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Abstract

This paper describes the design, outcomes, and top
methods of the 2nd annual Multi-modal Aerial View Im-
age Challenge (MAVIC) aimed at cross modality aerial im-
age translation. The primary objective of this competition
is to stimulate research efforts towards the development
of models capable of translating co-aligned images be-
tween multiple modalities. Specifically, the challenge cen-
ters on translation between synthetic aperture radar (SAR),
electro-optical (EO), camera (RGB), and infrared (IR) sen-
sor modalities, a budding area of research that has begun
to garner attention. While last year’s inaugural challenge
demonstrated the feasibility of SAR—EQO translation, this
year’s challenge made significant improvements in dataset
coverage, sensor variation, experimental design, and meth-
ods covering the tasks of SAR—EQO, SAR—RGB, SAR— IR,
RGB— IR translation. By introducing a new dataset called
Multi-modal Aerial Gathered Image Composites (MAGIC);
multimodal image translation is available for different com-
parisons. With a more rigorous set of translation perfor-
mance metrics, winners were determined from aggregation
of L1-norm, LPIPS (Learned Perceptual Image Patch Sim-
ilarity, and FID (Frechet Inception Distance) scores. The
wining methods included the pix2pixHD and LPIPS metrics
as loss functions with an aggregated score 5% better sep-
arated by the SAR—EO and RGB— IR translation scores.
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1. Introduction

Last year’s inaugural Multi-modal Aerial View Image Chal-
lenge - Translation (MAVIC-T) challenge was primarily en-
gaged in the utilization of data from Synthetic Aperture
Radar (SAR) and Electro-Optical (EO) imagery from one
common collection [13]. Building on this foundation, the
2024 MAVIC-T shifts focus towards the transformation of
data across multiple modalities (e.g., infrared (IR)) and dif-
ferent collections spanning different times, locations, and
context. Data translations provides a unique opportunity
to harness the distinctive benefits offered by various sens-
ing technologies, while simultaneously minimizing cover-
age gaps. This process can be used to bolster existing data
volume. The MAVIC-T challenge aims to enhance sensor
data utility via modality conversion, increase data diversity
across modalities and regions, and serve as a platform for
advancing conditioned image synthesis techniques.

By prioritizing the conversion of data between modali-
ties, MAVIC-T aims to broaden the scope of multi-modal
research, fostering the development of more adaptable and
robust models. The multi-modal translation among many
sensor sources emphasizes the critical importance of diver-
sifying data sources to overcome the challenges associated
with sensor-specific limitations, thereby advancing the field
of multi-modal image analysis. MAVIC-T focuses on four
main translation tasks: RGB—IR; SAR—EO; SAR—IR;
and SAR—RGB. As shown in Fig. 1.

The foundation of this challenge lies in leveraging the
distinct benefits of various data modalities to overcome their
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Figure 1. Example of the image translation task. Input images are
shown on the left, generated images in the middle, target images
on the right.

availability constraints. Synthetic Aperture Radar (SAR)
sensors, with their all-weather capabilities and ability to
penetrate atmospheric obstructions, offer unique advantages
over Electro-Optical (EO) sensors. However, SAR imagery
is complex to interpret and less available. Infrared (IR) im-
agery, useful for thermal imaging and nighttime operations,
similarly faces availability challenges, though to a lesser ex-
tent than SAR [12]. Given the widespread availability of EO
imagery, translating EO data into the IR modality emerges
as a strategic solution to improve data diversity and address
coverage gaps. Conversely, due to the limitations of EO
and IR data, translating SAR data into EO or IR data can
enhance the availability of both modalities in adverse con-
ditions. This initiative aims to mitigate the scarcity of SAR
and IR data among a plethora of EO data.

The development of models that can translate between
sensors of different modalities can enable the utilization of
established algorithms. An example use case utilizing aerial
imagery is in vision aided navigation, which compares live
aircraft imagery to reference data in order to infer a position.
As shown in Fig. 2, which has been proposed as a method
to navigate in areas where Global Navigation Satellite Sys-
tems (GNSS) may not be available or reliable. This includes
navigation in GNSS denied or untrusted environments [22]
or in areas where GNSS is completely unavailable such as
in lunar based navigation [6].

