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Abstract

Thermal imaging, leveraging the infrared spectrum, of-
fers a compelling alternative to visible spectrum (VIS) im-
agery in challenging environmental conditions like low-
light, occlusions, and adverse weather. However, its
widespread adoption in computer vision tasks is hampered
by lower spatial resolution. We address this challenge by
proposing a novel framework titled Multi-Scale Feature Fu-
sion using Channel Transformers (MSFFCT) for Guided
Thermal Image Super-Resolution (GTISR).

GTISR tackles the resolution limitations of thermal im-
agery. It leverages high-resolution RGB information as
a guide to reconstruct high-resolution thermal imagery
from low-resolution thermal inputs. At the core of MSF-
FCT lies a novel deep learning architecture that combines
the strengths of two powerful approaches: channel-based
transformers and multi-scale fusion.

MSFFCT overcomes inherent limitations of Convolu-
tional Neural Networks (CNNs) typically used in super-
resolution tasks. CNNs often suffer from restricted recep-
tive fields, limiting their ability to capture long-range de-
pendencies within the image. Additionally, computational
cost grows significantly with larger inputs. MSFFCT ad-
dresses these shortcomings by enabling efficient process-
ing of global information and offering superior scalabil-
ity. MSFFCT achieved state-of-the-art results on the x8
and x 16 GTISR tasks of the 2024 Perception Beyond Visual
Spectrum (PBVS) challenge, winning 2" place in both tasks
and demonstrating its effectiveness in real-world scenarios.

1. Introduction

Computer vision has become an indispensable technol-
ogy across diverse applications, from self-driving cars and
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robotics to medical imaging and security systems. At the
forefront of this revolution lie RGB cameras, capturing rich
visual information in the visible spectrum. However, their
reliance on illumination conditions presents a fundamen-
tal limitation. Low-light scenarios can dramatically reduce
image clarity, while occlusions (objects blocking the view)
and adverse weather (rain, fog) further hinder accurate im-
age analysis. For instance, blurry details in low-light and
weather conditions images can lead to misidentification of
objects in autonomous vehicles [33],

To overcome these limitations and expand the reach
of computer vision, researchers have explored alternative
imaging modalities. While active sensors like near-infrared
or depth cameras address some limitations, passive sensors
offer distinct advantages. Thermal infrared imaging stands
out as a versatile modality, capturing mid-to-longwave ra-
diation emitted as heat from all objects [14]. This unique
characteristic allows thermal cameras to ”see” in complete
darkness, penetrate obscurants like smoke or fog, and de-
tect inherent thermal signatures that are invisible to RGB
cameras. Even state-of-the-art computer vision algorithms
struggle with object recognition in unconstrained environ-
ments with weather variations, shadows, and background
clutter. In contrast, thermal sensors leverage robust thermal
cues to facilitate accurate perception under these challeng-
ing real-world conditions.

The advantages of thermal imaging have fostered its
growing adoption in diverse real-world applications, includ-
ing agriculture [20], autonomous driving [11, 30], medical
imaging [18, 40] , military applications [16], pedestrian de-
tection [25], and surveillance systems [21]. However, de-
spite these advantages, a key challenge remains: the res-
olution of thermal sensors is typically lower than that of
RGB cameras. This limitation can hinder the ability to dis-
cern fine details crucial for accurate image interpretation.
While higher resolution thermal sensors are available, their
cost ranges anywhere between $200 to $20,000 [34] which
significantly limits widespread adoption. Super-resolution
(SR) emerges as a promising computer vision technique that
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addresses the challenge of limited resolution in thermal im-
ages.

SR aims to enhance the spatial resolution of an image,
essentially creating a high-resolution version from a lower-
resolution input. The recent surge in deep learning has made
CNNs the cornerstone of many SR approaches. Dong et
al. [12] pioneered the use of CNNs for SR, paving the
way for a multitude of successful CNN-based SR methods
[26, 28, 48, 49]. Following this success, researchers have
begun to explore CNN-based SR specifically for thermal
images [8, 9, 31, 32, 37, 38, 42]. However, CNNs have
inherent limitations, particularly a restricted receptive field
that hinders their ability to capture long-range dependencies
within the image. Additionally, computational complexity
increases significantly with larger input sizes.

