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Abstract

Hyperspectral imaging offers manifold opportunities for
applications that may not, or only partially, be achieved
within the visual spectrum. Our paper presents a novel
approach for Single-Label Hyperspectral Image Classifica-
tion, demonstrated through the example of a key challenge
faced by agricultural seed producers: seed purity testing.
We employ Self-Supervised Learning and Masked Image
Modeling techniques to tackle this task. Recognizing the
challenges and costs associated with acquiring hyperspec-
tral data, we aim to develop a versatile method capable
of working with visible, arbitrary combinations of spectral
bands (multispectral data) and hyperspectral sensor data.
By integrating RGB and hyperspectral data, we leverage the
detailed spatial information from RGB images and the rich
spectral information from hyperspectral data to enhance the
accuracy of seed classification. Through evaluations in var-
ious real-life scenarios, we demonstrate the flexibility, scal-
ability, and efficiency of our approach.

1. Introduction

Hyperspectral imaging offers wide variety of applications
from remote sensing to analyzing level of plants in agri-
cultural field. One of the main task of hyperspectral data
is classification, which can be categorized into main two
types: (i) Single-Label Hyperspectral Image Classification:
This involves assigning a single label to hyperspectral im-
age; (ii) Multi-Class Hyperspectral Image Classification:
Here, the goal is to classify pixels of a hyperspectral im-
age into multiple classes, allowing more detailed analysis
and interpretation of the scene. This, for instance, applies

for remote sensing dataset like Indian Pines, University of
Pavia and etc.

While Multi-Class Hyperspectral Classification is ex-
tensively studied, Single-Label Hyperspectral Classification
remains less explored, primarily due to limited data avail-
ability. In our study, we focus on Single-Label Hyperspec-
tral Image Classification, made possible through collabora-
tion with an industry partner. We specifically examine seed
purity testing as a case study, which fits within the frame-
work of Single-Label Hyperspectral Classification. How-
ever, we believe our research extends beyond this applica-
tion, contributing to broader advancements in Single-Label
Hyperspectral Image Classification.

In agricultural seed production, ensuring seed quality
presents a significant challenge. Not only as customer
expectations need to be met, but in many countries also
mandatory goverment regulations [7, 33, 56]. For instance,
the European Union (EU) implements rigorous quality con-
trol measures, such as certifying seed lots before they can be
sold [57]. Thus, seed producers must regularly analyze and
classify harvested seeds to comply with these regulations,
which typically involves trained human analysts.

To address this challenge, researchers have explored the
use of deep learning techniques based on RGB data. How-
ever, relying solely on color information may not be suffi-
cient for accurately distinguishing between different types
of seeds. While RGB analysis provides valuable insights
into visual properties, it cannot capture information about
the chemical composition of seeds beyond the visible spec-
trum, leading to limitations like metameric colors and diffi-
culty in discriminating between species.

As an alternative, some studies have proposed using hy-
perspectral imaging, which captures a wider range of spec-
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tral information [17, 19]. Yet, this approach also has its
drawbacks [29], including lower spatial resolution and chal-
lenges in model generalization due to variations in image
acquisition conditions. Moreover, acquiring hyperspectral
data is costly and time-consuming, often limiting its prac-
tical application in industries where speed is crucial. Thus,
developers often prefer to use multispectral data, which in-
volves selecting a subset of spectral bands for analysis.

Our study aims to streamline the spectral band selection
process for model training, making it more flexible by ne-
cessitating only finetuning on chosen modalities and spec-
tral bands. Through the utilization of self-supervised learn-
ing, which operates without the need for labeled data, and
masked image modeling, we have developed a classification
model capable of accommodating any number and combi-
nation of spectral bands. This model can seamlessly operate
with either RGB, multispectral or hyperspectral modalities,
offering versatility in its application.

2. Related Work
2.1. Computer Vision for Seed Analysis

Automated seed sorting, distinguishing desired from unde-
sired seeds, has been explored extensively, with computer
vision playing a pivotal role [22, 47]. A prevalent method
involves classifying seed images based on labeled datasets,
with various studies focusing on different seed types such
as rice [31, 44], cottonseeds [30], sunflower [6, 39], tomato
seeds [50], corn seeds [2, 51], wheat [1, 59], plum kernels
[48], maize [8] and Canola seed [42].