Figure 2. IR data from vision aided navigation [22]

Another application of image translation includes auto-
matic target recognition (ATR) tasks [8, 15]. In modalities
like SAR, it is often harder to find large amounts of labeled
training data for objects of interest than it is to find train-
ing data in EO [7, 9]. Thus, translating EO—SAR may of-
fer a way to train better SAR ATRs by using data collected
and labeled in the EO modality. This case can be made for
the translation tasks as important looks of objects (for train-
ing) may be opportunistically collected in any of the sensor
modalities.

This paper outlines the advancements observed in sen-
sor translation facilitated by the 2024 MAVIC-T. We also
introduce the novel MAGIC dataset, which serves as the
backbone to this challenge. Various methods and their per-
formance are further detailed in Section 5.

The manuscript is organized as follows. Section 3 pro-
vides an introduction to the challenge dataset, evaluation
metrics and competition phases. Section 4 summarizes
the results obtained by different teams. Then, Section 5
presents a short description of the top approaches evaluated
from submissions. The conclusion is presented in Section 6.

2. Previous Work

The problem of cross domain image translation addressed
by the challenge is related with those approaches proposed
in the literature for gray scale / near infrared (NIR) / thermal
image colorization, or color transfer functions (e.g., [18],
[16], [25], [3], just to mention a few). These problems are
generally tackled through the use of Generative Adversar-
ial Networks (GANs) [10], which allows the transforma-
tion of information between domains. Most GAN based ap-
proaches have focused on supervised contexts, where a pair-
ing of correctly registered data are provided. The unpaired
problem, which is more challenging, could be tackled by a
GAN architecture in the unsupervised context under a cyclic
structure (CycleGAN) [28]. CycleGAN learns to map im-
ages from one domain (source domain) onto another do-
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main (target domain) when paired images are unavailable
[21]. The domain adaptation makes models appropriate for
image to image translation in the context of unsupervised
learning. More recently, diffusion models have been pro-
posed giving superior results than state-of-the-art generative
models [4]. Unfortunately, the main limitation with diffu-
sion models lie on the large amount of resources required
for their training.

Moreover, it is worth noting that generative models are
susceptible to producing hallucinations, which refer to out-
puts that deviate from the original source information. Such
occurrences can be especially consequential in sensor trans-
lation tasks, where the preservation of information between
modalities is crucial. Therefore, the central aim of the
MAVIC challenge is to facilitate the development of reli-
able translation models that are capable of producing ex-
plainable, interpretable, and trustworthy outputs. Convert-
ing images across modalities is not a trivial task, as it poses
several challenges related to non-collocated sensor collec-
tions, pixel intensity association, image size, ground sam-
pling distance, and image noise differences [27].

The 2023 MAVIC challenge, we showed promising ini-
tial results on the EO to SAR cross domain translation [14].
We aim to expand on last year’s challenge by adding in
the IR domain and significantly increasing our data vol-
ume, culminating in our new and larger Multi-modal Aerial
Gathered Image Composites (MAGIC) dataset. We observe
an increase in sophistication from last year’s methods when
compared to this year’s methods.

3. Challenge

The 2024 MAVIC-Translation challenge is held jointly with
the Perception Beyond the Visible Spectrum (PBVS) work-
shop and is a complement to the MAVIC-Classification
challenge. The MAVIC-T challenge is designed to facil-
itate innovative approaches in multi-modal sensor transla-
tion. Participants are evaluated on using a weighted average
of the L1, LPIPS [26], and FID [5] score. The challenge
centers on the advancement of multi-modal translation net-
works. Participating teams are provided with a collection of
cross modality image pairs, consisting of EO, IR, and SAR
modalities, and are tasked with performing image transla-
tion from one modality to the other. Upon completion, the
teams’ generated outputs are evaluated on a separate test
set that was previously withheld. The performance of the
teams is subsequently monitored and recorded. Emphasis
is placed on generating high quality translations with an ab-
sence of hallucinations. Figure 3 illustrates an example of a
failed translation that contains hallucinations. Since a hal-
lucination is related to objects, it was not evaluated as part
of the challenge problem tasks.

Figure 3. Example of failed translation from SAR to EO (order
= SAR input, translation, ground truth). We draw attention to the
aircraft in the image. The translated image illustrates an example
of the generative network hallucinating.

3.1. The Multi-modal Aerial Gathered Image Com-
posites Dataset

The current dataset consists of images pairs from the UNI-
CORN dataset, and introduces newly collected, collocated
MAGIC SAR, MAGIC IR and MAGIC RGB datasets. This
new dataset is termed the Multi-modal Aerial Gathered Im-
age Composites (MAGIC). This dataset is a custom pro-
cessed, aligned, and transformed agglomeration of data
from three sources: UNICORN, USGS HRO [1], and the
Umbra [2] open data program. Figure 4 illustrates an exam-
ple of a stack from the MAGIC dataset.

