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Abstract

Semantic segmentation is the task of assigning a seman-
tic class to each pixel in an image. Due to the high anno-
tation efforts for fully supervised learning of Deep Neural
Networks (DNNs) for this task, only rather few comprehen-
sive public datasets exist. This is particularly the case for
thermal infrared imagery. To overcome this lack of train-
ing data, we propose to utilize conditional image synthesis
in the thermal infrared spectrum. Existing semantic seg-
mentation maps are used to condition the image generation
process using pretrained text-to-image diffusion models.
Therefore, we use the recently published ControlNet and
retrain it to synthesize thermal infrared images for given
semantic maps. In this way, we can generate large numbers
of synthetic images that we can directly use together with
the related segmentation map to train reference semantic
segmentation approaches in the thermal infrared spectrum.
Our experiments demonstrate that we achieve near state-
of-the-art performance with pure synthetic training data on
the recently published Full-time Multi-modality Benchmark
(FMB) dataset and that our trained model shows better
generalization ability across datasets. We provide code at
https://github.com/HensoldtOptronicsCV/
TIRControlNet.

1. Introduction

Semantic segmentation is a subtopic of image segmenta-
tion [32]. The task is to assign a semantic class to each pixel
in an image. Semantic segmentation is used in several ap-
plication areas such as automotive [9], remote sensing [63],
and medical imaging [40]. In this paper, we focus on au-
tomotive applications. While modern deep learning-based
approaches provide convincing results, they still require a
large amount of training data. This is specifically the case
for fully supervised learning schemes, where each pixel in
an image has to be annotated [37]. As a result, only rather
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Figure 1. Motivation: in contrast to cGANs for conditional im-
age synthesis via segmentation maps and for VIS-to-TIR image
translation, our re-trained segmentation map-guided TIR Control-
Net provides more realistic synthetic TIR imagery.

few comprehensive public datasets exist that provide dense
labels for semantic segmentation [9, 33, 43, 62]. How-
ever, each of those datasets contains just a few thousand
annotated images, which is by far less compared to public
datasets annotated for tasks such as object detection [28]
or image classification [42]. That is why recent research
aims to reduce the annotation complexity for image seg-
mentation [1, 7, 12, 23]. Procedurally generated synthetic
data [38, 41, 58] that comes with precise annotation for free
can be an alternative to real data but there is still a domain
gap regarding scene and object appearance [36].

All approaches mentioned so far only concern the
Visual-optical (VIS) spectrum. Semantic segmentation,
however, is a task highly relevant for the Thermal Infrared
(TIR) spectrum as well [52]. Since computer vision in the
TIR spectrum is a niche topic in general, only very few
literature exists on semantic segmentation approaches and
public datasets [22]. To tackle this issue and to avoid any

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3131



manual proceducal generation of synthetic TIR imagery [4],
we utilize methods for conditional image synthesis in this
paper. Diffusion models more and more replace Genera-
tive Adversarial Networks (GANs) in image synthesis [10].
With the recently published ControlNet [69], we can con-
dition diffusion model-based image synthesis. ControlNet
can be transfer-learned to the long-wave TIR spectrum with
the recently released Full-time Multi-modality Benchmark
(FMB) dataset [29] that contains 1,500 densely annotated
TIR training images. Figure 1 shows the high potential
of our re-trained TIR ControlNet compared to conditional
GANs (cGANs). Thus, the core idea is to use existing se-
mantic maps taken from the FMB dataset as condition to
synthesize more than 120,000 different TIR images. These
images are then used to train a reference semantic segmen-
tation approach to analyze if we can narrow the synthetic-
to-real gap [36] for semantic segmentation in the TIR spec-
trum. Our contributions can be summarized as follows:
1. We propose a method to synthesize a potentially unlim-

ited amount of TIR imagery based on ControlNet [69]
guided by segmentation maps and utilizing the FMB
dataset [29].