Most studies in this domain employ machine learning
(ML) techniques, with a recent surge in the adoption of deep
learning methods. Transfer learning, for example, has been
utilized for classifying various seed species [25, 26] and
wheat varieties [59]. Additionally, Swin transformers have
been employed for maize variety classification [8], while
AlexNet has shown promise in classifying sunflower seeds
[6]. An emerging trend involves the use of hyperspectral
imaging, which offers richer spectral information than tra-
ditional RGB images [17–19, 34]. Furthermore, combining
hyperspectral and RGB data has shown enhanced perfor-
mance [35], leveraging the strengths of both modalities.

2.2. Self-Supervised Learning

In the field of self-supervised representation learning (SSL),
models are trained on a pretext task where supervision
comes directly from the input data itself, eliminating the
need for labeled data. SSL can be divided into two main
types: (i) Contrastive learning and (ii) generative modeling.

Contrastive learning involves learning representations
by comparing positive and negative samples. Noteworthy
methods in this area include SimCLR [12], MoCo v1-v3
[13, 14, 27], BYOL [23], DINO [10], and DINO v2 [41].

On the other hand, generative modeling attempts to con-
struct a generative model capable of encapsulating the un-
derlying data distribution. The VAE/GAN model, intro-
duced by Larsen et al. (2016), combines the strengths of
variational autoencoders (VAEs) and generative adversarial
networks (GANs) to produce disentangled data representa-
tions. Meanwhile, PixelCNN [54] and PixelVAE [24] gen-
erate images incrementally, pixel by pixel, while taking into
account the contextual information of previously generated
pixels. In the field of generative modeling, there is a sig-
nificant subgroup called masked modeling, which will be
discussed in the following subsection.

2.3. Masked Image Modeling: Masked Autoen-
coders

Masked Autoencoders (MAEs) [5, 28] have emerged as a
significant development in SSL, particularly within com-
puter vision, drawing inspiration from successful ap-
proaches in natural language processing (NLP) such as
BERT [15] and GPT [9, 45, 46]. Here we consider only
four important to our work aspects of MAE: (i) Multimodal
MAE, (ii) Cross-Attention, (iii) Scaling MAE and (iv) MAE
in Hyperspectral Imaging. For other MAE aspects as well
its applications could be found in [5, 60, 61].

Multimodal MAE. Multimodal masked autoencoders
(Multimodal MAE) are an extension of unimodal masked
autoencoders, allowing them to handle multiple types of
data, making them useful for various tasks. Recent re-
search, such as the work by Multi-MAE[4], has demon-
strated the effectiveness of multimodal MAE in learning
predictive coding across different data types. Yan et al.[58]
utilized bimodal MAE for depth completion tasks, incor-
porating both RGB and depth data. Mizrahi et al.[40] fur-
ther extended on Multimodal MAE by incorporating non-
visual modalities like text, images, geometry, and semantics
through discrete tokenization.

Cross-Attention. Cross-Attention is a type of atten-
tion mechanism widely used in deep learning. It enables
the combination of sequences of different modalities, such
as text, image, or sound. Unlike Self-Attention, Cross-
Attention is more cost-effective in pooling information from
a large set of visible tokens due to the asymmetric combina-
tion of two separate embedding sequences. The technique
can be seen as a parametric form of pooling, where differ-
ent features are weighted learnably [21]. In the context of
Multimodal MAE, cross-attention is used in each decoder to
integrate information from encoded tokens of other modal-
ities, as demonstrated by Bachmann et al. [40] and Mizrahi
et al. [40].

