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Abstract

The back-propagation algorithm has long been the de-
facto standard in optimizing weights and biases in neural
networks, particularly in cutting-edge deep-learning mod-
els. Its widespread adoption in fields like natural language
processing, computer vision, and remote sensing has rev-
olutionized automation in various tasks. The popularity of
back-propagation stems from its ability to achieve outstand-
ing performance in tasks such as classification, detection,
and segmentation. Nevertheless, back-propagation is not
without its limitations, encompassing sensitivity to initial
conditions, vanishing gradients, overfitting, and computa-
tional complexity. The recent introduction of a forward-
forward algorithm (FFA), which computes local goodness
functions to optimize network parameters, alleviates the de-
pendence on substantial computational resources and the
constant need for architectural scaling. This study investi-
gates the application of FFA for hyperspectral image classi-
fication. Experimental results and comparative analysis are
provided with the use of the traditional back-propagation
algorithm. Preliminary results show the potential behind
FFA and its promises.

1. Introduction
Deep Learning (DL) [13] has been revolutionizing many
different fields due to its ability to achieve unprecedented
performance when applied to real-world problems, includ-
ing applications in agriculture [9, 16], medicine [3], cyber-
security [15], and many others [1, 2, 11, 17, 23].

Hyperspectral imagery (HSI) contains an extensive ar-
ray of continuous spectral information across numerous nar-
row bands. The inherent high-dimensionality of HSI data
poses substantial obstacles to accurate classification tasks
(i.e. crop or soil classification), owing to intricate spec-
tral variations and a scarcity of labeled samples. Deep
learning models, specifically convolutional neural networks
(CNNs) [12], have exhibited remarkable accomplishments
in numerous computer vision tasks, notably including the

Figure 1. Illustration of the proposed methodology. We aim to
combine the use of forward-forward algorithm (FFA) with tradi-
tional Backprop for HSI classification task. FNN: Feedforward
Neural Network.

classification of hyperspectral images [7, 14]. Neverthe-
less, the conventional backpropagation algorithm, which
is commonly employed for training deep learning models,
may confront certain limitations within this domain, such
as computational or energy cost, and sensitivity to initial
conditions [5, 22].

By propagating errors in a backward manner through the
network, the backpropagation algorithm calculates gradi-
ents that guide the adjustment of the model’s parameters
to minimize the objective function [21]. While backpropa-
gation has proven effective in deep learning applications, it
encounters difficulties when dealing with hyperspectral data
such as limited availability of labeled samples. As a result,
there is a need for alternative training approaches that can
enhance the performance of deep learning models, specifi-
cally in the context of hyperspectral image classification.

In this study, we investigate the performance of the
forward-forward algorithm (FFA) [5] for the task of hy-
perspectral image classification. The FFA explores the re-
lationships among input data samples by feeding forward
both the original data (positive data) and an alternative ver-
sion of this data (negative data), encouraging the model to
learn robust features that capture the underlying character-
istics of the HSI.

Our initial experiments show that solely using the FFA
does not yield better results compared to the backpropa-
gation algorithm. However, considering the advantages of

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3153



both methods, we propose to combine the forward-forward
pass algorithm with traditional backpropagation for hyper-
spectral image classification. The idea is to incorporate
the forward-forward algorithm as an initial learning stage,
allowing the model to learn more discriminative features.
Subsequently, the model is fine-tuned using the backpropa-
gation algorithm, which refines the learned representations
and optimizes the classification performance. Figure 1 illus-
trates the proposed methodology for the HSI classification
task. To the best of our knowledge, this work is the first
attempt to utilize FFA for HSI classification tasks.

The remaining sections of this paper are structured as
follows: Section 2 summarizes related works in HSI clas-
sification task. Section 3 presents an overview of the FFA
explored in this work. Section 4 details the proposed hybrid
approach. Section 5 presents the benchmark dataset utilized
for the experiments. Section 6 provides the experimental
setup and analyzes the obtained experimental results. Sec-
tion 7 provides insights regarding the limitations in the use
of the proposed methodology, with a particular focus on the
FFA. Finally, Section 8 provides a summary of the findings
from our study.