The UNICORN dataset features a curated SAR-EO
dataset that is publicly accessible and aligned using ad-
vanced homography techniques. The United States Geo-
logical Survey (USGS) provides land change satellite and
aerial imagery through its Earth Resources Observation
and Science (EROS) program. MAGIC utilizes the High
Resolution Orthoimagery (HRO) dataset provided through
EROS. HRO contains a large volume of aerial imagery, all
under one meter resolution, uniform and scale, and cor-
rected for terrain relief, sensor geometry, and camera tilt
(orthorectified).

Umbra is a space technology company that provides over
$4 million worth of free SAR imagery through its UMBRA
open data program. Through space based remote imaging,
they provide up to 16cm remote imaging. This dataset pro-
vides MAGIC with additional SAR imagery.

P,

4

Figure 4. Example stack (RGB, IR, SAR), made from aligning
UMBRA and HRO data.
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Figure 5. Examples of chipping. (left) illustrates ideal chipping,
and (right) illustrates actual chipping used.

3.1.1 Cross Dataset Alignment & Chipping

To allow for cross dataset chipping, we take a “plug in”

based approach. For each dataset, we process the images

into a specific format and meet certain preconditions. Once
the dataset has been processed, we chip the data into co-
aligned stacks, covering a specific area. These stacks are
then saved and sorted based on the WGS-84 location of its
top left point.

To chip the dataset, we preprocess each dataset to ensure
the following conditions are met:

1. The images are georectified (north-facing)

2. The images are in a GeoTiff format, where the GeoTiff
format contains a transform from pixel space to local co-
ordinate reference system

3. The resulting GeoTiffs are placed in a unified directory
structure
Once these preconditions are met, we run our uniform

chipping code over the datasets. First, a tile grid is estab-
lished, such that each tile covers the same area in meters on
the ground. To accomplish tiling, we take small arc lengths
of the world’s circumference, parallel to the latitude paral-
lels and longitude meridians, and project onto the surface of
the earth to get a specific size of each tile in meters. We as-
sume that these tiles are approximately flat for sufficiently
small tiles, in our case 200m x200m. Every tile is anchored
to the 0, O latitude/longitude point (aka “null island”), so ev-
ery tile is unique for a given size. Figure 5 illustrates both
ideal and real chipping examples.

3.2. Dataset Split

The MAGIC dataset is split into train, validation, and test
sets. In order to more rigorously test generalizability, the
validation and test sets are withheld, and sampled from dif-
ferent geographical locations. The validation set is sampled
from New Albany, Ohio, and the test set is sampled from
Washington DC (see details in Table | and 2).

3.3. Evaluation

The MAVIC-T challenge’s rigorous evaluation framework
is designed to assess submissions across four distinct trans-
lation tasks, each contributing to the overarching goal of

Table 1. Details of the UNICORN dataset used for training, vali-
dation, and testing. It is used exclusively in the SAR—EO task.

Modality # Train # Val # Test
UNICORN SAR 68,151 80 3,586
UNICORN EO 68,151 80 3,586

Table 2. Details of the MAGIC dataset used for training, val-
idation, and testing. This dataset is used exclusively in the
SAR—RGB, SAR—IR, and RGB— IR tasks.

Modality # Train # Val # Test
MAGIC SAR 10576 60 60
MAGIC RGB 2273 30 30

MAGIC IR 2273 30 30

high-fidelity image translation. We evaluate image trans-
lation versus object recognition, from which future stud-
ies could evaluate image translation contribution to ob-
ject recognition. We evaluate submissions on SAR— EO,
SAR—RGB, SAR—IR, and RGB— IR translations.

Submissions are evaluated based on their performance in
each task using a composite score derived from three metic-
ulously chosen metrics:

1. LPIPS (Learned Perceptual Image Patch Similarity):
This metric computes a similarity score using deep fea-
ture representations, reflecting human perceptual judg-
ments, based on the VGG-16 architecture [17].

2. FID (Fréchet Inception Distance): Utilizing a pre-trained
InceptionV3 network [19], the FID quantifies the dis-
similarity between distributions of generated and target
images, offering insights into visual fidelity and feature
distribution similarity.

3. L1 Norm: Focuses on the pixel-wise absolute difference
between target and generated images to ensure the struc-
tural integrity and overall content accuracy.

