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Abstract

This manuscript delineates the outcomes of the fourth
Multi-modal Aerial View Image Challenge - Classification
(MAVIC-C). The challenge is aimed at advancing the de-
velopment of recognition models that leverage Synthetic
Aperture Radar (SAR) and Electro-Optical (EO) imagery.
Encouraging the integration of data from these two dis-
tinct modalities, the challenge seeks to foster the creation
of multi-modal approaches that complement characteristics
of SAR and EO information. Building upon the precedents
set in previous years, the 2021 MAVOC challenge validated
the potential of integrating SAR and EO modalities. The
subsequent 2022 and 2023 challenges further explored the
capabilities of multi-modal frameworks. In its latest iter-
ation, the 2024 challenge presents an enhanced UNIfied
COincident Optical and Radar for recognitioN (UNICORN)
dataset alongside a revised competition format, focused on
the task of SAR classification. The 2024 challenge eval-
uates model robustness through out-of-distribution mea-
sures, alongside traditional accuracy metrics. The core of
this paper is devoted to analyzing the methodologies of the
top-performing entries and their performance metrics on a
blind test set.

1. Introduction

The primary goal of Object Recognition (OR) models is
to effectively detect, identify, and classify target signatures

within remotely sensed imagery, leveraging various sensing
technologies as evidenced in literature [1, 3, 5, 9, 10, 14].
OR, akin to object detection and labeling in conventional
imagery, uniquely operates on complex remote sensing
(RS) platforms deployed on aerial vehicles. Or from aerial
perspective introduces specific challenges for target recog-
nition, including constraints such as limited sensor resolu-
tion, which may reduce targets to mere pixels, complicating
their identification [4].

Synthetic Aperture Radar (SAR) has been explored as
a standalone modality, offering advantages of all-weather,
all-time surveillance capabilities. Nevertheless, it also faces
challenges, including issues with signal distortion due to
multi-bounce effects, shadows, and the delineation of ad-
jacent objects [15]. The integration of Electro-Optical (EO)
imagery with SAR data for OR purposes introduces a series
of distinct research challenges.

A critical requirement for OR systems, distinguishing
them from conventional object detection models, is their
ability to handle out-of-distribution samples accurately [3].
Given the potential consequences of high-confidence mis-
classifications in OR applications, models must assign a
credibility score to each detection, where lower scores sig-
nal potential uncertainty. The 2024 PBVS Multi-modal
Aerial View Image Challenge (MAVIC) challenge offers a
fertile ground for addressing these intricate challenges and
exploring how multi-modal data can enhance OR models.

Remote sensing (RS) systems benefit significantly from
multi-sensor fusion [13]. While certain sensors, like self-
illuminating or microwave systems, provide all-weather ca-
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pabilities and penetration through obstructions, passive sen-
sors can measure environmental variables such as tempera-
ture. Despite these benefits, the integration of diverse sen-
sor data into a cohesive OR system remains under explored
in computer vision, largely due to the complexities associ-
ated with merging disparate data sources. Traditional RS
approaches often rely on singular modalities, primarily, vi-
sual spectrum data. While multi-spectral (MSI) and hyper-
spectral (HSI) imaging extend the available spectral bands,
they also introduce challenges related to band selection and
increased computational demands. Yet, the strategic fusion
of various sensor data holds the promise of significant en-
hancements in OR system performance [12].

In this paper, we outline the 2024 MAVIC-C which in-
troduces a further refined version of the UNICORN Dataset.
This dataset more rigorously test the generalizability of ob-
ject recognition models, by splitting the train, test and val-
idation data across different geographic regions. We ob-
serve strong performance, despite this change. Section 2
describes the challenge with Section 3 listing the top per-
forming methods. Section 4 details three top methods and
Section 5 provides the conclusions.

