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Abstract

Monitoring marine environments is a crucial part of un-
derstanding the impact of oceans on global climate and
their importance for biodiversity and ecological systems,
particularly in the Arctic region. Underwater active acous-
tic surveys with moored multi-frequency echosounders al-
low for the continuous collection of valuable data reflecting
the complex dynamics of these environments. This paper
addresses the automatic identification of sea surface bound-
aries and near-surface phenomena in echograms using deep
learning methods to support researchers such as biologists
in their work, who typically rely on time-consuming manual
analyses. We propose a two-step process that first charac-
terizes echograms according to the surface conditions us-
ing an image classification paradigm and then identifies the
sea surface boundary and near-surface bubbles and their
extent in the water column using a semantic segmentation
paradigm. Segmentation is carried out using surface type-
specific models, which perform better than a single global
segmentation model. We also propose learning strategies,
such as a custom boundary loss function, that further im-
prove performance. Experiments with various image clas-
sification and semantic segmentation architectures allow us
to select the most efficient models for Arctic echogram anal-
ysis that, when used in conjunction within our proposed
pipeline and our learning strategies, offer excellent results.

1. Introduction

Monitoring marine environments is of prime importance
to understand the impact of oceans on global climate and
their importance for ecological systems. Underwater ac-
tive acoustic surveys play a key role in examining the mul-
tifaceted dynamics of marine ecosystems, providing in-
sights into the complex interactions among ecological el-

ements. These surveys typically rely on data collected by
echosounders, which emit a series of acoustic pulses (pings)
at different frequencies and listen for echoes from potential
targets to generate visualizations of the water column in a
minimally invasive manner. Echosounders can be deployed
in two setups: moored to the sea floor (looking upwards),
or attached to ships (looking downwards). Ship-based ac-
tive acoustics have provided critical information about for-
age species in the Western Canadian Arctic [13], yet they
lack a complete annual perspective required to understand
population and food web dynamics. The recent develop-
ment of moored equipment to monitor key Arctic species
relative to the surface ocean structure over an entire annual
cycle is thus critical for understanding ecosystem responses
to Arctic change; we favor such a setup in this paper.

Underwater acoustic imaging is based on the principle
that different materials and boundaries reflect sound waves
differently according to their acoustic properties [22]. Data
are visualized as echograms, i.e. sets of single-frequency
2D images capturing the reflected echoes for series of pings
over time, with the x-axis representing temporal units and
the y-axis depicting distance units, i.e. the depth or range
from the instrument in the water column. Each pixel inten-
sity corresponds to the amplitude of the reflected echo at a
given time and distance over a sampling volume (volume
backscattering strength Sv). Biologists rely predominantly
on time-consuming manual or semi-automatic echogram
analyses, utilizing commercial software such as Echoview
[9]. These analyses primarily focus on the statistical char-
acteristics of organism aggregations [43]. There is a critical
need for efficient and accurate automatic methods targeting
echograms extending beyond species abundance tracking to
include other crucial features such as sea surface boundaries
and phenomena, which are key to understanding marine en-
vironments and to accurately assessing datasets as a whole.

This research is dedicated to advancing methods for au-
tomatically detecting near-surface ocean boundaries and

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2977



Figure 1. Sample one-hour echogram (125 kHz) covering the pe-
riod from 9:00 pm to 10:00 pm on August 13, 2017, under windy
conditions with open water (no ice), illustrating some of the chal-
lenges involved in distinguishing between near-surface bubbles
and marine organisms. From the CBASSA dataset (see Sec. 3.1).