The selection of these metrics—LPIPS for perceptual ac-
curacy, FID for distributional similarity, and L1 for content
and structural integrity—aims to address the multifaceted
aspects of image translation quality. This comprehensive
evaluation strategy seeks to minimize generative artifacts
while ensuring that generated images exhibit both high-
resolution details and structural coherence, aligning closely
with the target domain’s characteristics.

The evaluation process entails calculating the score for
each metric across all four translation tasks, followed by
normalization to scale the values between O and 1. This
normalization is task-specific and is performed as follows:

* L1 Norm, image normalization adjusts pixel values to fall
within the desired range.

» LPIPS scores undergo scaling of the output weights to
achieve normalization.
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* FID scores are normalized employing a weighted arctan
activation function to moderate each metric’s influence
evenly.

The final score for each task is derived by averaging
these normalized metrics:

2 arctan(FID) + LPIPS + L1
3 - (D
The overall performance of a submission is then deter-
mined by averaging the Task Scores across the four transla-
tion tasks, ensuring a holistic assessment of the algorithm’s
capability to produce accurate and perceptually consistent
translations across different imaging modalities:

Task Score =

Overall Score =

SAR2EO + SAR2RGB + SAR2IR + RGB2IR )

1 - @

This expanded evaluation methodology reflects the

MAVIC-T challenge’s commitment to fostering the devel-

opment of versatile and robust image translation models,

capable of handling a variety of source and target modali-
ties with high fidelity.

3.4. Challenge Phases

The challenge began on January 19th, 2024. The test data
was released on February 22nd, 2024, with the final day for
submissions being March 5th.

4. Challenge Results

The challenge results are summarized in this section. This
challenge had 95 teams participate. Results from the top ten
teams are shown in Table 3, with samples from generated
images from the top three teams shown in Figure 8. All
the winning methods used pix2pixHD and LPIPS metrics as
loss functions. While SAR-RGB and SAR-IR performance
is generally the same for the top ten, the main differentiating
tasks are SAR-EO and RGB-IR.

Table 3. Top Performing Teams in Competition

Rank Team Total | SAR—EO SAR—RGB RGB—IR SAR—IR
1 NJUST-KMG 0.32 0.08 0.55 0.16 0.51
2 USTC-IAT-United  0.33 0.10 0.54 0.17 0.52
3 wangzhiyu918 0.36 0.11 0.54 0.22 0.55
4 hsansui 0.40 0.10 0.57 0.36 0.58
5 lemonGJacky 0.40 0.33 0.57 0.19 0.53
6 Marry 0.42 0.25 0.59 0.30 0.52
7 Levin 043 0.25 0.56 0.40 0.52
8 yishifeng 0.35 0.13 0.55 0.55 0.51
9 wuxixian 0.44 0.13 0.55 0.54 0.52
10 xsd 0.44 0.13 0.55 0.55 0.53
5. Methods

This section briefly summarizes the approaches used by the
top three participating teams.

Figure 6. NJUST-KMG’s solution comprises three modules:
Pix2PixHD model training module, RGB to grayscale image con-
version module, and grayscale adjustment module.

5.1. Rank 1: NJUST-KMG

NJUST-KMG developed an innovative method to transform
RGB and SAR images into IR images by first converting
RGB images to grayscale and then applying an intensity ad-
justment. This significantly improved the IR image quality.

For the SAR2EO, SAR2RGB, and SAR2IR tasks, they
utilized the Pix2PixHD model for both training and test-
ing. Given the SAR2EO dataset’s size, they adjusted the
learning rate towards the end of the training phase to ensure
comprehensive training. For SAR2RGB and SAR2IR, due
to their smaller dataset sizes, they employed the Pix2PixHD
model pre-trained on the SAR2EO dataset, conducting fur-
ther training on SAR2RGB and SAR2IR images. This strat-
egy allowed for the generation of more detailed images, en-
hancing task performance (see model design in Fig. 6).

Furthermore, to boost the Pix2PixHD model’s effective-
ness on the competition dataset, they integrated the L2 norm
and LPIPS metrics as loss functions during training. This
adaptation significantly improved the model’s performance,
as reflected in the final evaluation scores.