In GTISR, a high-resolution RGB image acts as a guide
for a low-resolution thermal image. By incorporating the
rich details from the RGB image, GTISR can learn the
fine textures and edges crucial for reconstructing a high-
resolution thermal image. While recent CNN-based ap-
proaches have explored GTISR [19, 50, 52], CNN limita-
tions motivate our exploration of transformers. These pow-
erful deep learning architectures have achieved state-of-the-
art performance in natural language processing (NLP) tasks
and are increasingly being adapted for image restoration
[44, 46] and super-resolution [27] tasks . Notably, trans-
formers overcome the limitations of CNNs by offering a
wider receptive field and improved computational efficiency
for handling large input sizes.

Our efficient channel-based transformer, inspired by
MST++ [3], employs a channel-wise self-attention to learn
the interdependencies between features within the image
channels. Our novel MSFFCT framework achieved state-
of-the-art results on the x8 and x16 GTISR tasks of the
2024 Perception Beyond Visual Spectrum (PBVS) chal-
lenge [1], winning 2™ place in both tasks and demonstrating
its effectiveness in real-world scenarios.

2. Related Work

Deep learning techniques have revolutionized image
restoration and SR, enabling the creation of high-resolution
images from their lower-resolution counterparts. This sec-
tion delves into relevant research areas that inform our work
on GTISR. We begin by reviewing advancements in visible
image SR and restoration techniques, which have laid the
groundwork for applying deep learning to image enhance-
ment tasks. Next, we focus on thermal image SR, exploring
how researchers have addressed the inherent challenge of
lower resolution in thermal sensors compared to their visi-
ble counterparts. Finally, we examine existing GTISR ap-
proaches, along with their limitations.

2.1. Visible Image Super Resolution and Restora-
tion

The emergence of deep learning, particularly CNNs, revo-
lutionized image restoration and SR. The pioneering Super-
Resolution Convolutional Neural Network (SRCNN) by
Dong et al. [12] demonstrated the remarkable capabil-
ity of CNNs to learn the complex mapping between Low-
Resolution (LR) and High-Resolution (HR) images, signifi-
cantly surpassing traditional methods. Subsequent research
focused on improving CNN architectures for SR, exploring
strategies like increasing network depth (VDSR [26]) and
incorporating residual connections (EDSR [28]). These ad-
vancements significantly enhanced SR performance. How-
ever, CNNs have inherent limitations, such as restricted re-
ceptive fields, which can hinder their ability to capture long-
range dependencies within images.

Fueled by their success in NLP, transformers have made
significant inroads into computer vision. Vision Trans-
former (ViT) by Dosovitskiy et al. [13] pioneered their
effectiveness for image classification. Subsequently, trans-
formers were adapted for various image restoration tasks,
including denoising, deblurring, and super-resolution. For
instance, Image Processing Transformer (IPT) by Chen et
al. [4] employed a ViT-based approach, while U-Former
by Wang et al. [44] and Restormer by Zamir et al. [46]
utilized different self-attention mechanisms (window-based
and channel-based, respectively). Notably, SwinlR by
Liang et al. [27] leveraged the Swin Transformer architec-
ture [29] with a shifted-window attention mechanism for
image super-resolution.

2.2. Thermal Image Super Resolution

The success of deep learning models for SR has motivated
researchers to explore their application in thermal image en-
hancement. Inspired by the pioneering SRCNN model [12],
Choi et al. [7] proposed the Thermal Image Enhancement
(TEN) network for thermal image SR. However, due to the
limited availability of large-scale thermal image datasets,
they resorted to using RGB images for training. Rivadene-
ria et al. [34] proposed a thermal SR network utilizing
deep convolution layers with residual and dense connec-
tions. Rivadeneria et al. [35] also explored a CycleGAN-
based model for thermal SR. Chudasama et al. [9] presented
TherISURNet, a residual block-based progressive upscale
strategy that emerged as the winner of the evaluation 1 of
2020 PBVS CVPR challenge [36].