2. Related Work
CNN models that focus on spectral information or pixel val-
ues use one-dimensional spectral signatures, indicated as xi
within the real space RB , as their input, where B is the
count of spectral bands present in an HSI. Hu et al. [6] in-
troduced a basic 1D CNN structure, consisting of a convo-
lution layer, a pooling layer, and a fully connected layer for
classifying HSI, treating each pixel’s spectral signature as
a one-dimensional series. This model demonstrated supe-
rior accuracy when compared with a two-layer neural net-
work and the support vector machine classifier. To counter
the significant correlation among spectral bands in HSI,
Gao et al. [4] converted the one-dimensional spectral data
into two-dimensional spectral feature matrices and utilized
compact convolutional kernels, specifically sized 3 × 3 or
1× 1, to create convolutional layers. More recently, a novel
1D CNN technique, Plastic-Net [8], was developed to de-
tect plastic materials from ATR-FTIR spectra. Plastic-Net
processes one-dimensional spectral data from ATR-FTIR,
translating it into Gramian Angular Fields (GAF), thereby
creating a two-dimensional matrix. This conversion facili-
tates the use of two-dimensional CNN on the GAF matri-
ces, which has proven to be more accurate in sorting mixed
plastic waste than the 1D CNN. To enhance computational
efficiency, this framework also incorporates Piecewise Ag-
gregate Approximation (PAA) [10] to reduce the size of the
input GAF matrices. Additionally, Wu et al. [25] integrated
recurrent layers with convolutional layers to simultaneously
capture contextual details and features that are invariant lo-
cally from the one-dimensional spectral data. This com-

bined architecture outperformed both one-dimensional and
two-dimensional CNN models in terms of accuracy. Lastly,
Paheding et al. [18] introduced GAF-NAU leveraging the
GAF pixel-wise conversion to effectively perform classifi-
cation with the use of hyperspectral pixel data solely, alle-
viating the dependency of the pixel neighborhood reference
values. This method, in addition, combined the use of GAF
with deep learning architecture models, such as U-Net [19],
achieving state-of-the-art performance over several bench-
mark datasets.

3. Methods
3.1. The backpropagation

Introduced by Rumelhart et al. [20, 21], in the backpropa-
gation algorithm for training artificial neural networks, the
process involves computing the gradient of the cost function
with respect to the network’s parameters and using this in-
formation to update the weights via gradient descent. Back-
propagation has demonstrated strong generalization capa-
bilities and effectiveness in handling non-linearities, mak-
ing it applicable to a wide range of neural network types in-
cluding feedforward networks, recurrent networks, and con-
volutional networks.

3.2. The Forward-Forward algorithm

Forward-forward algorithm (FFA) [5] involves substituting
the conventional forward and backward passes from the
backpropagation algorithm, with two forward passes that
function in a parallel manner but on distinct data with op-
posing objectives. Figure 2 illustrates a comparison be-
tween the traditional backpropagation algorithm and the
newer forward-forward algorithm. The affirmative pass in-
volves “real data” and modifies the weights to improve the
goodness in each hidden layer, while the negative pass op-
erates on “negative data” and modifies the weights to di-
minish the goodness within every hidden layer. In [5], two
distinct criteria were investigated for measuring quality: the
sum of the squared neural activities and the negative sum of
the squared activities, although numerous other criteria can
also be utilized. In the original FFA, the sum of the squares
of the activities in the layer is expressed as

G =
∑
j

z2j , (1)

where zj represents the activity of the jth hidden unit.
Furthermore, the positive and negative passes adjust the

weights locally, and the probability of the outputs are ex-
pressed as follows:

prob(positive) = σ(G− θ) (2)

where σ despite a logistic distribution function, and and θ a
given threshold.
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Figure 2. A brief illustration comparing the backpropagation and
the forward-forward algorithms.