phenomena, focusing on entrained air bubbles and surface
boundaries, using multi-frequency hourly echograms and
deep learning (DL) approaches. The goals are to identify
the sea surface type (i.e. surface condition, such as open
water, solid ice, etc.) and locate the sea surface bound-
ary and any near-surface bubble layer (downwelling of air
driven by wave action), in particular its extent in the wa-
ter column. Identifying and quantifying structure and dy-
namics at the atmosphere-ice-ocean interface is needed to
understand the transfer of energy within changing Arctic
ecosystems. The precise classification of sea surface types
affects habitat availability and species interactions includ-
ing the critical transfer of sympagic (ice-associated) carbon
to the pelagic food web. Furthermore, bubble layers can
present challenges to discerning biology from physics, as
bubbles clouds can resemble aggregations of fish and plank-
ton. Adding further to the challenge is that the (lower)
boundary of the entrained air penetration within the water
column can be indistinct and discontinuous [21]. Fig. 1 il-
lustrates some of the challenges in distinguishing between
near-surface bubbles (and their extent) and biology under
windy open water conditions, as they both appear near the
sea surface with similar patterns and strength.

Our contributions are as follows: 1) We propose a DL-
based two-step process that allows for the automatic iden-
tification of the sea surface type via an image classification
paradigm, followed by the automatic identification of the
sea surface boundary and near-surface bubbles via a seman-
tic segmentation paradigm using sea surface type-specific
models. These specific models provide a better boundary
and bubble detection compared to a single, global segmen-
tation model. 2) We propose three learning-related strate-
gies that further improve the segmentation performance:
a) training first on the region of interest (sea surface) fol-
lowed by training on full echograms; b) focusing on seg-
ment boundaries via a custom boundary loss function; c)
addressing the class imbalance problem via a weighting
scheme. 3) We provide extensive experiments on a variety
of image classification and semantic segmentation architec-
tures, leading to the selection of the most efficient models
for Arctic echogram analysis.

These contributions enhance the methodological ap-

proaches available to experts in oceanography and marine
biology. Additionally, the two-step pipeline has the poten-
tial to be applied beyond marine research, e.g. in medical
imaging, where an initial classification could identify po-
tential anomalies, and a subsequent anomaly-specific seg-
mentation could delineate precise areas for diagnosis.

The remainder of the paper is divided as follows: Sec. 2
reviews relevant related works on echogram analysis, Sec. 3
describes our dataset and presents our proposed two-step
methodology, Sec. 4 discusses experimental results, and
Sec. 5 provides concluding remarks.

2. Related works
There is a long tradition of underwater echogram analysis,
from early analog methods to sophisticated machine learn-
ing (ML) techniques and a growing use of DL techniques.
Most research has focused on the acoustic classification of
pelagic species and biomass estimates. Yassir et al. [48] re-
view acoustic fish species identification using ML and DL.
Conventional multi-frequency approaches [7, 16, 17, 40],
particularly for zooplankton, look at the differential or rela-
tive frequency response and forgo any learning.

ML-based methods require hand-crafted features that
typically relate to energetic, behavioral, and/or morphome-
tric characteristics [14, 34]. Various ML classifiers have
been utilized to identify fish species, such as: support
vector machines [36], decision trees and random forests
[10, 11, 23, 32, 38], minimum distance classifiers [3, 18],
shallow artificial neural networks [2, 36, 45], and general
Gaussian mixture models [47]. Of particular relevance here
are the works of Minelli et al. [27], which used gradient
boost classifiers to distinguish fish schools from other tar-
gets including gas bubbles, and of Sandy et al. [39], which
used self-organizing maps to distinguish between open wa-
ter and sea ice and to characterize statistical properties of
surface wave height envelopes and ice draft.

While ML methods leverage expert knowledge via hand-
crafted features, DL methods automatically learn relevant
features from the data. This is one of many advantages of
DL models over ML ones for automating fish species echo
classification, which also tend to outperform ML ones even
with few annotated data [48]. Existing DL methods for un-
derwater echogram analysis can be classified according to
the image analysis paradigm that they use: image classifi-
cation [5, 35], object detection [25], instance segmentation
[24], and semantic segmentation [1, 6, 21, 26, 30, 31, 41, 42,
46]. Of particular interest here are the works from Slonimer
et al. [41, 42] that covered the detection of air bubbles with
U-Net networks and from Lowe et al. [21] that detect the
extent of entrained air bubbles in the water column in tidal
energy streams using a U-Net-based architecture.