Priya et al. [22] introduced a multi-level architecture
with residual blocks for thermal SR, incorporating multi-
level supervision with feature concatenation and an atten-
tion block inspired by [45]. This work emphasizes the im-
portance of attention mechanisms for focusing on relevant
features during reconstruction. Building upon Priya et al.’s
[22] work, Nathan et al. [31] presented a multi-scale, multi-
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supervision architecture, utilizing a Res2Net [15] backbone
instead of residual blocks for improved performance. Pra-
japati et al. [32] proposed ChasNet, featuring a channel
splitting block with residual blocks and convolution layers
with dense connections, aiming to preserve high-frequency
details crucial for thermal image fidelity.

2.3. Guided Thermal Image Super Resolution

Despite advancements in thermal image SR, GTISR poses
a new set of challenges. Early works in GTISR leveraged
Generative Adversarial Networks (GANs) to guide the SR
process. Almasri et al. [2] proposed a GAN-based model
where features extracted from RGB images guided the ther-
mal image super-resolution. Addressing the misalignment
challenge, Gupta et al.[17] introduced an unaligned guided
thermal SR method. Their approach utilizes two models:
one to reduce misalignment in the feature space and another
to estimate a misalignment map between the input thermal
image and the guiding image. This work highlights the im-
portance of handling misalignment for effective GTISR.

The winning solution for the GTISR task of the 2023
PBVS challenge [39] concatenates features from the RGB
image and the low-resolution thermal image after a shal-
low feature extraction stage. These concatenated features
are then processed through multiple NAF Blocks [5], which
form the core of the network. Kasliwal et al.[23] proposed
an encoder-decoder architecture for GTISR. Their work en-
codes both the low-resolution thermal image and the high-
resolution RGB image, then combines the encoded features
using a max operation before feeding them into the decoder
to learn the high-resolution thermal image. Additionally,
they introduced a contrastive loss function that acts as a
regularizer. Suarez et al. [41] proposed a novel approach
that involves creating a synthetic thermal image using a Cy-
cleGAN architecture [53]. This synthetic thermal image is
then used as guidance for the low-resolution thermal image
SR process. This work explored the potential of genera-
tive models for creating informative guidance suitable for
GTISR tasks.

3. Proposed Method
3.1. Network Architecture

The MSFFCT architecture shown in Figure 1 receives
two input images: a high-resolution RGB image I,.4, €
RIXWx3 and a low-resolution thermal image I, €
RR>*wx1 " The resolution of the high-resolution RGB im-
age I,.q; is either a factor of X8 or x 16 larger than that of
the low-resolution thermal image I;,-+;,. To address the reso-
lution disparity, MSFFCT commences by applying bicubic
upsampling to the low-resolution thermal image I;,.4;,. This
creates an upsampled thermal image I,,¢, with the same
resolution as the high-resolution RGB image I,4,. The

high-resolution RGB image I,.¢; and the upsampled ther-
mal image I, are then concatenated. The concatenated
image is notated as ...

Lyt = bicubic(Iipgp)  Iear = concat(Irgp, Lypin) (1)

The concatenated images [.,; are downsampled using
x2 and x4 pixel unshuffling. Downsampling reduces
computational complexity while simultaneously capturing
multi-scale features within the data. The x2 downsam-
pled image is notated as I»4, and the x4 downsampled im-
age is notated as Iyq4,. The shapes of Isg, and I44, are
Isgn € RH/QXW/2><16 and Ly, € RH/4><W/4><64’ respec-
tively.

The downsampled images I, and I44, are fed into the
core network, which was inspired by TSFNet [24]. The core
network comprises three key components: a shallow feature
extractor, a fusion block with a channel-wise transformer,
and a reconstruction block.

3.1.1 Shallow Feature Extractor

Multi-scale features are extracted from I54, and I44, using
a two-stream architecture. I54, is inputted into one stream
and [y, is inputted into a second steam. In parallel, each
stream employs a sequence of two deformable convolutions
[10] with a kernel size of 3 x 3. An activation layer utilizing
the Parametric ReLU (PReLU) function is used in between
the deformable convolutions. Together, these two parallel
processes are referred to as a shallow feature extractor.

Fop = Hpca(Ioan) and  Fup = Hpoa(lsan)  (2)

Hpces and Hpey represent the parallel processes within
the shallow feature extractor for /54, and Io4,, respectively.
F, € RH/2><W/2><C0M and Fy, € RH/4><W/4><C0M rep-
resent the X2 and x4 downsampled features from the de-
formable convolution. ¢,,,; represents the feature channels
of the deformable convolution.