To facilitate the contrast of positive and negative data
during the supervised training process of FFA, we need to
develop a method for merging the data with their corre-
sponding labels. In [5], Hinton proposed to overlay the label
information onto the data itself or embed the label within
the input data. However, in this work, we take a different
approach by appending the label at one end of the spectral
signature of each sample. Moreover, we explore various
methods for encoding the label information. For instance,
we experiment with one-hot encoding representation, bi-
nary representation, and decimal representation. Through
the analysis of experimental results, it is found that using
the one-hot encoding representation to append the label in-
formation with the hyperspectral signature data yields better
outcomes. As a result, all the experiments reported in this
work utilizing FFA are trained using this approach. Figure
3 visually depicts the imputation method employed, where
the label-encoded information is appended at one end of the
pixel’s hyperspectral signatures.

4. FFA for hyperspectral image classification
In this preliminary study, we contemplate the implementa-
tion of FFA with the use of fully connected layers and 1D
convolutional layers for HSI classification. The fully con-
nected layer performs a linear transformation on the input
data, usually in a vector shape, through weights matrix mul-
tiplication operations, in addition to a bias term. The fully
connected layers comprise the contributions of all inputs for
a final prediction. In contrast, convolutional layers in CNN
can be used to capture local dependencies in sequential data,
such as time series or text. Unlike fully connected layers
that operate on the entire input, CNN considers the local
receptive field of the input at a time. This allows them to
extract features that are sensitive to local patterns and vari-
ations.

4.1. Fully Connected FFA network for pixel-wise
HSI classification

The classification of hyperspectral images poses a substan-
tial challenge attributed to the data’s high dimensionality
and spectral complexity. Deep learning architectures have
shown promise in extracting discriminative features from

hyperspectral images. Nonetheless, the efficacy of these
architectures is heavily contingent upon the quality of the
learned representations. In this study, we explore the use
of the FFA with Fully Connected layers to enhance for HSI
classification task. FFA comprises the use of a few hidden
layers to extract features from the HSI data, scale it to a la-
tent space, and produce the final pixel-wise classification.
A total of 3 hidden layers were used in our FFA, with the
following number of units: 784, 500, and 500, respectively.

4.2. Convolutional FFA network for pixel-wise HSI
classification

In this work, we explore the implementation of the afore-
mentioned types of neural network layers, limited to 1D
data. Convolutional layers for 1D data are usually imple-
mented as neural networks that convolve the input of the
hyperspectral image with a set of learnable filters. These
layers detect local relationships and patterns within the in-
teraction of the hyperspectral bands per pixel. The capture
of this spectral signature enables the architecture to learn
discriminative representations of the data. By using the FFA
technique, the network aims to update the weights layer by
layer in a forward pass only, relieving the computational
load of computing the gradient during the backpropagation
of the error to update the learned parameters.

The implementation of the 1D CNN layer allows us to
implement an FFA architecture similar to the type used for
HSI classification [7]. The proposed FFA comprises the
use of 1D CNN layers in the early stages to capture feature
representations within a different latent dimensional space,
while the fully connected layers are used at the end to learn
how to properly discriminate among the classes. The net-
work is configured as follows: an initial 1D convolutional
layer with 64 kernels of size 64, followed by a set of two
hidden layers with 128 and 256 feature maps, respectively,
both with a kernel size of 36. Then, a max-pooling oper-
ation is applied to downscale the dimensions of the tensor
by a factor of two. Another 1D CNN layer is applied with
256 kernels of size 36. This last 1D CNN layer is followed
by another max-pooling operation with similar characteris-
tics as the previous one, and a flattening operation. Finally,
two fully connected layers are added with 100 and N units,
where N represents the number of classes in the HSI dataset.