2. Challenge
Building on the foundation laid by the 2023 Multi-modal
Aerial View Object Classification (MAVOC) challenge [8],
the 2024 MAVIC-C (Multi-modal Aerial View Image Clas-
sification Challenge) progresses the initiative in conjunc-
tion with the 20th Perception Beyond the Visible Spectrum
(PBVS) workshop. The MAVIC-C challenge aims to drive
advancements in multi-modal image classification, focusing
on the synergistic use of Synthetic Aperture Radar (SAR)
and Electro-Optical (EO) image pairs. Participants are as-
sessed based on top-1% accuracy and the Area Under the
Receiver Operating Characteristic (AUC) curve, promoting
the development of models proficient in precise labeling and
the identification of out-of-distribution samples.

The provision of SAR images introduces distinct chal-
lenges for competitors, attributed to their inherent self-
illumination and coherent properties. These characteris-
tics produce images marked by notable SAR shadows and
a unique tilted perspective, testing the adaptability and in-
novation of participating teams. The 2024 challenge is fo-
cused on SAR image classification.

2.1. SAR Classification

The MAVIC-C is designed to facilitate development of clas-
sifiers capable of being trained using both Synthetic Aper-
ture Radar (SAR) and Electro-Optical (EO) data but opera-
tional exclusively on SAR data during testing. The essence
of this track is to leverage the integrated features of SAR
and EO imagery within the training phase to enable the clas-
sifier to function without EO data at deployment. This ap-

proach aims to expedite decision-making processes by elim-
inating the need for the computationally intensive rectifica-
tion preprocessing required to align SAR with EO data. The
heterogeneous nature of the training dataset, encompassing
different modalities, poses a significant challenge to achiev-
ing this objective.

2.2. Area Under the ROC

The AUC metric serves as a pivotal evaluation criterion in
the 2024 MAVIC-C challenge, assessing a model’s profi-
ciency in identifying out-of-distribution samples. With a
scale ranging from 0 to 1, where 0.5 equates to random
chance and 1 denotes flawless performance, the AUC pro-
vides a nuanced measure of model credibility. The chal-
lenge intricately integrates out-of-distribution or negative
samples within the validation and test sets—absent during
the training phase—to discourage reliance on generic catch-
all classes for these samples.

2.3. Dataset

The MAVIC-C challenge is based by the UNIfied CO-
incident Optical and Radar for recognitioN (UNICORN)
dataset, featuring a curated SAR-EO dataset that is publicly
accessible and aligned, with hand-annotated classes. The
2024 iteration employs the UNICORN V2 dataset, an ad-
vanced version of the 2008 dataset, comprising Wide Area
Motion Imagery (WAMI) from large-format EO sensors and
Wide Area Synthetic Aperture Radar (SAR) data, sourced
from aerial surveys over Dayton, Ohio [11]. Initial evalua-
tions with a baseline pre-trained Resnet-50 model indicate
comparable performance across both UNICORN dataset
versions, with accuracy rates ranging from 15-18% on a
reserved test set. Additionally, methodologies and models
from the 2022 challenge exhibited consistent performance
on the updated dataset.

Despite covering analogous fields of view, the SAR and
EO data differ in resolution, with SAR images presenting
finer detail but with greater introduced noise. The images
are meticulously rectified and aligned using advanced ho-
mography algorithms, as illustrated in Fig. 1. The compe-
tition dataset comprises smaller segments (chips) extracted
from these aligned larger images. Each chip showcases one
of 10 object categories, featuring EO chips of 31 × 31 pixels
and SAR chips of 55 × 55 pixels, reflecting the resolution
disparity. Enhanced homography and alignment processes
underpin the creation of the UNICORN V2 dataset, facili-
tating the identification of more chips and achieving more
precise alignments. The training set exhibits a long-tail dis-
tribution among the classes, while the validation and test
sets are uniformly distributed across all categories, ensur-
ing an equitable assessment of model accuracy.

A significant methodological advancement for the 2024
challenge is the adoption of a more sophisticated approach
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Figure 1. The aligned scene of the full UNICORN dataset before
chipping is performed[7].

Table 1. Details of the UNICORN V2 Dataset used as the in-
distribution classes in this challenge (counts represent the number
of (EO, SAR) pairs).