Deformable convolutions are specifically chosen in the
shallow feature extractor due to their ability to handle po-
tential misalignments between the concatenated RGB and
thermal features, which can arise from sensor discrepancies
or variations in object pose.

3.1.2 Fusion Block

The next key component of our proposed network architec-
ture is a series of N fusion blocks. Each fusion block com-
prises three key components: two parallel residual blocks,
one transposed convolution, and one channel-wise trans-
former.
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Figure 1. The MSFFCT Architecture

The inputs to the first fusion block are the outputs Fb,,
and Fy, from the shallow feature extractor. F5, and Fj,
are inputted into two parallel residual blocks.

Each residual block has an efficient channel attention in-
spired by [43]. This approach assigns importance to dif-
ferent feature channels through a global weighting scheme,
allowing the model to focus on informative features crucial
for reconstruction. The effectiveness of channel attention
for transformer models in achieving superior visual repre-
sentations has been demonstrated by Chen et al. [6]. By
leveraging this strategy within our residual blocks, we aim
to enhance the feature extraction capabilities of MSFFCT.

FQw = HResQ(FZx) and F4x = HRes4(I4x) (3)

Hpeso and Hp,sq represent the residual blocks with en-
hanced channel attention. The x4 downsampled feature
Fy, is now upsampled with a transposed convolution to
match the spatial resolution of F5, .

F4zup = Htconv (F4w) (4)

Hicony represents the transposed convolution.  Fjyg,
now has the same spatial resolution as F5,.

Fy: = concat(Fay, Fu) (5)

The Fjy;4p, and Fy, features are concatenated with each
other and passed to the channel transformer.

3.1.3 Channel Transformer

The proposed channel transformer draws inspiration from
the channel-wise multi-head self-attention concept intro-
duced in [3]. In the realm of transformer-based models,
the computation of self-attention is typically performed on
tokens. Notably, models such as Vision Transformer (ViT)
[13] employ global attention, where each pixel in the feature
map is treated as a token. For a feature map F' € RFTXWxC

the time complexity of global self-attention is O( H2W?2C).
In contrast, other transformer-based architectures, includ-
ing UFormer [44] and SwinlIR [27], adopt window-based
or shifted-window-based self-attention approaches for to-
ken generation. Rather than treating each pixel as a token,
these models partition the feature map into non-overlapping
M x M windows, where each pixel within a window is
considered a token. This strategy reduces the time com-
plexity from O(H?*W?2C) to O(M2HWC'). In our work,
we deviate from these approaches by treating each chan-
nel in the feature map as a token. This entails computing
self-attention at the channel level, circumventing the com-
plexity associated with spatial dimensions. This approach
demonstrates computational efficiency, as it focuses on fea-
ture channels rather than spatial dimensions, reducing the
time complexity of global self-attention from O(H2?W?2C)
to O(HW (C?). Contingent upon the window size and the
number of channels in the feature map, window-based self-
attention can achieve efficiency comparable to, or better
than, channel-based self-attention. However, the receptive
field size in window-based self-attention is constrained by
the window size, whereas in channel-based self-attention,
the receptive field size encompasses the entire spatial di-
mension.

The input for our channel transformer will be from the
2x downsampled branch of the multi-scale network. The
input to our channel transformer is Fy, € RH/2xW/2x2C
where C represents the feature channels of the 2x branch.
First, we flatten Fh, € RH/2XW/2x2C jpg X €
RHW/4x2C — Next, we project X into three fully con-
nected layers to get Query (Q, Key K, and Value V with
Q, K, Ve RHW/4><C.

Q=XWqo, K=XWgk,V=XWy 6)

Wq, Wk, and Wy, represent the weights of the fully
connected layer and are learnable. The key K is transposed
into KT and multiplied with Query () to obtain the attention
matrix A. Attention matrix A € RE*¢,
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Figure 2. Channel Transformer

A =softmaz(oc+« KT % Q) (7

o is a learnable parameter, which learns how much
weight to give to each feature channel in the attention map.
The self-attention is calculated by the following:

SA=VxA ®)

To calculate multi-head self-attention, each channel is di-
vided into k heads and then k self-attention maps are learned
in parallel. The self-attention maps are then linearly pro-
jected via fully connected layers and then a positional em-
bedding is added as a residue.