2. We train a Transformer-based reference algorithm [61]
for semantic segmentation on this synthesized data.

3. In extensive experiments, we show that the proposed
approach is able to achieve near state-of-the-art perfor-
mance in TIR semantic image segmentation compared
to a model trained on the real FMB dataset and that our
trained model provides a better generalization ability.
The remainder of this paper is organized as follows: re-

lated work is presented in Section 2. Our proposed method
for the conditional synthesis of TIR imagery and its appli-
cation to semantic segmentation is presented in Section 3.
Experimental results are described in Section 4. We con-
clude in Section 5.

2. Related Work
Semantic segmentation: Image segmentation [32] and se-
mantic segmentation [15, 25] are among the most popu-
lar topics in computer vision. In the VIS spectrum, the
task developed from traditional machine learning-based ap-
proaches [44] to deep learning-based methods utilizing
Convolutional Neural Networks (CNNs) [5, 40, 55] and Vi-
sion Transformers [11, 48, 61]. Semantic segmentation in
the TIR spectrum is by far less researched [22, 52]. Su-
pervised learning techniques for this task generally suf-
fer from rather small datasets that in some cases are not
publicly available as well as incomplete or sparse anno-
tations [14, 19, 24, 27, 46]. Most of the aforementioned
datasets provide aligned multi-spectral imagery in the VIS
and the TIR spectrum to explore semantic segmentation
via spectral fusion, which is promising due to the com-
plementary characteristic of the VIS and the TIR spec-

trum [22, 52, 54]. In this paper, however, we focus on the
TIR spectrum only. The few existing literature on pure TIR
semantic segmentation is built up on approaches adopted
from the VIS spectrum though [22, 35, 65]. Vision Trans-
formers are outperforming CNNs in semantic segmentation
and thus they are currently replacing them [53]. Hence, in
this paper we will consider reference approaches in the VIS
spectrum for semantic segmentation based on Vision Trans-
formers [61] just like previous literature [22, 29].
Image synthesis: Synthesizing photo-realistic images
based on meta-information such as text prompts, semantic
maps, depth, etc. is a popular task in computer vision nowa-
days often referred to as guided or conditional image syn-
thesis [13, 66, 67]. In recent years, deep learning-based ap-
proaches for photo-realistic image synthesis evolved from
Variational Autoencoders (VAEs) [17] to Generative Ad-
versarial Networks (GANs) [18, 49] and most lately to dif-
fusion models [10]. While conditional GANs used to be
the state-of-the-art in image synthesis for many years [18,
30, 45, 49, 56], they are now more and more replaced
by guided diffusion models [10, 47, 57, 69]. One rea-
son is that diffusion models, particularly latent diffusion
models, are much easier to be trained and utilized com-
pared to GANs [39]. Thermal infrared image synthesis is
a niche topic that is often limited to certain tasks and do-
mains [8, 21, 31, 68]. Within this niche, image-to-image
translation (also known as style transfer) is the most popu-
lar image synthesis method generating corresponding syn-
thetic TIR images for given VIS images [20, 26, 34, 68]. It
is usually intended to overcome the lack of training data for
deep learning-based approaches in the TIR spectrum. Con-
ditional GANs are typically used for this synthesis. To the
best of our knowledge, no literature exists today on utiliz-
ing diffusion models for TIR image synthesis guided by se-
mantic maps. However, latent diffusion models are known
to synthesize image not with highest precision and textur-
ization [39]. The question remains as to how important this
is for TIR images, which are inherently less textured than
VIS images [52].

3. Methodology
The methodology is visualized in Fig. 2. For the condi-
tional synthesis of TIR images via segmentation maps, we
utilize ControlNet [69] together with its Stable Diffusion
backbone. Since ControlNet in its pre-trained version is not
able to synthesize TIR images, we perform a re-training us-
ing the FMB dataset [29] in Stage 1. After this re-training,
we can use different seeds to synthesize TIR images with
strongly different appearances even for the same segmenta-
tion map. This enables us to generate a synthetic training
dataset for semantic segmentation that is about ten times
larger than the reference dataset FMB. With this large syn-
thetic training dataset, we train a reference approach for se-
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Figure 2. Overview of the methodology. Stage 1: we re-train ControlNet [69] to synthesize TIR imagery by using the real TIR dataset
FMB [29] together with its densely annotated segmentation maps. Stage 2: during inference of the re-trained ControlNet, we synthesize
TIR images using the real segmentation maps from FMB and random seeds to vary the appearance of the synthetic TIR imagery. In this
way, we can generate many differently looking TIR images for the same segmentation map. Stage 3: with this large synthetic TIR dataset
and the real segmentation maps, we train a reference approach for semantic segmentation called SegFormer [61] aiming to outperform an
oracle, which is SegFormer trained on the real TIR images of the FMB dataset. We always use the same text prompt: ’urban automotive
scene containing vegetation, vehicles, road, buildings, and persons’.