Class # Vehicle Type # Train # Val # Test

0 sedan 364,291 77 200
1 SUV 43,401 77 200
2 pickup truck 24,158 77 200
3 van 16,890 77 200
4 box truck 2,896 77 200
5 motorcycle 1,441 77 200
6 flatbed truck 898 77 200
7 bus 612 77 200
8 pickup truck w/ trailer 695 77 200
9 semi truck w/ trailer 353 77 200

Total 455,635 770 2000

to splitting the dataset into training, validation, and testing
sets. Instead of the conventional random sampling method,
the split is based on geographical regions, resulting in dis-
tinct test and validation sets that pose a heightened chal-
lenge for participants. This innovative splitting strategy de-
mands that models exhibit enhanced generalizability across
a limited geographical dataset, a departure from previous
competitions that aims to better assess the robustness of the
models to novel environments. Table 1 outlines the distri-
butions and split of the dataset.

The out-of-distribution images are pulled from other
classes in the UNICORN V2 dataset. These are classes with
fewer examples than the semi truck w/ trailer class. These
classes are shown in Table 2.

Table 2. Details of the UNICORN V2 Dataset used as the out-of-
distribution classes in this challenge (counts represent the number
of (EO, SAR) pairs).

Class # Vehicle Type # Train # Val # Test

0 van w/ trailer - 77 -
1 other - 77 2000
2 dismount - 77 -
3 semi - 7 -
4 SUV w/ trailer - 77 -
5 flatbed truck w/ trailer - 77 -
6 plane - 77 -
7 bicycle - 24 -
8 dump truck - 77 -
9 sedan w/ trailer - 77 -

Total - 647 2000

2.4. Evaluation

Submissions are evaluated using a weighted average of
the top-1% accuracy and AUC of the model. The test
set contains 2,000 unlabelled (SAR, EO) chip pairs, with
200 examples for each of the 10 classes, and 2000 out-of-
distribution samples. The weighting is shown in Eq. 1.

Score = 0.75 Accuracy + 0.25 AUC (1)

During the testing phase of the competition, teams are al-
lowed up to ten submissions per day. During the evaluation
phase, teams submit their label predictions and credibility
score to be evaluated on the competition server. Teams are
allowed up to 12 submissions, which prevents teams from
effectively fine-tuning on the test dataset. Results are made
visible during both phases.

2.5. Challenge Phases

The challenge began January 11, 2024, and the test data
was released February 22, 2024. The testing phase ended
on March 5, 2024 with team submissions finalized.

3. Challenge Results
The 2024 MAVIC-C challenge witnessed substantial en-
gagement, reflecting the growing interest and advancements
in multi-modal aerial view image classification challenge
problems.

A total of 146 teams registered for participation. During
the development phase, 96 of these teams proceeded to sub-
mit their algorithms for preliminary evaluation. The partic-
ipation slightly adjusted in the testing phase, with 50 teams
submitting valid algorithms for rigorous assessment.

4. Challenge Methods
The top three performing methods are outlined.
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Table 3. Top-10 Teams for MAVIC-C.

Rank Team Total Score Accuracy AUC

1 IQSKJSP 0.49 37.9 0.83
2 MITHF 0.46 38.85 0.69
3 GuanYu 0.39 35.10 0.49
4 GWLoong 0.35 38.80 0.24
5 http 0.33 10.40 1.00
6 unknown 0.33 10.05 1.00
7 findanswear 0.32 10.00 1.00
8 NJUST-KMG 0.31 8.45 1.00
9 yuhyun 0.30 21.45 0.56
10 bingxiang 0.30 18.90 0.62

2023 Best (fcai) 0.65 63.2 0.71

4.1. Rank 1: IQSKJSP

Large foundation models pre-trained on web-scale datasets
have revolutionized the field of computer vision, showing
powerful zero-shot and few-shot generalizations. These
models have the potential to generalize tasks and data dis-
tributions beyond those seen during training. They have
been successfully applied in various fields, including vi-
sual recognition, dense prediction, Reinforcement Learning
(RL), and Robotics.