Scaling MAE. Despite vanilla MAE model exhibits ef-
ficiency in its asymmetric encoder-decoder design, it face
challenges when handling volumetric data such as video or
hyperspectral images due to the need for significant compu-
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Figure 1. Overview of our Bimodal Masked Autoencoder (BiMAE) architecture.

tational resources. Proposed strategies, such as the ”double-
masking strategy” [55] (also known as ”input and target
masking” [40]) and Local Masked Reconstruction [11], aim
to address this issue. Recent advancements [21] introduce
a decoder architecture that utilizes cross-attention between
masked and visible tokens, enhancing efficiency without
sacrificing performance.

MAE in Hyperspectral Imaging. MAEs have re-
cieved attention in hyperspectral imaging applications as
well. SpectralMAE, which solves spectral reconstruction,
are specifically designed to handle arbitrary combinations
of spectral bands as inputs, making it versatile across dif-
ferent spectral sensors [62]. Furthermore, masked spatial-
spectral autoencoders (MSSA) have been introduced to en-
hance hyperspectral image (HSI) analysis systems against
adversarial attacks [43]. Noteworthy applications of MAEs
in hyperspectral imaging include hyperspectral image clas-
sification (HSIC) [32, 49], few-shot classification [20], and
multi-label classification [36].

It is worth mentioning that utilizing MAEs for hyper-
spectral data allows for much higher masking ratios, such
as 0.9, compared to the RGB modality (0.75), without en-
countering performance degradation [62].

3. Bimodal Masked Autoencoding

In this section, we introduce the design of our primary con-
tribution, the Bimodal Masked Autoencoder (BiMAE) ar-
chitecture and analyze the key differences of our approach
compared to recent masked pretraining approaches, such as
MAE [28], Multi-MAE [4], and Cross-MAE [21]. Figure 1
gives a schematic overview of the BiMAE architecture.

Flexibility. To enhance the versatility of our approach

for hyperspectral imaging, we incorporate two key archi-
tectural decisions:
1. BiMAE is based on the design of Vision Transformers

(ViT) [16], allowing it to process a flexible number of
input tokens, even partial input. Due to its computa-
tional efficiency compared to the larger ViT-Base and
ViT-Large, we use the ViT-Small version of ViT. De-
tailed configuration of employed ViT available in the
Supplemental Material (refer to Table 5).

2. We redefine the token specifically for the hyperspectral
data, treating each spectral band of the hyperspectral im-
age as a token (24x24x1).

Together, these two factors allow BiMAE to adapt to a flex-
ible number of spectral bands. This enhanced versatility
greatly expands the potential applications of the model in
the processing of hyperspectral data.

Scalability and Efficiency. We apply and adopt follow-
ing several techniques to improve the scalability and effi-
ciency of BiMAE:
• We adopt a ”double masking strategy” inspired by Wang

et al. [55]. This strategy involves sending only a part of
masked tokens to the decoders. This adjustment enables
BiMAE to effectively handle volumetric data, like hyper-
spectral data with up to 300 bands. On the other hand,
Multi-MAE[4] does not utilize this strategy. As a result,
the imbalance between the low number of input tokens
and the much higher number of target tokens can lead
to significant computational costs in the decoder. This
makes the Multi-MAE model less computationally effi-
cient and scalable in a multi-modal context.

• We integrate Cross-Attention immediately after the en-
coder, following the approach proposed by Fu et al.
(2024) [21]. Unlike conventional methods where a con-
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catenation of mask and visible tokens is passed to self-
attention decoders [28], BiMAE utilizes mask tokens to
query visible tokens in a single cross-attention layer po-
sitioned before the decoders. This configuration allows
mask tokens to gather information from visible tokens
across different modalities without interacting with other
mask tokens, thereby reducing the sequence length for the
decoders and lowering computational costs. Moreover,
by locating the cross-attention layer before the decoders,
as in our BiMAE, instead of within the decoders as pro-
posed in the Multi-MAE [4], we can utilize this layer as
input for all decoders, not limited to just one. This means
that unlike Multi-MAE, which employs separate cross-
attention layers in each decoder, we utilize a single cross-
attention layer for all decoders, further reducing compu-
tational costs.

• We employ two shallow MLP decoders for decoding each
modality, which add little to the overall computational
cost, and as He et al. [28] show, they perform similarly to
deeper decoders on ImageNet-1K finetuning.