mantic segmentation [61] aiming to bridge the synthetic-to-
real (syn2real) gap. This means that we perform similarly
on the FMB test dataset with the reference approach trained
on pure synthetic data compared to an oracle, which is the
same reference approach trained on the real training data of
the FMB dataset. In the remainder of this section, we de-
scribe the re-training of ControlNet for TIR image synthesis
and the training of the reference approach for semantic seg-
mentation in more detail.

3.1. Conditional Thermal Image Synthesis

Diffusion Models progressively denoise a normally dis-
tributed random variable to learn a data distribution that
reverts the process of a fixed Markov chain [39]. In this
way, they can generate photo-realistic images from random
noise [16]. ControlNet [69] aims to gain control over the
diffusion process based on given control signals such as seg-
mentation maps, depth maps, edge maps, or even sketches.
The control signals are injected directly into the diffusion
process during inference, using a trainable copy of its dif-
fusion backbone Stable Diffusion. This connection via so-
called zero convolutions allows the model to ingest condi-
tioning inputs, guiding the sampling process of the diffu-
sion model and enabling the generation of images aligned
with the given conditions. The architecture of ControlNet
preserves the quality and capabilities of the pre-trained Sta-
ble Diffusion model while enabling the learning of diverse
conditional controls at the same time. ControlNet can take
a text prompt to define the search space for image synthe-
sis via text input. However, this text prompt is not manda-
tory [69]. As we expect faster convergence of the train-
ing process, we always prompt the model with a fixed text

prompt that describes our domain of interest: ’urban au-
tomotive scene containing vegetation, vehicles, road, build-
ings, and persons’. We utilize ControlNet without any mod-
ification of its architecture or training algorithm. Our re-
trained version of ControlNet for conditional synthesis of
TIR imagery is called TIR ControlNet.

3.2. Dataset Preparation and ControlNet Training

Since the pre-trained ControlNet is able to synthesize VIS
images but not TIR images, we re-train the model with TIR
imagery aiming to transfer its capabilities to the thermal
infrared spectrum. The authors recommend to use about
50,000 training samples for the re-training of ControlNet.
No publicly available TIR dataset fulfills this requirement
at this time. The Freiburg Thermal dataset [54] is a candi-
date as it comes with about 20,000 training images. How-
ever, several observations made us not use this dataset for
re-training: (1) the 20,000 training images were collected
within just eight acquired videos leading to a limited diver-
sity, (2) the ground truth segmentation maps are automat-
ically generated and thus not fully densely annotated, and
(3) the TIR images are provided with a bit depth of 16 bit,
which raises the need for additional tone mapping [51] thus
reducing the reproducibility of the results. Instead, we uti-
lize the recently published FMB dataset [29]. The dataset
is multi-spectral with aligned VIS and TIR images, but in
this paper, we only use the thermal spectrum. The FMB
just provides 1,500 images, but highly diverse scenes are
shown and it comes with high-quality dense annotations for
semantic segmentation. The data is split into 1,220 images
for training and 280 for testing. The image resolution is
800×600 pixels. Image synthesis via ControlNet, however,
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Dataset Unlabeled Road Sidewalk Building T-Light T-Sign Vegetation Sky Person Car Truck Bus Motorcycle Bicycle Pole Images

FMB train 1.94% 13.45% 1.57% 15.04% 0.10% 0.25% 24.02% 35.86% 0.33% 5.15% 0.37% 0.34% 0.05% 0.00% 1.53% 1,220

FMB test 1.41% 11.33% 1.60% 19.62% 0.18% 0.42% 23.49% 32.53% 0.64% 5.84% 0.38% 0.85% 0.04% 0.00% 1.67% 280