Xout = W % (SA) + PE(V) 9)

W represents the weight of the fully connected layer and
PFE represents the positional embedding. The positional
embedding has two 3 x 3 depthwise convolution layers with
a GELU activation function in between them. The final fea-
ture map will have the dimensions X,,,; € R/2xW/2xC

The output from the channel transformer, and the output
from the residual block with input F},, are the inputs into
the subsequent N - 1 fusion blocks. In the final N fusion
block, the output from the channel transformer is concate-
nated with F5,. The output from that concatenation will

be the input in the next key component, the reconstruction
block.

Xout,i = Hfusion,i<Xout,i71); 1= 27 ceey N (10)
Xout,N = Xout,N + F2:E (11)

where H fysi0n,; 15 the it" fusion block and Xout,i—1 1s the
output from (i — 1)*" fusion block.

3.1.4 Reconstruction Block

The output X, v is passed through a convolution and then
upsampled x 2 using pixel shuffling. There is a residue from
the original bicubic upsampled image to the pixel shuffled
upsampled image to learn the reconstructed high resolution
thermal image I,p,, ¢

I’r’hrth = HRec(Xout) + Iupth (12)

Hp,. represents the convolution layer and the 2x pixel
shuffle operation. I, represents the bicubic upsampled
thermal image.

3.2. Loss Function

The 2024 PBVS competition [1] ranked submissions based
on the PSNR and SSIM metrics. To optimize those metrics,
we used a combination of L; loss, SSIM loss, and percep-
tual loss.

3.21 L;Loss

L, loss measures the absolute difference between the
ground truth image and the predicted image. In GTISR,
the ground truth image is the given high-resolution thermal
image I+, and the predicted image is the reconstructed
high-resolution thermal image I,j+,. L1 loss is defined by
the following equation:

1 n
Li=— > Lenrtn, = Inetn, (13)

i=1

3.2.2 SSIM Loss

Structural Similarity Index Measure (SSIM) calculates the
similarity between two images and assigns a value between
-1 and 1. A value of 1 indicates that the two images are exact
matches, a value of 0 indicates no similarity, and value of
-1 indicates the two images are exact inverses. The SSIM
loss is calculated for a given high-resolution thermal im-
age Ip,+p and reconstructed high-resolution thermal image
Lprtn. The SSIM loss is defined by the following equation:

Lssinvg =1 —SSIM(Irpan,, Inren;) (14)

3.2.3 Perceptual Loss

Perceptual loss measures the visual similarity between two
images and is primarily used in GAN-based models. We
calculate the mean absolute error between the VGG features
of a given high-resolution thermal image I, and recon-
structed high-resolution thermal image I+, at different
layers. The perceptual loss is defined by the following equa-
tion:
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Method PSNR x8 | SSIM x8 | PSNR x16 | SSIM x16 | Params (M) | GMacs
Bicubic 25.17 0.8494 22.04 0.7901 - -
Restromer [46] 28.72 0.8753 25.39 0.8059 15.08 83.94
AHMF [51] 28.38 0.8676 24.72 0.7790 3.36 11.75
NafNet [39] 29.16 0.8832 25.50 0.8069 116.35 86.51
MSFFCT 29.42 0.8879 25.90 0.8188 12.17 154.59

Table 1. Comparison with Different Models on PBVS 24 [1] GTISR Dataset

N
1
Eperceptual - N Zl H(Dz (Ihrth) - Qz (Irhrth)H2 (15)

®,(.) represents the VGG feature map at layer i for given
image.

Our final loss function is a weighted average of L; loss,
SSIM loss, and perceptual loss:

Lfinal =k Ll + ﬂ * LSSU\I + v * Lpe'r‘ceptual (16)

4. Experiments and Results
4.1. Dataset

We evaluated the performance of MSFFCT on the PBVS 24
GTISR dataset [1]. The dataset includes x8 and x 16 down-
scaled low-resolution thermal images with paired high-
resolution RGB images of the same scene, both in daylight
conditions, to be used as a guide for GTISR. This dataset
has 700 images for training, 100 images for validation, and
40 images for testing. Since the ground truth labels are not
released, we report our results on the validation dataset.