Together, these modifications enhance the capabilities and
performance of the BiMAE model, making it particularly
effective in leveraging both hyperspectral and RGB data.

Species (Class) Train Val. Test
∑

A. arvensis 4439 851 928 6218
A. lappa 4442 997 984 6423
A. myosuroides 3685 813 742 5240
B. napus 4054 1000 861 5750
B. officinalis 3949 855 784 5588
C. cyanus 3726 798 835 5359
E. crus-galli 3816 820 873 5509
G. aparine 3616 815 796 5227
G. dissectum 5328 1089 1094 7511
G. pratense 3831 810 794 5435
G. robertianum 4799 1021 995 6815
G. tetrahit 3850 850 848 5548
L. communis 5301 1091 1134 7526
P. aviculare 3802 825 820 5447
P. convolvulus 4477 989 980 6446
R. crispus 4263 925 942 6130
S. arvensis 3516 782 777 5075
S. media 3841 865 849 5555
T. pratense 5465 1150 1151 7766∑

80200 17185 17187 114572

Table 1. Sample Allocation in Training, Validation and Test Sets
per each (RGB/MS/HS) modality

4. Experiments

4.1. Data

In order to assess the effectiveness of the proposed BiMAE
architecture, we carrid out a series of experiments that
employed a comprehensive bimodal dataset consisting
of 114,572 RGB images paired with their corresponding
hyperspectral counterparts, collected from 19 distinct
species. The dataset was divided into training, validation,
and test sets using a 70%/15%/15% split, as illustrated in
Figure 2 and summarized in Table 1.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s)

Figure 2. Examples from the test dataset. Images of (a-s)
A. arvensis L., A. lappa L., A. myosuroides L., B. napus L.,
B. officinalis L., C. cyanus L., E. crus-galli L., G. aparine L.,
G. dissectum L., G. pratense L., G. robertianum L.,
G. tetrahit L., L. communis L., P. aviculare L., P. convolvulus L.,
R. crispus L., S. arvensis L., S. media L. and T. pratense L.
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Figure 3. Spectra of the Region of Interest (ROI) for each seed
species in the test dataset, illustrating the mean and standard devi-
ation of a 8x8x300 dimensional ROI along last dimension

The RGB images were resized to a size of 192x192 pix-
els, while the hyperspectral images were resized to 24x24
pixels with a depth of 300 spectral bands. These bands
were captured using the Resonon (USA) Pika L 100121-
220 model, covering wavelengths ranging from 380 nm to
1000 nm in the visible and near-infrared (VNIR) region of
the electromagnetic spectrum, with a spectral resolution of
5 nm (see Figure 3 for the mean spectra visualization).

The RGB images were acquired using the Sony (Japan)
IMX477 model.

4.2. Pretraining

In all experiments, we employ the ViT-Small architecture
[16] with a patch size of 24x24. For the hyperspectral (HS)
modality, each token xhs represents one of the 300 spectral
bands, yielding 300 tokens per hyperspectral image. For
RGB images that have a size of 192x192x3, each token
xrgb corresponds to a spatial patch (24x24x3) of the image.
This results in a total of 64 tokens, ensuring compatibility
between tokens from both modalities and facilitating their
processing by the encoder.

We apply different masking ratios r to each modality:
rhs(xhs) = 0.9 for hyperspectral and rrgb(xrgb) = 0.75
for RGB images. As mentioned earlier in Section 3, we
utilize cross-attention for mask tokens to query visible
tokens for further reconstruction in modality-specific de-
coders the masked patches. With the ”double masking strat-
egy” combination, we reconstruct only a subset shs(xhs)
and srgb(xrgb) of masked tokens. For computational effi-
ciency, we set shs(xhs) = 0.2 and srgb(xrgb) = 0.5.