For efficiency in training across all tasks, NJUST-KMG
standardized the image size to 512x512 pixels. This re-
sizing facilitates faster training without compromising the
integrity of the data being processed. During testing, im-
ages for the SAR2EO, SAR2RGB, and SAR2IR tasks were
also resized to 512x 512 pixels to maintain consistency with
the training phase. However, for the RGB2IR task, images
were resized to 1024 x 1024 pixels to capture more detailed
information. The gains of the Pix2PixHD model with vari-
ous methods are compared in Table 4.

5.2. Rank 2: USTC-IAT-United

Team USTC-IAT-United proposes a unique pipeline
termed: MvAV-pix2pixHD. They employed strategic
methodologies across different tasks in the competi-
tion, leveraging advanced image translation techniques to
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Model Combined | SAR2EO | SAR2RGB | RGB2IR | SAR2IR
Pix2PixHD 0.44 0.08 0.56 0.55 0.58
Grayscale / / / 0.16 0.53
Pretrained / / 0.55 / 0.55
All Combined 0.32 0.08 0.55 0.16 0.51

Table 4. Pix2PixHD denotes the scores on the test set for the Pix2PixHD model with modified loss. Grayscale represents the scores after
two-stage grayscale adjustments. Pretrained indicates the use of weights from the Pix2PixHD model trained on the SAR2EO dataset. All

Combined signifies the scores obtained by combining these methods.
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Figure 7. The MvAV-pix2pixHD method, designed for multi-view
image translation tasks, features a generator (G) and discrimina-
tor (D) based on the coarse-to-fine and multi-scale principles of
pix2pixHD, alongside an inverse generator (I) mirroring G’s struc-
ture but with independent training parameters. Using SAR2RGB
as an example, SAR images are transformed into the RGB.

achieve notable success.

* SAR2EO Task: The team utilized their previous year’s
championship-winning solution, pix2pixHD, capitalizing
on its proven capabilities for the SAR to EO translation.

* SAR2IR and SAR2RGB Tasks: For these MAGIC
datasets, the team introduced the MvVAV-pix2pixHD
method. This innovative approach enhances the realism
of generated images by incorporating an inverse genera-
tor along with three robust loss functions, demonstrating
the team’s commitment to pushing the boundaries of im-
age synthesis quality.

* RGB2IR Task: Anin-depth analysis of IR training images
led to the adoption of grayscale mapping and luminance
extraction techniques. By applying grayscale mapping
and adjusting the brightness of RGB images, the team
was able to closely mimic the characteristics of IR im-
ages, showcasing their analytical approach to overcoming
the challenges of this specific task.

5.2.1 MvAV-pix2pixHD

The MvAV-pix2pixHD approach, built upon the founda-
tional strengths of pix2pixHD [23], is tailored for high-
resolution multi-view aerial image translation. Pix2pixHD
has been validated by Wang et al. [23] for its capability to

surpass traditional encoder-decoder and Unet architectures
in handling 512512 and 1024 <1024 resolutions. Its dis-
criminators also outperform standard single-discriminator
setups. Additionally, the efficacy of pix2pixHD in aerial
view image translation, particularly for the SAR2EO task,
was further confirmed by Yu et al. [24], showcasing su-
perior performance over the original pix2pix [11] frame-
work. Given these advancements, team USTC-IAT-United
proposes the MvAV-pix2pixHD method, an adaptation of
pix2pixHD for enhanced multi-view aerial view image
translation, as depicted in Fig. 7.

Contrasting with unpaired image datasets, multi-view
unpaired datasets necessitate a more deliberate sampling
strategy. Instead of random sampling, their method selects
target images from the dataset that correspond to the input
based on location, sensor type, viewing angle, and time, en-
suring a match within the target domain.

Beyond traditional random sampling, they introduce a
time proximity sampling technique. This method leverages
the temporal data recorded by different sensors during im-
age acquisition, allowing for the pairing of source and target
domain images based on their acquisition times. This ap-
proach acknowledges the inherent discrepancies caused by
sensor heterogeneity and time variances, even within im-
ages captured at identical spatial locations.

5.2.2 Pipeline of MvAV-pix2pixHD

The pipeline of USTC-IAT-United’s proposed MvAV-
pix2pixHD framework applied to the task of multi-view im-
age translation is shown in Fig. 7. In addition to the com-
mon generator G and discriminator D, they introduce an
inverse generator /. Given the stochastic nature of the sam-
pling process in the MAGIC dataset, which does not involve
one-to-one pairing, relying solely on the original adversar-
ial loss does not provide sufficient assurance that the model
can effectively map a single input z to the desired output y.
To further narrow down the space of possible mapping func-
tions, they argue that for each image = from domain X, the
image transformation loop should be able to reduce G(x) to
the original image, i.e., z — G(z) — I(G(x)) ~ x. This
also shows that the generated G(x) has enough information
to be reduced to x, guaranteeing the basic semantic informa-
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tion of the original image. In order to achieve the aforemen-
tioned process, they introduced three loss functions detailed
below.