4.3. Combination of FFA with backpropagation

Given the similarities between the nature of FFA and the
training procedure in contrasting learning, we propose the
utilization of FFA during the initial stage of training. In
this stage, each sample is contrasted with different out-
put choices, enabling the model to learn how to effec-
tively discriminate between the correct prediction and other
alternatives. Subsequently, the model proceeds to refine
its learning through traditional backpropagation using the
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Figure 3. Illustration of label embedding method. (a) shows spectral signatures from the Salinas hyperspectral dataset. (b) shows the same
samples with the appended label information, which is appended at the beginning of spectral signatures.

same deep learning architecture. This process facilitates the
model in adjusting the extraction of meaningful characteris-
tics from the high-level spectral information and fine-tuning
the latent representation for accurate final predictions. After
this initial phase, the model transitions to the standard back-
propagation technique, which leverages feedforward neural
network for further refinement. During this stage, the model
fine-tunes its representation, optimizing its capacity to cap-
ture significant features from the high-dimensional spectral
data.

5. Datasets

For simplicity of this proof-of-concept, we perform exper-
iments over three publicly available dataset1: The Salinas
valley, the Indian Pines, and the Pavia University.

5.1. The Salinas Valley

The Salinas dataset is a popular hyperspectral image dataset
that is commonly used in the realms of remote sensing and
image processing. It is named after the Salinas Valley in
California, USA, where the data was collected. The dataset
consists of a hyperspectral image of size 512 × 217 pixels,
with 224 spectral bands covering the range from 0.2 to 2.4
micrometers. Each pixel in the image represents a small
area on the ground, and the spectral bands capture the re-
flectance of the surface at different wavelengths. The Sali-

1www.ehu.eus/ccwintco/index.php/Hyperspectral Remote Sensing
Scenes

nas dataset was collected using an Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) sensor, which was flown
over an agricultural area in the Salinas Valley. The image
contains 16 different crop types, including lettuce, broccoli,
and bare soil, among others.

5.2. The Indian Pines

Collected by the Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) sensor over an agricultural area in Indi-
ana, USA, the Indian Pines dataset consists of a hyperspec-
tral image of size 145 × 145 pixels, with 224 spectral bands
covering the range from 0.4 to 2.5 micrometers. Each pixel
in the image represents a small area on the ground, and the
spectral bands capture the reflectance of the surface at dif-
ferent wavelengths. The dataset contains 16 different land
cover classes, including crops, trees, roads, and buildings,
among others.

5.3. Pavia University

The University of Pavia HSI dataset, a component of the
Pavia scenes, was captured using the Reflective Optics Sys-
tem Imaging Spectrometer (ROSIS) sensor over Pavia, a
city in northern Italy. This dataset comprises an image of
dimensions 610 × 610, encompassing a total of 103 spec-
tral bands. It features nine different land cover types, each
with a spatial resolution of 1.3 meters.
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Table 1. Summary of the qualitative results using the different techniques, mentioned in this work, over Salinas, Indian Pines, and Pavia
University datasets. Best performance in marked in bold font.

Method Salinas Indian Pines Pavia University
OA AA κ OA AA κ OA AA κ

BP 0.9190 0.9605 0.9099 0.8109 0.7759 0.7842 0.9148 0.8885 0.8866
FFA (Dense layers) 0.8392 0.8470 0.8206 0.5921 0.5841 0.5370 0.7936 0.7635 0.7325
FFA (Dense & Conv layers) 0.9101 0.8518 0.8666 0.6660 0.5822 0.6194 0.8554 0.8458 0.8101
FFA + BP 0.9221 0.9564 0.9130 0.7365 0.6978 0.6978 0.9251 0.9122 0.9011

Figure 4. Classification maps over the Salinas HSI dataset. (a) True color composite of HSI, and (b) ground truth. Classification maps
from (c) traditional BP, and (d) FFA+BP.

Figure 5. Classification maps over the Indian Pines HSI dataset. (a) True color composite of HSI, and (b) ground truth. Classification maps
from (c) traditional BP, and (d) FFA+BP.