FMB-aug train 1.71% 10.90% 1.24% 16.00% 0.10% 0.27% 23.98% 37.88% 0.33% 5.13% 0.35% 0.32% 0.06% 0.00% 1.73% 12,200

FMB-aug test 0.90% 9.05% 1.05% 20.37% 0.24% 0.60% 21.26% 36.65% 0.79% 5.91% 0.36% 0.97% 0.02% 0.00% 1.83% 280

Table 1. Pixel-wise class distribution of the original FMB dataset and the augmented (FMB-aug) dataset. While for each image of the
FMB train dataset five crops of 512×512 pixels are created to produce the FMB-aug train dataset (needed for re-training of ControlNet),
the FMB-aug test dataset is created by cropping just the image center with a resolution of 512×512 pixels. After augmentation, each image
has a resolution of 512×512 pixels, which is exactly the output resolution of ControlNet. In this way, we avoid any image resizing. By
pre-calculating and fixing the data augmentation, we achieve reproducibility for the experiments on image synthesis in Section 4.

Segmentation Map (Input) Synthetic Image (Seed 1) Synthetic Image (Seed 2) Synthetic Image (Seed 3) Synthetic Image (Seed 4)

Real Image (GT) Synthetic Image (Seed 5) Synthetic Image (Seed 6) Synthetic Image (Seed 7) Synthetic Image (Seed 8)

Figure 3. On the left is the reference segmentation map (input) and the related real image (ground truth). The remaining eight images show
the influence of different seeds during image synthesis using ControlNet [69] re-trained by us with the FMB dataset [29]. The seed is used
to create the random noise that is ’denoised’ during the diffusion process. For all images shown, the diffusion steps value was set to 70.

comes with a fixed output resolution of 512 × 512 pixels.
We avoid to introduce any bias of image resizing by keeping
the image resolution constant throughout our methodology
and experiments. This enables us to perform data augmen-
tation techniques such as cropping and flipping to extend
the amount of training data coming from the FMB dataset.
Cropping is performed by cutting tiles of 512×512 pixels
from the center and each corner of each 800×600 pixels
image. Each crop is flipped as well. In this way, we gen-
erate 12,200 training samples. An overview of the pixel-
wise class distribution of the original and the augmented
FMB (FMB-aug) dataset is shown in Table 1. By pre-
calculating and fixing the data augmentation, we achieve
reproducibility for the experiments on image synthesis in
Section 4. To avoid any bias introduced by the text prompt,
we always use the same prompt as already mentioned in the
previous subsection. During training (see Fig. 2 Stage 1),
we use the FMB dataset’s real segmentation maps as input
and the real TIR images as learning objective. The sudden

convergence [69] occurred somewhere between 60,000 and
120,000 training images.

During inference (see Fig. 2 Stage 2), we can synthesize
as many images as we like by using a segmentation map as
input together with a random seed that initializes the ran-
dom noise for the diffusion process. With the steps param-
eter, we can control the number of denoising steps. Some
example images generated from the same segmentation map
using different random seed values are shown in Fig. 3.
Using the real 12,200 segmentation maps of the FMB-aug
dataset, we generate 122,000 synthetic TIR images for to
train semantic segmentation (see Fig. 2 Stage 3). Although
we do have only 12,200 training samples for the re-training
of ControlNet instead of the recommended 50,000, the di-
versity of the generated TIR images in Fig. 3 indicates that
we do not have a strong dataset bias in our image synthesis.
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3.3. Semantic Segmentation Training

For our experiments on semantic segmentation, we utilize
SegFormer [61] since it is based on a Transformer archi-
tecture and since it was recently used for relevant related
work [22, 29]. SegFormer is a rather simple but effective
approach consisting of a hierarchical Tranformer encoder
generating both high-resolution coarse features and low-
resolution fine features as well as a lightweight decoder
based on Multi-Layer Perceptron (MLP) fusing the multi-
level features. The training itself is inspired by [29]: they
train SegFormer with 15,000 iterations and a batch size of
8 processing 80,000 training images. We train SegFormer
for 10 epochs on the FMB-aug dataset with a batch size of
8 and 12,200 training images per epoch leading to 15,250
iterations. In contrast to other related work [2, 6], in which
synthetic training data is used, we avoid any domain adap-
tation techniques.