Recent results from BALLAD, RAC, VL-LTR, and LPT
demonstrate that properly fine-tuning pre-trained founda-
tion models can improve long-tail object recognition accu-
racy. For instance, LPT fine-tunes the ViT pre-trained on
ImageNet, utilizing prompt tuning via two-stage training.

Due to the large differences between general images
and SAR images and the absence of labeled SAR image
datasets, there is no fine-tuned vision foundation model
available for fine-grained object recognition in SAR images.
And existing fine-tuned models are designed from the per-
spective of the model structure, ignoring the unique scatter-
ing information of SAR images.

Building upon these considerations, team IQSKJSP
proposes a fine-tuned foundation model called Scattering
Prompt Tuning (SPT) specifically tailored for object recog-
nition in SAR images. As shown in Fig. 2, the scatter-
ing information extracted from SAR images is converted
into a textual description, serving as the prompt alongside
the visual image description. These inputs are processed
by the text encoder to extract semantic features, initializ-
ing the model head for better convergence. To guide the
image encoder in learning scattering information, they in-

troduce trainable parameters as a scattering characteristics
prompt in the input space, facilitating the fine-tuning of the
ViT model.

Acknowledging the disparities between web images and
SAR images, they introduce a lightweight module named
Residual AdapterMLP (RAMLP) within each transformer
block, comprising a fully connected layer, nonlinear activa-
tion function, and residual feature fusion factors. The pre-
trained transformer is fine-tuned by updating RAMLP. Ad-
ditionally, they implement a sequential feature aggregation
module to selectively fuse feature outputs from different
transformer blocks. This module adaptively extracts rich
hierarchical information from SAR images. To address the
challenge of extreme inter-class similarity and intra-class
differences, they develop the Dynamic Distributional Con-
trast Loss. This loss function ensures that features of objects
from the same class and different classes maintain appropri-
ate distances, enhancing class distinguishability while pre-
serving intra-class differences to some extent.

IQSKJSP’s fine-tuned foundation model, SPT, diverges
from existing methods by effectively leveraging the scatter-
ing properties of SAR images. SPT mitigates domain shift
issues between general web images and SAR images, prov-
ing to be effective and well-suited for fine-grained object
recognition in SAR images.

In summary, their contributions are outlined as follows:

1. They propose a Scattering Prompt Tuning (SPT) based
foundation model.

2. Different from existing methods, their method uniquely
leverages SAR image scattering properties to markedly
improve object recognition performance.
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Figure 2. The framework of SPT.

3. They combine and design novel modules like Residual
AdapterMLP and Sequential Feature Aggregation with a
Dynamic Distributional Contrast Loss, significantly en-
hancing semantic feature learning in SAR images.

4.1.1 Scattering information extraction

The scattering information of SAR images is the phe-
nomenon of radar wave interaction with ground objects [6].
Different objects have different scattering characteristics.
The scattering information describes the characteristics of
the object surfaces, which is important for understanding
their edges and structures in SAR images. Embedding the
scattering information into the prompt encoder may help to
improve the object recognition performance of the model.
They consider the scattering points extracted from the SAR
image as its scattering information.

4.1.2 Scattering Characteristics Prompt

For a plain vision transformer (ViT) with N layers, an in-
put image is divided into m fixed-sized patches. Each patch
is then first embedded into d-dimensional latent space with
positional encoding. Together with an extra learnable clas-
sification token ([CLS]), the patch is fed into the trans-
former for feature learning. In their SPT, as shown in Fig. 3,
they add extra learnable vectors as the scattering character-
istics prompt (SCP) in the input space to help the pre-trained
model learn the scattering information of unseen SAR im-
ages. During the fine-tuning process, the parameters of scat-
tering characteristics prompt is updated.

Figure 3. Comparison of full fine-tuning ViT and SPT. (a) Struc-
ture of full fine-tuning ViT. (b) Structure of SPT.