6. Results
6.1. Experimental setup

To ensure a fair comparison, we evaluate the different tech-
niques reported in this work using the same training and
test datasets. The Salinas, Indian Pines, and Pavia Univer-
sity HSI datasets are randomly split into training, validation,

and testing sets with a ratio of 8:1:1, respectively. We repeat
the entire experimental process three times to obtain robust
performance estimates and average the results.

For each experiment, the respective models are trained
for 250 epochs using the Adam optimizer with a fixed learn-
ing rate of 1 × 10−3. When employing backpropagation,
categorical cross-entropy is utilized as the loss function.
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Figure 6. Classification maps over the Pavia University HSI dataset. (a) True color composite of HSI, and (b) ground truth. Classification
maps from (c) traditional BP, and (d) FFA+BP.

Table 2. Comparison with other machine learning models in HSI classification task. Key: [Best, Second Best]

Dataset Metric Method
1D-CNN [6] dPEN [24] Plastic-Net [7] GAF-NAU [18] FFA+BP

Salinas
OA 0.9143 0.9253 0.9069 0.9459 0.9221
AA 0.9506 0.9648 0.9506 0.9700 0.9564
κ 0.9046 0.9168 0.8963 0.9397 0.913

Indian Pines
OA 0.7439 0.7762 0.7300 0.8107 0.7365
AA 0.7636 0.8128 0.6329 0.7467 0.6978
κ 0.7057 0.7454 0.6923 0.7831 0.6978

Pavia
University

OA 0.9017 0.9121 0.8970 0.8970 0.9251
AA 0.8937 0.9054 0.8776 0.8770 0.9122
κ 0.8685 0.8829 0.8629 0.8625 0.9011

However, when FFA is used, a custom loss function is im-
plemented to measure the distance between the goodness of
each positive and negative sample with respect to the pro-
vided threshold.

All the experiments are run on an NVIDIA RTX 3070
graphic card with 8GB of dedicated GPU.

6.2. Performance comparison

To assess and contrast the performance of the different tech-
niques presented in this work, we employed the following
evaluation metrics:
• Overall Accuracy (OA): This metric provides the per-

centage of correctly classified pixels from the respective
HSI dataset.

• Average Accuracy (AA): This metric is computed by av-
eraging each class accuracy score, thus providing a class-
specific evaluation of the technique’s performance.

• Kappa Coefficient (κ): This metric measures the agree-

ment between the predicted and true class labels, in which
the accuracy that could be achieved by chance is taken
into account.
The use of these evaluation metrics collectively enables

a comprehensive assessment of the various techniques pre-
sented in this work for HSI classification.

Table 1 summarizes the experimental results obtained
by evaluating the discussed techniques using the aforemen-
tioned performance metrics on the Salinas, Indian Pines,
and Pavia University HSI datasets. As shown in Table 1,
when considering the Salinas HSI dataset, the combination
of FFA and backpropagation (BP) achieved the best per-
formance in terms of OA (0.9221) and κ (0.9130). How-
ever, BP alone achieved the highest AA (0.9605). On the
other hand, for the Indian Pines HSI dataset, BP exhibits
the best performance across all evaluation metrics, with OA
(0.8109), AA (0.7759), and κ (0.7842). Nevertheless, the
utilization of FFA in combination with BP demonstrated a
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Figure 7. Comparison of the different approaches of the accuracy performance across individual classes over the (a) Salinas, (b) Indian
Pines, and (c) Pavia University datasets.

significant improvement compared to using any of the FFA
variants individually. Figures 4, 5, and 6 demonstrate clas-
sification maps of different methods using the Salinas, In-
dian Pines, and Pavia University datasets, respectively. Ad-
ditionally, experimental results, from the Pavia University
dataset, indicate the best performance achieved by the com-
bined FFA+BP approach consistently across the three eval-
uation metrics (OA: 0.9251, AA: 0.9122, and κ: 0.9011).