Existing DL works use a single image analysis paradigm;
our approach leverages a combination of paradigms for im-
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proved results. Few works in the literature have tackled the
identification of sea surface types and near-surface bubbles;
the works closest to our approach are that of Sandy et al.
[39] (Arctic ocean boundary identification), of Slonimer et
al. [41, 42] (air bubble identification), and of Lowe et al.
[21] (extent of entrained air identification). Our paper dif-
fers from [39] in its use of DL as opposed to ML and in
the more fine-grained level of sea surface type classifica-
tion. It differs from [41, 42] in the targeted region (Arctic
vs. coastal British Columbia) and the characteristics of in-
volved marine organisms (unlike coastal British Columbia,
the Arctic ecosystem possesses unique features that make it
more complex to distinguish near-surface features from bi-
ology, as surface meltwater and the underside of ice provide
distinct habitat for plankton and fish). It differs from [21]
in its targeted region (Arctic vs. tidal energy demonstration
site in the Bay of Fundy), its absence of data pre-processing
([21] utilized a data cleaning process in Echoview [9]),
and its two-step process. Our proposed learning strategy
that first focuses on the water-air interface followed by full
echograms was inspired by [21], which used different zoom
levels for training, starting with a full image followed by a
zoomed-in image of the water column only.

3. Method
Fig. 2 shows the flowchart of the proposed method. In the
first step, input echograms are fed to a DL image classifi-
cation model which classifies them into one of six sea sur-
face boundary types: open water (OW), windy open water
(WOW), ice with keels (IK), ice without keels (INK), slushy
conditions (SC), and mixed conditions (MC). In the second
step, dedicated DL semantic segmentation models for each
type yield segmented masks for the sea surface boundary
and near-surface bubbles. Such a process allows for the
first step to set the stage for a more nuanced and targeted
analysis in the second step. Details on the dataset (includ-
ing the surface types and the annotation process) and on the
proposed method’s two steps are given next.

3.1. CBASSA dataset

Our data come from the Cape Bathurst Arctic Sea Surface
Acoustics (CBASSA) dataset. It consists of 15 months of
one-hour multi-frequency echograms, collected from Au-
gust 2017 to October 2018 using an upward-looking Acous-
tic Zooplankton Fish Profiler (AZFP) [19] echosounder
moored to the sea floor, located near Cape Bathurst in the
Northwest Territories of Canada (data from Fisheries and
Oceans Canada). This area is a dynamic, productive region,
and the CBASSA dataset provides a unique annual perspec-
tive of acoustic backscatter coupled to sea surface type, sup-
porting the ecosystem-based approach to Arctic monitoring.
The AZFP pinged the water column (about 51 m) at four
frequencies (38, 125, 200, and 455 kHz). It was calibrated

Figure 2. Flowchart of the proposed method. Input echograms
are first classified into one of six sea surface types and then seg-
mented by a surface type-specific segmentation model (DL seman-
tic segmentation model), which outputs sea surface boundary and
near-surface bubble segmentation masks. OW: open water, WOW:
windy open water, IK: ice with keels, INK: ice without keels, SC:
slushy conditions, MC: mixed conditions.

by the manufacturer prior to deployment and deployed at a
15 degree angle from the vertical axis.

The collected data are visualized as 201×712-pixel 1-
hour echograms, where each pixel represents approximately
25.3 cm by 5 seconds. The echograms display the volume
backscattering strength (Sv), calculated from the raw acous-
tic data and deployment metadata as [19]:

(1)
Sv = ELmax − 2.5

a
+

N

26214a
− SL

+ 20 logR+ 2αR− 10 log(
cτΨ

2
).