4. Experiments and Results
The experiments are set up to analyze three key aspects:
(1) the robustness of TIR image synthesis to relevant hy-
perparameters via ablation studies, (2) the exploration of
the syn2real gap on the reference dataset FMB, and (3) the
generalization ability of the proposed approach when ap-
plied to other datasets for TIR semantic segmentation.
FMB [29] is used as main dataset for the experiments. It
is larger compared to other recently published datasets [19]
and it contains dense labels in comparison to other re-
lated datasets [14]. For all experiments we consider Seg-
Former [61] as reference approach for sematic segmenta-
tion. SegFormer uses a ViT-based architecture as backbone
and it was used in recent related work as reference approach
as well [22]. For the quantitative evaluation, we use the two
most common measure in semantic segmentation: the mean
Intersection-over-Union (mIoU) and the average class accu-
racy known as mean Accuracy (mAcc). Intersection-over-
Union and accuracy are calculated for each class separately,
and then averaged over all classes providing global values
for mAcc and mIoU. Both measures follow the principle the
higher the better.

4.1. Ablation Studies

During TIR image synthesis using ControlNet, we basi-
cally discovered only one relevant and potentially impact-
ful hyperparameter: the steps. This parameter determines
the number of diffusion steps, i.e. the number of denois-
ing steps within the Markov process of Stable Diffusion.
The assumption is that a larger number of denoising steps
leads to a higher level of texturation in the synthesized im-
age. Hence, this parameter is highly relevant for narrowing
the syn2real gap: fine texture information is often consid-
ered as one of the major reasons for the appearance gap be-

tween synthetic and real data [36] and Stable Diffusion is
known to synthesize image not with highest level of textur-
ization [39]. The default parameter for steps in ControlNet
is 50. As we qualitatively discovered that 50 steps seem to
be too small for TIR image synthesis (see Fig. 4), we start
our ablation study with 50 moving on to 70 and 100 steps.
SegFormer as the reference approach for semantic segmen-
tation is left unchanged in its hyperparameters. For each
value of the steps parameter, we generate 10,000 synthetic
images using ControlNet. Then, we train one SegFormer
model for each resulting synthetic training dataset an evalu-
ate it on the FMB test dataset. We train for 10 epochs with a
batch size of 8. The results are shown in Table 2. While the
quantitative evaluation does not provide a clear indication
for the best choice of the steps value, the qualitative eval-
uation show that at least 70 steps is a good value for TIR
image synthesis using our re-trained ControlNet. Hence,
we set the steps parameter to 70 to save some time during
image synthesis since 70 steps take about 3.9 seconds per
image, while 100 steps take about 7 seconds.

Steps mIoU ↑ mAcc ↑

50 47.5 57.2
70 47.2 57.1
100 47.5 57.2

Table 2. Influence of Stable Diffusion and ControlNet’s steps
parameter on the SegFormer performance regarding mIoU and
mAcc. There is no clear tendency.

4.2. Syn2real Gap on the FMB Dataset

To explore the syn2real gap when training the task of se-
mantic segmentation with the synthesized images and the
real images taken from the FMB dataset, we chose the fol-
lowing approach: we train SegFormer on the real FMB-aug
training dataset for 10 epochs as mentioned before in Sec-
tion 3.3. This approach is called oracle and it serves as
baseline for in-domain fully supervised learning. Our ap-
proach is using training images synthesized by TIR Con-
trolNet based on the 12,200 segmentation maps taken from
the FMB-aug dataset. To unleash the potential of diffusion-
based synthetic training data generation, we create 122,000
training images from those 12,200 segmentation maps. Seg-
Former is trained for one epoch on these 122,000 training
images. Interestingly, we did not observe an increasing per-
formance with a larger number of epochs. We assume that
the model may overfit to the rather small number of differ-
ent segmentation maps.