Finally, we initialize our BiMAE and pretrain it for 300
epochs using the aforementioned dataset (see Section 4.1).
We utilize the AdamW optimizer [38] with a base learning
rate set to 1e-4 and weight decay of 0.05. The training pro-
cess begins with a warm-up phase (30 epochs), starting with
a learning rate of 1e-6, and gradually decays to 0 during
training using cosine decay [37]. The training is conducted
on Nvidia RTX A 6000 GPU with a batch size of 512. Data
augmentation techniques, including random horizontal and
vertical flips, are applied to both modalities with a probabil-
ity of 0.5.

4.3. Finetuning (FT)

To evaluate the performance of the pretrained model, we
extensively test its capabilities in single-label image classi-
fication as the downstream task (see Fig. 4). We replace
the decoders with an average pooling operation over all en-
coded tokens, followed by LayerNorm [3] and a dense layer
with softmax activation.

For end-to-end finetuning (FT), we utilize the supervised
version of the dataset (cf. Section 4.1), training over 50
epochs on the entire training split containing 80,200 bi-
modal samples. We report the top-1 test accuracy and
test loss. Similar to the pretraining phase, we employ the
AdamW optimizer with a base learning rate set to 5e-4,
weight decay of 0.05, a warmup phase lasting 5 epochs, and
a warmup learning rate of 1e-6. We utilize cosine decay and
maintain a batch size of 512. Data augmentation techniques
used during pretraining are also applied in this phase.

Additionally, to simulate real-life scenarios where only a
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Figure 4. Single-Label Image Classification with BiMAE using
bimodal data. For multispectral data, spectral bands along with
their spectral indices should be provided. For unimodal data only
corresponding part of pretrained BiMAE encoder is initialized.
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limited number of spectral bands are available (multispec-
tral rather than hyperspectral data), we reduce the number of
spectral bands in the hyperspectral modality to n, creating a
multispectral modality (MS) for downstream classification.

Overall, we examined how the pretrained BiMAE model
transfers knowledge under following real-life scenarios:

(i) only RGB data is available;
(ii) only multispectral data is available;

(iii) both RGB and multispectral data are available.
To select spectral bands for multispectral modality we

followed two band selection strategies (BSS):
(a) Step60 - Sparse selection of every 60th spectral band

from the hyperspectral data, representing the Visible
and NIR spectrum (VNIR);

(b) Step30 - Sparse selection of every 30th spectral band,
representing VNIR;

An ablation study was conducted to analyze further how
the number and selection of spectral bands for multispectral
data affects performance on the downstream task.

4.4. Training from scratch (TFS)

In order to assess the effectiveness of transfer learning
with our approach, we performed a thorough comparison
by training BiMAE from scratch (TFS) on a classification
task. This was carried out across all defined scenarios, using
identical training settings as those employed for finetuning
(see Section 4.3).

4.5. Results

4.5.1 Unimodal transfers

Examining BiMAE’s performance in classification tasks,
particularly when utilizing different modalities, reveals the
effectiveness of models trained on multispectral data exclu-
sively. Comparing models trained from scratch (TFS) with
those fine-tuned (FT), it’s evident that the latter outperforms
the former. For instance, when fine-tuned on RGB data,
BiMAE achieved an accuracy of 98.27%, while the model
trained from scratch reached 97.73%. Utilizing multispec-
tral data with 5 bands (Step60), BiMAE achieved an ac-
curacy of 98.50% with finetuning and 97.45% with TFS.
Increasing the bands to 10 in multispectral data (Step30)
yielded even higher accuracy, reaching 99.06% with fine-
tuning and 98.32% with TFS. This trend persists on hyper-
spectral modality as well, with BiMAE achieving an accu-
racy of 98.41% with finetuning and 97.93% with TFS.

4.5.2 Bimodal transfers

BiMAE, finetuned on bimodal data, shows significantly bet-
ter results than using unimodal data only. Thus, BiMAE
trained on RGB and multispectral data reaches the highest
accuracy of 99.55%.