4.2. Experimental Setup

During training, we randomly cropped the low-resolution
thermal images to either 32 x 32 (for the x8 GTISR task)
or 16 x 16 (for the x 16 GTISR task). We trained the model
for 100 epochs using a batch size of 8, Adam optimizer with
default parameters, and initial learning rate of le-4. We
gradually decreased the learning rate to le-6 using a cosine
annealing scheduler. We augmented the data with flipping
and mixup [47]. Mixup augmentaton acts as a regularizer
to the network during the training process.

We achieved optimal performance with fusion blocks of
size 48. We used 64 feature channels for both 2x and 4 x
feature branches. The weight for the loss function a was 7,
B was 1, and v was 0.15. We evaluated MSFFCT perfor-
mance using PSNR and SSIM to be in alignment with the
metrics used to rank submissions in the PBVS 24 GTISR
tasks [1].

We implemented MSFFCT in PyTorch and trained it for
over 2 days on 2 NVIDIA RTX A6000 GPUs.

4.3. Quantitative Results on Validation Dataset

We comprehensively evaluated MSFFCT against sev-
eral state-of-the-art approaches, including Restromer [46],
Attention-based Hierarchical Multi-modal Fusion (AHMF)
[51], and the winning PBVS 23 GTISR challenge approach
[39], which was based on NAFNet [5]. Restromer [460] em-
ploys a channel-based self-attention mechanism for image
restoration. AHMF [51] is a state-of-the-art solution for
guided depth super-resolution tasks. It is important to note
that for the Restromer model to be applicable to the GTISR
task, we implemented a pre-processing step involving ther-
mal image upsampling using the corresponding RGB im-
age. The resulting features were then concatenated and fed
as input to the network.

As shown in Table 1, MSFFCT surpasses the PSNR
and SSIM values of several state-of-the-art approaches. It
demonstrates a significant PSNR improvement of 0.26 dB
over the previous year’s winner, NAFNet [39], on the x8
GTISR task. This improvement is even more pronounced
(0.4 dB) for the x16 GTISR task. When compared to Re-
stromer, another channel-wise self-attention model, MSF-
FCT achieves a PSNR gain of 0.70 dB for x8 GTISR
and 0.51 dB for x16 GTISR. It is noteworthy that MSF-
FCT achieves this superior performance with a signifi-
cantly lower number of trainable parameters compared to
NAFNet.

Table 2 shows the effects of the size of the fusion block.
We experimented with fusion block sizes of 16, 24, 32,
and 48. The best performance was achieved with a fusion
block size of 48. A fusion block size of 32 outperforms
the NAFNet-based model [5] on both x&8 and x16 GTISR
task while having a significantly lower number of parame-
ters and slightly more GMac operations. We can also ob-
serve that fusion block sizes of 16 and 24 outperform Re-
stromer [46] with lower numbers of parameters and GMac
operations.

4.4. Quantitative Results on Test Dataset

Table 3 presents the results for GTISR tasks at scaling fac-
tors of x8 and x16. We employed self ensemble learning
during testing, which involved flipping the test images hori-
zontally and vertically and then averaging the predicted im-
ages. This learning strategy increased PSNR by 0.36 dB
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Figure 3. Qualitative Results on PBVS 24 [1] for x8 GTISR Task
Number of Fusion Blocks | PSNR x8 | SSIM x8 | PSNR x16 | SSIM x16 | Params (M) | GMacs
16 28.87 0.8774 25.52 0.806 4.12 51.75
24 29.01 0.8795 25.66 0.8106 6.14 77.46
32 29.20 0.8839 25.70 0.8124 8.15 103.17
48 29.42 0.8879 25.90 0.8188 12.17 154.59

Table 2. Comparison of Fusion Block Sizes on PBVS 24 [1] GTISR Dataset

for the x8 task and 0.25 dB for the x16 task. We further
enhanced performance through model ensemble learning.
This strategy involved taking the weighted average of pre-
dictions from multiple models. The model ensemble learn-
ing included the following models: MSFFCT, MSFFCT
without deformable convolutions, and the winning model
from the PBVS 23 GTISR challenge [39]. This ensem-
ble learning led to increasing PSNR by 0.37 dB for the x8
task. To further improve our results on the testing dataset,
we combined model ensemble and self ensemble learning.
That approach increases the PSNR by 0.49 dB compared to
the proposed method for the x 8 task. On the testing dataset,
the model achieved PSNR values of 30.05 dB and 25.67 dB
on the x8 and x 16 GTISR tasks respectively, which placed
us 2™ for PBVS 24 GTISR task [1].