We compare this approach to several state-of-the-art
methods for conditional image synthesis: we generate
12,200 training images from the related FMB-aug segmen-
tation maps using the conditional GAN ASAPNet [45] that
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Semantic Map (Input) Real Image (GT) TIR ControlNet 50 Steps TIR ControlNet 70 Steps TIR ControlNet 100 Steps

Figure 4. Ablation study to showcase the inference step influence on the ’denoising’ process. 70 and 100 denoising steps qualitatively
perform best for conditional TIR image synthesis with our re-trained TIR ControlNet.

we re-trained on the FMB dataset. Furthermore, we gen-
erate 12,200 training images from the VIS images of the
multi-spectral FMB dataset using the most recent VIS-to-
IR image translation approach RGB2TIR [26]. This method
was trained on other datasets [50, 64] but we were not able
to re-train it on the FMB dataset as the related GitHub
repository does not provide code for that. Since we are lim-
ited by the number of segmentation maps and the number
of real VIS images taken from the FMB dataset, we cannot
generate more than 12,200 training images by using the re-
lated work mentioned before [26, 45]. SegFormer is trained
on these training datasets similarly like on the real FMB-aug
dataset for 10 epochs. The test set consists of 280 images.
The image resolution is 800×600 pixels, so we crop a tile
of size 512×512 pixels at the image center to avoid any im-
age resizing. The results of the quantitative evaluation are
shown in Table 3 with a detailed analysis of the individual
classes in Table 4.

SegFormer [61] Data Type mIoU ↑ mAcc ↑Training Dataset

FMB-aug (Oracle) Real 51.0 61.5

RGB2TIR Translation [26] Synthetic 34.7 43.9
ASAPNet [45] Synthetic 43.1 57.6
TIR ControlNet (Ours) Synthetic 47.8 57.8

Table 3. TIR ControlNet as conditional image synthesis method is
able to outperform the conditional GANs RGB2TIR and ASAP-
Net on the task of semantic segmentation using SegFormer. The
relative performance gap compared to the oracle is less than 7 %.

Our oracle is better compared to the SegFormer of the

original paper [29]. However, here we use images with a
different resolution of 512×512 and not all classes are con-
sidered in the quantitative evaluation in the original paper.
Our proposed TIR ControlNet is able to synthesize images
that provide a better training dataset for SegFormer com-
pared to other state-of-the-art conditional image synthesis
methods based on cGANs. The relative performance gap
compared to the oracle is less than 7 %. A qualitative as-
sessment of the image synthesis quality is given in Fig. 5.
Furthermore, a qualitative evaluation of the performance in
semantic segmentation is provided in Fig. 6.

4.3. Generalization Ability

The generalization ability is analyzed using the Freiburg
Thermal dataset [54]. We take the same SegFormer mod-
els as presented in Section 4.2 and apply them to the test
data of the Freiburg Thermal. This test set consists of 64
images with manually annotated ground truth for semantic
segmentation. The image resolution is 1920×650 pixels, so
we crop a tile of size 512×512 pixels at the image center
to avoid any image resizing. Since the TIR images are pro-
vided with a bit depth of 16 bit, we perform tone mapping1

to generate 8 bit images in order to be compliant with the
TIR image data format of the FMB dataset.

The results are shown in Table 5. Our SegFormer model
trained with the synthetic dataset generated by the TIR Con-
trolNet clearly outperforms the other approaches regarding
mIoU and mAcc. We did not fine-tune any approach to the
Freiburg Thermal dataset including the SegFormer trained
on the real FMB-aug dataset. A qualitative evaluation is

1https://github.com/KABIR-VERMA/Tone-Mapping-HDR-Images
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SegFormer [61] Road Sidewalk Building T-Light T-Sign Vegetation Sky Person Car Truck Bus Motorcycle Pole
Training Dataset IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc

FMB-aug 87.8 96.2 28.6 32.3 82.7 90.6 19.5 20.8 68.0 74.3 81.6 90.5 94.7 98.1 72.1 78.3 78.2 93.1 13.9 14.9 36.3 41.2 20.6 31.9 30.6 37.0
RGB2TIR [26] 78.9 91.3 12.1 15.7 67.4 88.4 12.2 12.9 2.3 2.3 57.6 66.1 89.7 96.0 63.5 74.3 67.6 85.4 2.8 3.8 12.5 12.9 4.3 5.5 14.3 15.5
ASAPNet [45] 83.7 92.2 30.1 46.8 73.0 80.6 18.3 20.1 58.8 72.3 73.2 88.1 89.2 93.8 59.5 65.0 75.0 89.3 1.7 2.9 56.6 70.0 10.6 54.4 25.5 36.5