Mode Modality BSS Loss ↓ Acc. (%) ↑
FT RGB - 0.074 98.27
TFS RGB - 0.093 97.73
FT MS Step60 0.079 98.50
TFS MS Step60 0.137 97.45
FT MS Step30 0.039 99.06
TFS MS Step30 0.085 98.32
FT HS - 0.057 98.41
TFS HS - 0.084 97.93

Table 2. Comparison of finetuning of BiMAE (FT) with training
from scratch (TFS) performance using single modality only

Mode Modalities Loss ↓ Acc. (%) ↑
FT RGB+MS 0.018 99.55
TFS RGB+MS 0.030 99.28

Table 3. Comparison of finetuning (FT) with training from scratch
(TFS) performance of BiMAE using two modalities

5. Discussion

Our BiMAE model demonstrates remarkable flexibility and
effectiveness in accurately classifying various seed species
samples, as evidenced by the results obtained during both
training and testing phases.

5.1. Measuring the influence of spectral band selec-
tion for multispectral modality

The selection of specific spectral bands within the electro-
magnetic spectrum (EM) can significantly affect classifi-
cation accuracy. To evaluate this influence, we conducted
additional experiments in a bimodal setting by adding four
more band selection strategies to early introduced Step60
and Step30:

(i) Top5 - Selection of the first 5 spectral bands, repre-
senting the Visible spectrum;

(ii) Top10 - Selection of the first 10 spectral bands, rep-
resenting the Visible spectrum;

(iii) Bottom5 - Selection of the last 5 spectral bands, rep-
resenting the Near-Infrared (NIR) spectrum;

(iv) Bottom10 - Selection of the last 10 spectral bands,
representing the NIR spectrum;

Analyzing the results in Table 4, we can see, that Bi-
MAE finetuned on multispectral data with Step30 strategy
performed the best, reaching the accuracy of 99.55%. Using
Step60 strategy reduced the accuracy of the BiMAE only
marginally (99.49%). Selecting the spectral bands from
NIR part of the spectrum only, leads to lower accuracy of
98.74% when using 5 bands (Bottom5) and a bit higher ac-
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Spectrum Nb. bands BSS Loss ↓ Acc. (%) ↑
Visible 5 Top5 0.050 98.92
Visible 10 Top10 0.091 97.99
NIR 5 Bottom5 0.058 98.74
NIR 10 Bottom10 0.046 98.95
VNIR 5 Step60 0.018 99.55
VNIR 10 Step30 0.024 99.49

Table 4. Finetuning (FT) performance of BiMAE using
two modalities (RGB and MS) using various band selection strate-
gies (BSS)

curacy of 98.95% when using 10 bands (Bottom10). The
lowest accuracy of 97.99% is reached, by selecting 10 bands
of Visible part of spectrum (Top10).

5.2. Model Comparison

When comparing the performance of BiMAE trained on
unimodal data, it becomes evident that finetuned models
consistently outperform those trained from scratch. Fur-
thermore, a comparison of the modalities on which BiMAE
was trained (FT or TFS) reveals that those trained on mul-
tispectral modality achieve the best results. Additionally,
the number of bands in multispectral data proves to be cru-
cial; for example, bands selected using the Step60 strategy
outperform those chosen with the Step30 strategy.

Another notable finding is the inability of unimodal Bi-
MAE, finetuned on hyperspectral data, to surpass the per-
formance of unimodal BiMAE, finetuned on multispectral
data. This might be attributed to the limited training time for
FT and TFS (50 epochs), suggesting that FT and TFS may
require more computational time, especially for hyperspec-
tral data. Additionally, the Hughes phenomenon or curse of
dimensionality of data [52, 53] might be involved here.

In the comparison of BiMAE models trained on uni-
modal and bimodal data, it is evident that finetuned models
consistently outperform those trained from scratch. Overall,
bimodal models exhibit superior performance compared to
those trained on unimodal data, indicating that training on
more diverse data enhances the model’s classification ca-
pabilities. This principle extends to the diversity of spec-
tral bands in the multispectral modality, as demonstrated by
the results presented in Table 4, which show that selecting
spectral bands from various parts of the VNIR spectrum can
significantly enhance classification accuracy.

The variety of experiments conducted in Section 4.1,
utilizing different combinations of modalities in both uni-
modal and bimodal settings, underscores the versatile po-
tential applications of the model.