5.2.3 Loss function

Consistency Loss. For each image = from domain X, the
image inverse translation should be able to bring G () back
to the original image, i.e., z — G(z) — I(G(z)) =~ .
They call this forward inverse consistency, and incentive
this behavior using a consistency loss:

Leon(G, 1) = B [[1(G(2)) — x[|1] 3)

Identity loss. For translation tasks in aerial view im-
age scenarios, the dataset magnitude tends to be small due
to the difficulty of data collection. They adapt the tech-
nique of Taigman et al. [20] and regularize the generator to
be near an identity mapping when real samples of the tar-
get domain are provided as the input to the generator:i.e.,
ﬁﬁdﬁnmm,n = E,)[IG) — ylh] + E(@)[|(z) -
Zil1].

High-level perceptual loss. In order to match the fea-
tures of the generated G (z) and the real target domain im-
age y, the pix2pixHD method uses feature matching loss
and perceptual loss but requires that x and y need to be
highly aligned. However, in the multi-view image transla-
tion task, x and y are not fully aligned, and there are shoot-
ing angle deviations or some translations, so we propose
high-level perceptual loss, which computes the similarity
using only the outputs of the last two layers of the VGG
model V. High-level features can represent the deeper se-
mantic features, and the captured perceptual field is larger.
Therefore this loss is not limited by the need for height
alignment requirement and is more suitable for multi-view
aerial view image translation tasks. The high-level percep-
tual loss Ly, (G) is then calculated as:

L1p(@) = Eiay 3 - IV (G(@) ~ V)11

+HIVO(G()) = VO ()]

5.3. Rank 3: wangzhiyu918

“4)

Team wangzhiyu918 improves the baseline model (i.e.,

Pix2Pix) from three aspects:

* Model Architecture: They observe that although the
baseline model performs well in the SAR-to-EO task, it
performs poorly in the other three tasks (i.e., SAR-to-IR,
SAR-t0-RGB, and RGB-to-IR). This is primarily due to
the variations in image resolutions across the four tasks.
The image resolution for SAR-to-EO is 256x256, while
the resolutions for the other three tasks are 1024x1024.
Pix2pix does not perform well for high-resolution im-
age translation. Therefore, they utilize the pix2pix model

for the SAR-to-EO task due to its efficient training (re-
quiring only a single 4090 GPU for one day of training),
while employing the pix2pixHD model for the other three
high-resolution image conversion tasks. Pix2pixHD pro-
poses coarse-to-fine generator, multi-scale discriminators
and improved adversarial loss to generate more realistic
high resolution images. They discover that in the three
high-resolution image translation tasks, the performance
of pix2pixHD significantly surpasses that of pix2pix.

* Training Data: The training dataset includes images
taken at a different time, thus some images are not tem-
porally aligned, which increases the difficulty of image
translation. They carefully selected training data pairs
and manually verified them, discarding some that were
not aligned. Moreover, since variability in the sensors,
the resolutions vary widely for each image. For training,
they uniformly resize each image to 1024x1024 to main-
tain consistency with the inference stage.

» Training Strategies: They use a linearly decaying learn-
ing rate. The images are normalized from [-1, 1]. They
train their models with vanilla L1-Norm loss, Binary
Cross Entropy (BCE) classification loss, and Learned Per-
ceptual Image Patch Similarity (LPIPS) loss. The addi-
tion of LPIPS improves the performance.

Additionally, they have observed that for the RGB-to-
IR translation task, simply transforming RGB images to
grayscale using OpenCV yields superior outcomes com-
pared to training neural networks. This could be attributed
to the limited availability of training data for the RGB-to-IR
translation task.

6. Conclusion

The 2024 MAVIC-T challenge presents the enhanced
image-to-image MAGIC dataset, a comprehensive explo-
ration of multi-modal image translation methodologies.
This year’s advancements in the challenge underscore the
field’s progress and open avenues for deeper analysis, pre-
senting promising opportunities for future enhancements
and functionalities.
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Figure 8. Comparison of the four translation task for the top three teams. The input and ground truth are given as well as the generated
outputs for each of the to three teams.
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