Here, ELmax is the maximum echo level (in dB re 1µPa)
that the 16-bit A/D converter can handle before reaching
saturation, N the count value from the raw data, a the de-
tector response’s gradient (V/dB), α the seawater absorp-
tion coefficient (dB/m), R the distance from the instrument
(m), SL the source level in dB re 1µPa at 1 m, c the speed
of sound in the water (m/s), τ the duration of the transmit-
ted pulse (s), and Ψ the two-way solid angle of the acous-
tic beam. In CBASSA, Sv values, typically ranging from
around -125 to 0 dB, are converted to red-green-blue (RGB)
integers using the “jet” colormap. Jet is appealing as it
shows large changes in chroma and luminance, highlight-
ing the smallest image features with high contrast, helping
distinguish between co-occurring bubbles and biology.

The absence of actual ground truth data poses some chal-
lenges for training DL models. Our annotation process re-
lies on contextual clues derived from information such as
the deployment location, time of day, time of year, echo
strength (absolute and relative between frequencies and vis-
ible targets in the echograms), target morphology, etc., and
sometimes external relevant measurements such as wind
speed and sampling. The sea surface type classification task
requires one label per image, whereas the echogram seg-
mentation task requires one label per pixel.

For the sea surface type classification task, we manually
labeled 3,529 echograms, categorized into one of the fol-
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Figure 3. Sample one-hour echograms (125 kHz) illustrative of
each sea surface type (top third region). 8-digit timestamp: YYM-
MDDHH, with HH in the 24-hour clock format. OW: open water,
WOW: windy open water, IK: ice with keels, INK: ice without
keels, SC: slushy conditions, MC: mixed conditions.

lowing six sea surface types that encompass the varied con-
ditions in the Arctic environment: OW (646), WOW (882),
IK (770), INK (506), SC (514), and MC (211). The dis-
parity in class representation mirrors the natural occurrence
rates of these conditions over several months. We focused
on the 125 kHz frequency as it tends to offer the clearest
representation to discern surface conditions. Fig. 3 shows
typical echograms for each type. OW shows a strong air-
water interface echo (red) and minimal below-surface scat-
tering, indicating calm, ice-free water, typical in summer
or when ice disperses. WOW displays irregular (jagged)
air-water interface echoes and increased backscatter from
wind-induced waves and entrained bubbles, creating a scat-
tered appearance below the surface; biology can be min-
gling with the bubbles, creating a dynamic interplay ap-
pearing as cyan and yellowish hues. IK presents a lo-
cally smooth and strong surface echo with some protrusions
into the water column of varied depth (ice keels), common
in cold months. In contrast, INK presents a strong sur-
face echo that looks flat, typical of winter continuous ice
cover. SC represents the formation or melting of ice during
shoulder seasons or temperature fluctuation events, creating
a semi-solid (slushy) surface layer (diffuse, indistinct air-
water interface echoes with a “smeared” or “fuzzy” appear-
ance). Finally, MC combines the aforementioned features
within the 1-hour window. To support the annotation pro-
cess, we relied on the time of year and on satellite imagery
from NASA Worldview [28] to observe surface conditions.
We also referred to hourly wind data from Cape Parry, the
nearest weather station, to corroborate wind conditions.

For the echogram segmentation task, our approach lever-
aged fused echograms that combine data from the 125, 200,
and 455 kHz frequencies, excluding 38 kHz due to its lower
sensitivity to small features. This is a pixel-level image fu-
sion technique similar to that of [46], summing the Sv val-
ues from all frequencies pixel-wise before transposing the
results to the jet colormap. Fused data enhance the percep-
tion of the image, either for human observers or for auto-
mated analysis systems, by incorporating the strengths of
individual frequencies [20], although they are not typically