6. Conclusion and Outlook

Modern data-driven AI has demonstrated potential to
greatly contribute to sustainable agriculture. By automat-
ing tasks and reducing errors, AI can simplify the work of
farmers. The focus of our current work is on enhancing seed
purity, traditionally a human task. In particular, we have
proposed our BiMAE architecture for bimodal single-label
classification that allows to enhance the efficiency and ac-
curacy of seed purity, thus promoting sustainability in agri-
culture. In our study, we have showcased the effectiveness,
adaptability, and scalability of our BiMAE model in clas-
sifying various seed species using RGB, multispectral, and
hyperspectral images. These findings underscore the poten-
tial of our approach to streamline and expedite seed produc-
tion in agriculture.

Looking forward, our future research will concentrate on
refining single label classification techniques in agriculture.
For instance, we plan to explore additional applications of
BiMAE beyond classification, such as seed segmentation,
which could enable deeper seed analysis. Additionally, we
aim to evaluate the model’s performance on unseen species
using zero-shot or few-shot learning techniques. Further-
more, incorporating more modalities and investigating their
synergies could offer further insights. Lastly, we aim to
identify the key wavelengths crucial for distinguishing be-
tween different seed types. This insight could simplify clas-
sification, enhance efficiency, and potentially reduce costs
in agricultural processes.
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Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In Pro-
ceedings of the IEEE/CVF international conference on com-
puter vision, pages 9650–9660, 2021. 2

[11] Jun Chen, Ming Hu, Boyang Li, and Mohamed Elho-
seiny. Efficient self-supervised vision pretraining with local
masked reconstruction. arXiv preprint arXiv:2206.00790,
2022. 3

[12] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597–1607. PMLR, 2020. 2

[13] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
Improved baselines with momentum contrastive learning.
arXiv preprint arXiv:2003.04297, 2020. 2

[14] Xinlei Chen, Saining Xie, and Kaiming He. An empiri-
cal study of training self-supervised vision transformers. In
2021 IEEE/CVF International Conference on Computer Vi-
sion (ICCV). IEEE, 2021. 2

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of the

2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota, 2019. Association for
Computational Linguistics. 2

[16] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 3, 5

[17] Gamal ElMasry, Nasser Mandour, Salim Al-Rejaie, Etienne
Belin, and David Rousseau. Recent applications of multi-
spectral imaging in seed phenotyping and quality monitor-
ing—an overview. Sensors, 19(5):1090, 2019. 2

[18] Samson Damilola Fabiyi, Hai Vu, Christos Tachtatzis, Paul
Murray, David Harle, Trung Kien Dao, Ivan Andonovic, Jin-
chang Ren, and Stephen Marshall. Varietal classification of
rice seeds using RGB and hyperspectral images. IEEE Ac-
cess, 8:22493–22505, 2020.

[19] Lei Feng, Susu Zhu, Fei Liu, Yong He, Yidan Bao, and Chu
Zhang. Hyperspectral imaging for seed quality and safety
inspection: A review. Plant methods, 15(1):1–25, 2019. 2

[20] Pengming Feng, Kaihan Wang, Jian Guan, Guangjun He,
and Shichao Jin. Spectral masked autoencoder for few-shot
hyperspectral image classification. In IGARSS 2023 - 2023
IEEE International Geoscience and Remote Sensing Sympo-
sium. IEEE, 2023. 3

[21] Letian Fu, Long Lian, Renhao Wang, Baifeng Shi, Xudong
Wang, Adam Yala, Trevor Darrell, Alexei A. Efros, and Ken
Goldberg. Rethinking patch dependence for masked autoen-
coders. arXiv preprint arXiv:2401.14391, 2024. 2, 3

[22] Zhaoyong Gong, Fang Cheng, Zihao Liu, Xiaoling Yang,
Bujin Zhai, and Zhaohong You. Recent developments of
seeds quality inspection and grading based on machine vi-
sion. In 2015 ASABE Annual International Meeting, page 1.
American Society of Agricultural and Biological Engineers,
2015. 2

[23] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
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