4.1.3 Residual AdapterMLP

ViTs are usually trained on large web-scale datasets and
may lack exposure to SAR image information. To bridge
this gap, as shown in Fig. 3, they introduce the Residual
AdapterMLP (RAMLP) module in each transformer block,
helping the model effectively capture accurate details from
SAR images. With fully-connected layers, nonlinear activa-
tion functions, and residual feature fusion weights, RAMLP
dynamically adjusts the ViT weights during fine-tuning.

Recent studies, like AdapterFormer, highlight the im-
portance of the MLP in fine-tuned ViTs for general im-
age/video recognition. RAMLP not only prevents certain
issues such as output degradation in ViTs but also improves
its performance. Their version of the RAMLP module in
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the fine-tuned ViT differs from AdapterFormer by including
more nonlinear layers and deeper embedding dimensions
for better learning

4.1.4 Sequential Feature Aggregation

Figure 4. Details of sequential feature aggregation module.

The pre-trained ViT model produces diverse features in
its different blocks, each containing distinct levels of se-
mantic information from the SAR image. Considering these
features as a sequential sequence, they design a sequential
feature aggregation (SFA) module to selectively filter and
merge the most relevant information for SAR object recog-
nition. The details are shown in Fig. 4.

For the output features {c1, · · · , cN} from the N trans-
former blocks, IQSKJSP initially apply a channel down-
sampling convolution (DConv) to get a uniform chan-
nel count for the feature sequence {d1, · · · , dN}. Subse-
quently, short and long-term sequence feature screening is
performed to derive features fN , encompassing information
from various positions within the sequence. Lastly, an ag-
gregated convolution, formed by stacking multiple 1 × 1
convolutional layers, adapts to fuse the screened features
effectively.

fN = LConv(fN−1) + fN−1 (2)

4.1.5 Loss Function

The loss function L in IQSKJSP’s SPT model comprises
two key components: LA (Logit-Adjusted loss) and LDC

(Designed Dynamic Distributional Contrast Loss, DCLoss).
LA primarily addresses the challenges posed by the long-
tailed distribution of data during training. On the other
hand, LDC is tailored to tackle the difficulties arising from
the extreme inter-class similarity and intra-class differences
in SAR image object recognition. The loss is shown in Eq.
3.

L = LA + LDC (3)

The primary objective of designing LDC is to ensure that
features from different object classes are widely separated,
while features from the same object class are brought closer
together, aligning with the actual data distribution. To ad-
dress the local clustering issue within classes (intra-class
differences), they incorporate a dynamic distance thresh-
old screening strategy. This strategy allows for variations in
distances between objects of the same class while ensuring
they are kept distinct from features of other classes. For the
features extracted from n SAR image objects, they measure
their similarity using the Euclidean distance:

distij = ∥∥oi − oj∥∥22 =

C∑
k=1

(oik − ojk)
2 (4)

where i and j denote the index of the sar image, {1 ≤ i, j ≤
n} and {i ̸= j}. C is the channel number. To guide the
learning of the similarity measure matrix dist, we build its
ground truth, Gsim, based on the actual labels of each ob-
ject. The value is set to 1 when the labels of two objects are
the same and 0 otherwise. The calculation of LDC can be
expressed using the following equation:

LDC = Gsim∗(dist−δp)
2+(1−Gsim)∗max(δq−dist, 0)2

(5)
δp and δq represent the dynamic thresholds for distances be-
tween objects of the same class and different classes, adapt-
ing to various data distributions. In IQSKJSP’s specific im-
plementation, they use the average values of the distances
between objects of the same class and different classes as
δp and δq , respectively.

4.1.6 Training Strategy

To gradually adapt the pre-trained ViT model to SAR object
recognition, IQSKJSP’s SPT model undergoes four stages
of training.

In the first stage, they fine-tune the SPT initially on a
mixed dataset of EO and SAR images, followed by another
fine-tuning specifically on SAR images. This process yields
an initial foundation model tailored to the SAR image do-
main.

Moving to the second stage, they create a balanced
dataset by sampling images from various classes in the SAR
image training dataset for further fine-tuning.