ControlNet (Ours) 87.2 94.7 24.1 27.7 80.5 89.2 13.1 13.4 67.8 71.4 80.0 91.0 93.3 98.0 64.7 66.7 81.0 89.3 10.0 21.2 15.3 17.7 28.1 43.3 24.2 27.4

Table 4. Detailed quantitative evaluation for the individual classes of the FMB dataset. The mIoU and mAcc values can be found in Table 3.

Segmentation Map (Input) Real Image (GT) TIR ControlNet (Ours) ASAPNet [45] RGB2TIR Translation [26]

Figure 5. Qualitative assessment showcasing the image synthesis quality of the approaches used in this work. We compare our proposed re-
trained TIR ControlNet with two conditional GANs: ASAPNet [45] for conditional image synthesis using segmentation maps as guidance
and RGB2TIR translation network [26]. The segmentation maps together with the related real images are taken from the FMB dataset.

provided in Fig. 7, which visually confirms the quantitative
results reported in Table 5.

5. Conclusion
Leveraging most recent research findings [29, 69], we
used Stable Diffusion and ControlNet together with the
FMB dataset to train a method that performs realistic
conditional TIR image synthesis. Semantic maps provide

the guidance for the image generation process. In this
way, we were able to generate large amounts of synthetic
training data for semantic image segmentation. With this
data, we trained a reference approach called SegFormer.
This approach trained on purely synthetic data achieved
near state-of-the-art performance compared to SegFormer
trained on the real FMB training dataset. Furthermore, it
outperformed other conditional image synthesis approaches
such as a cGAN guided by semantic maps and a cGAN
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TIR Image Ground Truth SegFormer (FMB-aug) SegFormer (Ours) SegFormer (ASAPNet) SegFormer (RGB2TIR)

Figure 6. Qualitative evaluation for semantic segmentation on the FMB dataset. We compare the SegFormer network [61] trained on real
data (FMB-aug) also called oracle with SegFormer trained on different synthetically generated training datasets. Our proposed SegFomer
trained with data synthesized by TIR ControlNet called SegFormer (Ours) provides the best synthetic training data for SegFormer as it
produces the most precise segmentation maps deviating only slightly from the Ground Truth and the oracle.

TIR Image Ground Truth SegFormer (FMB-aug) SegFormer (Ours) SegFormer (ASAPNet) SegFormer (RGB2TIR)

Figure 7. Qualitative evaluation of the generalization ability for semantic segmentation on the Freiburg Thermal test dataset. We compare
the SegFormer network [61] trained on real data (FMB-aug, not Freiburg Thermal) with SegFormer trained on different synthetically
generated training datasets. Our proposed SegFomer trained with data synthesized by TIR ControlNet called SegFormer (Ours) provides
the best synthetic training data for SegFormer as it produces the most precise segmentation maps compared to the Ground Truth.

SegFormer [61] Data Type mIoU ↑ mAcc ↑Training Dataset

FMB-aug Real 42.4 57.4
RGB2TIR Translation [26] Synthetic 29.5 44.2
ASAPNet [45] Synthetic 36.9 55.4
TIR ControlNet (Ours) Synthetic 49.5 59.2

Table 5. Analysis of the model’s generalization ability using the
Freiburg Thermal dataset. Our proposed TIR ControlNet as condi-
tional image synthesis method clearly outperforms all other meth-
ods on the task of semantic segmentation using SegFormer.

for VIS-to-TIR image translation. Our methods also
shows better generalization ability when applied to the
Freiburg Thermal dataset. Future work should consider
to synthesize TIR videos via temporal consistency [3].
And as an alternative to ControlNet, recent approaches
synthesize ground truth together with the generated im-
age, which can be another option for future work [59, 60].
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