4.5. Qualitative Results on Validation dataset

Figure 3 illustrates the absolute difference maps between
the predicted thermal images and the ground truth images

for various reconstruction methods on a validation dataset
for the x8 GTISR task. The first column shows the ground
truth thermal image. The remaining columns depict the ab-
solute difference maps for each method compared to the
ground truth. In these difference maps, deeper blue regions
signify better reconstruction fidelity, indicating a smaller
absolute difference between the predicted and ground truth
images.

Based on the qualitative comparison, MSFFCT achieves
superior performance compared to other reconstruc-
tion techniques. Notably, it outperforms NAFNet and
Restormer, which are both models that have channel at-
tention in their architecture. Restromer also has channel-
wise self-attention. This observation suggests that the pro-
posed method establishes more effective feature space cor-
relations, enabling superior reconstruction quality.
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Method PSNR x8 | SSIM x8 | PSNR x16 | SSIM x16
MSFFCT 29.54 0.8869 25.42 0.8092
MSFFCT with Self Ensemble 29.90 0.8929 25.67 0.8167
Model Ensemble 29.91 0.8919 - -
Self Ensemble and Model Ensemble 30.05 0.8947 - -

Table 3. Results on PBVS 24 [1] GTISR x8 and x 16 Test Dataset

5. Conclusion and Future Work
5.1. Conclusion

Thermal imaging, leveraging the infrared spectrum, offers
a compelling alternative to VIS imagery in challenging en-
vironmental conditions like low-light, occlusions, and ad-
verse weather. However, its widespread adoption in com-
puter vision tasks is hampered by lower spatial resolution.
GTISR tackles the resolution limitations of thermal imagery
by leveraging high-resolution RGB information to recon-
struct high-resolution thermal imagery from low-resolution
thermal inputs.

Existing CNN-based SR methods [26, 28, 48, 49] often
suffer from restricted receptive fields, limiting their abil-
ity to capture long-range dependencies within the images.
To address this, we propose MSFFCT. MSFFCT is a novel
GTISR architecture that combines the strengths of multi-
scale fusion and channel-based transformers, inspired by [3]
and [24], respectively. This combination enables effective
capture of rich feature information and long-range depen-
dencies.

MSFFCT achieved state-of-the-art results on the x8 and
x 16 GTISR tasks of the 2024 PBVS challenge [1], winning
2™ place in both tasks and demonstrating its effectiveness
in real-world scenarios. It demonstrates a significant PSNR
improvement of 0.26 dB over the previous year’s winner,
NAFNet [39], on the x8 GTISR task. This improvement is
even more pronounced (0.4 dB) for the x16 GTISR task.
Specifically, MSFFCT achieved a PSNR of 30.05 dB and
SSIM of 0.8947 for the x8 GTISR task test dataset and a
PSNR of 25.67 dB and SSIM of 0.8167 for x16 GTISR
task test dataset. MSFFCT also outperforms other state-of-
the-art benchmarks on the 2024 PBVS challenge dataset [1]
for both x8 and x 16 downscaling factors.

5.2. Future Work

While MSFFCT demonstrates promising results under the
assumption of near perfect alignment between thermal and
RGB images, real-world scenarios often present misalign-
ment challenges. To address this, future work will ex-
plore incorporating loss functions that promote feature-
space alignment, similar to the approach proposed by Gupta
et al. [17]. Additionally, we will investigate the potential of
incorporating a synthetic thermal image generation module

inspired by Suarez et al. [41] within the GTISR pipeline.
This approach has the potential to further enhance the ef-
fectiveness of our framework by providing informative syn-
thetic guidance for scenarios with misaligned inputs.
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