In the third stage, their focus is on understanding
the differences between the training data and the valida-
tion(development phase) / test(test phase) data. They cap-
ture features, prediction scores, and prediction categories
from the model’s last layer for all validation/test data. By
applying a threshold, they select high-scoring samples and
employ Gaussian Mixture and K-means++ algorithms for
feature clustering. The overlap of these results serves as the
final clustering outcome. If a high-scoring sample is within
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a cluster, IQSKJSP assign the prediction categories of the
high-scoring sample to all cluster members. This process
generates reliable predictions, and they construct a balanced
dataset by incorporating some training images for further
fine-tuning.

In the fourth stage, they exclusively use high-scoring
samples as reliable predictions to build a balanced dataset
for additional fine-tuning. Since they find that the strat-
egy in the third stage becomes less effective as the model’s
prediction accuracy improves. Consequently, they iterate
through the fourth stage until the model’s prediction accu-
racy reaches a plateau.

4.2. Rank 2: MITHF

The 2023 PBVS SAR Classification results [8] showed that
the accuracy of classifying electro-optical (EO) images is
much higher than that of SAR images under similar condi-
tions. This led MITHF to explore ways to transfer the EO
image network’s capabilities to SAR images. In the 2024
PBVS SAR classification challenge, training data includes
pairs of SAR and EO images, but only SAR images are used
in the test phase. Based on this, they developed an method
that uses EO image generation and integration. The frame-
work of MITHF’s approach is illustrated in the following
Fig. 5:

The pipeline is as follow: (1) First, MITHF train their
model so it can convert SAR images into EO images. They
start with a ViT that has been pre-trained to act as their im-
age encoder. This encoder takes the features from a SAR
image and works with an image decoder to rebuild these
features into an EO image, matching the original SAR im-
age’s scale. During training, they use the actual EO im-
ages provided by the organizers as a supervision to guide
the model. Once this stage is complete, they end up with
corresponding pairs of SAR and EO images for use as test
data.

Then, they train separate models for both SAR and EO
images using AdapterFormer [2]. This training approach is
inspired by the top SAR and EO solutions of PBVS2023
challenge, where they first train on SAR and EO classifi-
cations separately. They utilize various networks, includ-
ing ResNet101, VGG, and MobileNet, for both SAR and
EO classifications, aiming for a combined approach through
multi-model integration.

During testing, they discovered that the SAR and EO
models each excelled at identifying different categories.
Therefore, they combined the strengths of both models to
achieve their final results.

4.3. Rank 3: GuanYu

In this challenge, GuanYu employs a two stage model. In
Stage 1 they trained multiple 10-class classifiers and use
them to vote for each sample. They then take the most-

voted class as the final label and the average confidence of
these models as the final confidence score. They observe
that some classes such as: class 0: sedan, 1: suv, 2: pickup
truck, and 3: van, are visually similar. They exploit this
and train a two-stage classification module to optimize their
performance.

In Stage 2, they added a classification model and a clus-
tering module to re-identify the samples that are easily con-
fused (class 0 − 3). Specifically, they used the Perceptual
hash algorithm to cluster the samples that were classified
as class 0 − 3, and then classified the samples within each
cluster using the 4-class classifier. The most frequently oc-
curring category was taken as the label for all samples in the
cluster.

To fuse SAR and EO, they first extract features using
a backbone model and then test transformer and traditional
concatenation feature fusion strategies, as well as a concate-
nation module based on channel self-attention. Ultimately,
they used a concatenation feature fusion strategy based on
channel attention. They used the output results of multi-
ple models to vote for the final result. The confidence of
the sample is calculated from the average of multiple voting
models. In the experiment, they found that the distribution
of class 0 − 3 categories is similar, so they trained a two-
stage module to further optimize.

5. Conclusion

The 2024 MAVIC-C demonstrated innovated improvements
to the multi-modal classification problem. Performance re-
mained high, despite the more rigorous test split that more
thoroughly test a model’s generalizability. This year chal-
lenge has garnered significant attention, evidenced by the
registration of 146 teams eager to participate, showing a
growing interest in the multi-modal aerial view image clas-
sification topic. Results from this year will be a benchmark
for next years’ competition.
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