Figure 7 shows a comparative analysis of classifica-
tion accuracy for individual classes using different ap-
proaches across the three hyperspectral datasets: (a) Sali-
nas, (b) Indian Pines, and (c) Pavia University. The ap-
proaches include Backpropagation (BP), FFA with Dense
layers (FFA+Dense), FFA with Convolutional Neural Net-
work layers (FFA+CNN), and a hybrid of FFA and Back-
propagation (FFA+BP). The boxplots illustrate the mean
accuracy (marked by an ‘X’), interquartile range (boxes),
max/min values (without outliers), and outliers are plotted
as dots.

Generally, FFA+BP seems to be a strong contender, of-
ten performing well across all three datasets, with par-
ticularly consistent high performance in the Salinas and
Pavia University datasets. Analysing BP, by itself, shows
the most consistency in Salinas in contrast to the perfor-
mance over Pavia University and Indian Pines datasets. The
FFA+Dense approach does exhibit a broader range of accu-
racy, FFA+CNN displays a wider interquartile range in both
Salinas and Indian Pines datasets.

6.3. Comparison with other models

In order to provide a better understanding of this work’s
contribution, we compare the performance of the proposed
approach with several machine learning (ML) models for
HSI classification tasks. Table 2 summarizes the perfor-
mance of a traditional 1D-CNN [6], dPEN model [24],
Plastic-Net [7], and GAF-NAU [23] in contrast with our
proposed FFA+BP. Reported results indicate that FFA+BA
yields promising results. Particularly, in the Pavia Univer-

sity dataset, the proposed method outperforms all the other
competing methods across all metrics. We hypothesize the
variation in the proposed method’s performance across dif-
ferent datasets may indicate that its effectiveness could be
dependent on the specific characteristics of the dataset, such
as the number of classes and samples per class, the inherent
variability within the data, or the distribution of the sam-
ples.

7. Discussion
In the investigation of the Forward-Forward Algorithm
(FFA) for hyperspectral image classification, our analysis
reveals significant insights into its performance, and areas
for future exploration such as the use of the algorithm in
combination with fully connected neural networks or con-
volutional neural networks. Comparatively, FFA’s integra-
tion with the backpropagation (BP) technique has demon-
strated an enhanced ability to process high-dimensional hy-
perspectral data. Through the experiments conducted on
the Salinas, Indian Pines, and Pavia University datasets, the
FFA+BP method notably outperformed standalone FFA and
feedforward network with BP methods in terms of Over-
all Accuracy (OA) and Kappa coefficient (κ), underscoring
its potential in extracting relevant features for classification
tasks.

However, the FFA’s efficacy is intrinsically linked to the
generation and selection of negative samples. This pro-
cess is critical, as it directly impacts the algorithm’s learn-
ing dynamics and its subsequent ability to distinguish be-
tween classes. The requirement for two forward passes,
incorporating both positive and negative data, introduces
an additional computational burden when compared to tra-
ditional BP. Optimizing this aspect is crucial for enhanc-
ing the FFA’s practicality and scalability. Future research
directions should focus on developing more sophisticated
methods for generating negative samples, exploring the in-
tegration of FFA with other neural network architectures,
and extending its applications beyond classification to other
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remote sensing challenges. Further, we plan to evaluate
and optimize FFA in terms of computational efficiency, and
also investigate its performance across diverse hyperspec-
tral datasets will be pivotal in broadening its applicability
and effectiveness in real-world scenarios.

8. Conclusion
We proposed the integration of the Forward-Forward al-
gorithm and traditional backpropagation during the early
stages of training. The empirical outcomes demonstrated
that this method significantly improves feature representa-
tion and boosts the accuracy of classifying hyperspectral
images in several scenarios. By incorporating the FFA al-
gorithm, the network was able to capture useful feature rep-
resentation by adjusting network parameters in every hid-
den layer. Subsequent fine-tuning through backpropagation
facilitated the extraction of discriminative task-specific fea-
tures. This combined approach exemplifies the potential for
leveraging the strengths of different learning algorithms to
achieve superior results in hyperspectral image classifica-
tion tasks.
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