56 0.956

DAGL [22] (2021) 38.94 0.953 39.77 0.956
DeamNet† [24] (2021) 38.79 0.957 39.63 0.953

MPRNet [36] (2021) 39.71 0.958 39.80 0.954
MIRNet-v2 [38] (2022) 39.84 0.959 39.86 0.955

HNN (ours) 43.82 0.968 41.06 0.956

evaluate the performance of proposed HNN in comparison
with SOTA methods using appropriate quantitative metrics
as shown in Table 1. Results in [13] show inconsistancy in
denoising the image. Results in [34] and [6] lose fine struc-
tural details leading to over-smoothening of image. Re-
sults from authors in [22] retain minimal structural details.
In contrast, the results of proposed HNN consistantly re-
tains fine-grain local structural information (wrinkles within
the fabric of the sail) as shown in Figure 5. McMaster
Dataset [42]: Contains 12 high resolution images. We syn-
thetically add noise to these images with σ = (5, 15, 25, 50)
and use the same for testing. We evaluate the performance
of proposed HNN in comparison with SOTA methods using
appropriate quantitative metric as shown in Table 1. Re-
sults from authors in [13] and [22] denoise the image to a
certain extent. Results from authors in [34] and [6] show
over-smoothening and retain limited local structural infor-
mation. On the contrary, results of proposed HNN retains
fine-grained structural information with respect to the em-
broidery area in the cloth, and outperfoms as shown in Fig-
ure 6.

3.4. Ablation study
Influence of hierarchy in the network: Hierarchical con-
nections facilitate information exchange across scales. The
proposed HNN with hierarchy exhibits superior perfor-
mance compared to its absence, enhancing both intra and
inter-scale feature correspondence as shown in Table 3.
Influence of LHNN : While L1 loss optimizes pixel-to-

Input Noisy Image

Noisy Input 28.43dB 36.29dB
CBDNet [13] CycleISP [34]

32.19dB 33.93dB 39.18dB
SADNet [6] DAGL [22] HNN (Ours)

Figure 4. Qualitative comparisons of HNN with SOTA methods
on CBSD68 [21] dataset. The above image is an input noisy im-
age. The following images represent comparison of SOTA meth-
ods with HNN. We observe, the proposed HNN preserves fine
spatial-contextual information in the denoised images.

Table 3. Comparison of proposed HNN framework with and with-
out hierarchical connections using PSNR (in dB) as quantitative
metrics on benchmark datasets. We observe proposed HNN shows
significant improvement in PSNR (dB) with hierarchy.

Datasets With Hierarchy Without Hierarchy
SIDD [1] (2018) 43.82 37.19
DND [23] (2017) 41.06 36.28
CBSD68 [21] (2001) 42.91 37.10
Kodak24K [27] (2015) 41.55 36.09
McMaster [42] (2011) 42.16 37.32

pixel error with α = 0.5, varying β and γ evaluates de-
noising effects. β sensitivity is observed in local contex-
tual information, whereas γ sensitivity affects fine-grained
structural information as shown in Table 4.
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Input Noisy Image

Noisy Input 29.92dB 34.83dB
CBDNet [13] CycleISP [34]

35.79dB 33.20dB 40.36dB
SADNet [6] DAGL [22] HNN (Ours)

Figure 5. Qualitative comparisons of HNN with SOTA methods
on Kodak24K [27] dataset. The above image is an input noisy im-
age. The following images represent comparison of SOTA meth-
ods with HNN. We observe, the proposed HNN preserves fine
spatial-contextual information in the denoised images.

Table 4. Influence of weights in proposed LHNN loss. We
show the performance comparison of proposed HNN influenced
by varying α, β, and γ parameters on benchmark datasets.

Loss weights SIDD[1] DND[23]
Experiment α β γ PSNR SSIM PSNR SSIM

1 0.5 0.5 - 39.71 0.863 36.88 0.810
2 0.5 - 0.5 38.25 0.894 37.48 0.849
3 0.5 0.7 0.5 44.12 0.902 39.76 0.948

4 (Ours) 0.5 0.5 0.7 43.82 0.968 41.06 0.956

4. Conclusions
In this work, we have proposed HNN, a hierarchy based net-
work towards image denoising. Unlike existing methods,
we have proposed exchanging of information arcoss scales
through hierarchy improving the learning of fine-grained in-

Input Noisy Image

Noisy Input 28.11dB 35.10dB
CBDNet [13] CycleISP [34]

35.03dB 28.13dB 40.92dB
SADNet [6] DAGL [22] HNN (Ours)

Figure 6. Qualitative comparisons of HNN with SOTA methods
on McMaster [42] dataset. The above image is an input noisy im-
age. The following images represent comparison of SOTA meth-
ods with HNN. We observe, the proposed HNN preserves fine
spatial-contextual information in the denoised images.

formation. We have proposed LHNN , a weighted combi-
national loss including L1 loss, VGG-19 perceptual loss,
and MS-SSIM for learning fine spatio-contextual informa-
tion. We have demonstrated the performance of the pro-
posed HNN on benchmark datasets and have compared with
SOTA methods using appropriate quantitative metrics.
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