Figure 4. Sample sea surface and near-surface bubble boundary
annotations superimposed on fused multi-frequency echograms.
Timestamp: YYMMDDHH. WOW: windy open water, IK: ice
with keels, MC: mixed conditions.

used by biologists. We developed a semi-automatic ap-
proach using traditional computer vision techniques to an-
notate the surface boundary and bubbles at the pixel level,
requiring two user-set parameters each. The red band sig-
nifies the immediate reflection of acoustic energy where the
air meets the ocean’s surface. Its lower edge typically rep-
resents the sea surface boundary. As a general rule, bubbles
occur below the ocean surface due to wind events, which
form ripples or breaking waves. They can be characterized
by their continuity and the way they taper off with depth,
following the sea’s undulating surface, with shades of am-
ber, yellow, and lime yellow. Co-occurring biology often
share similar shades of yellow, lime yellow (and cyan), but
tend to be less predictable and may aggregate in patches.
Bubbles appear in WOW and sometimes in MC; their con-
spicuous absence in OW, IK, INK, and SC can be attributed
to the lack of surface agitation. The surface boundary an-
notation process makes use of horizontal Gaussian blurring
and region growing to obtain a mask of the air-water inter-
face, which is then extended to the top of the echogram in
a customary way that represents the region outside of the
water column to be excluded for any biological analysis;
the boundary is the lower border (lowest pixel in each col-
umn) of the mask. The bubble annotation process makes use
of the annotated sea surface boundary, Gaussian filtering,
colormap conversions, k-means clustering, and connected
component labeling, to obtain a bubble mask; the extent of
entrained air bubbles is the lower border (lowest pixel in
each column) of the mask. Fig. 4 shows examples of anno-
tated sea surface and near-surface bubble boundaries. While
the semi-automatic annotation process is faster than manual
annotation, it remains time-consuming; 1,691 echograms
(out of 3,529) were annotated for the segmentation task:
OW (300), WOW (299 – 264 with bubbles), IK (298), INK
(299), SC (318), MC (177 – 50 with bubbles).

3.2. Sea surface type classification (step 1)

Sea surface type classification is a critical first step, as it
segregates the echograms into homogeneous groups that ex-
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hibit (more) similar acoustic properties. Such grouping al-
lows for a more targeted and effective subsequent analy-
sis, also providing relevant information for biologists and
acousticians studying the Arctic in itself.

We experimented with several DL image classification
frameworks known for their efficacy in various applications
to find the most suitable for underwater Arctic echogram
analysis: ResNet-101 [12], Darknet-53 [33], DenseNet-201
[15], and Inception-v3 [44]. ResNet-101 employs resid-
ual learning, Darknet-53 is optimized for speed, DenseNet-
201 packs densely connected layers, and Inception-v3 fol-
lows a modular approach, with inception modules that adap-
tively capture information at multiple scales within a single
layer. This positions Inception-v3 as a versatile model for
echograms, capable of accommodating the diverse sizes and
scales inherent in marine acoustic imaging. Experiments
(see Sec. 4.1.1) have shown Inception-v3 to be the most ef-
fective overall in our case; our first step is therefore based on
Inception-v3. We also employed transfer learning (with the
classification models pre-trained on the ImageNet dataset
[8]), standard cross entropy loss, and a cost-sensitive class
weighting approach to address class imbalance, in which
penalties are assigned to each class via a cost matrix to in-
crease the weight of the minority group.

3.3. Echogram segmentation (step 2)

For detecting bubbles and delineating the sea surface
boundary, we favor a semantic segmentation approach that
assigns a label to each pixel (either “surface”, “bubble”, or
“background”). The background class can be quite varied as
it covers everything else, i.e. anything that is not related to
the air-water interface or near-surface physical phenomena,
which may include biological signals. From the predicted
masks, we can infer the sea surface boundary and the extent
of entrained air bubbles as the lower border of the masks.

We experimented with several DL semantic segmenta-
tion frameworks renowned for their efficacy in various ap-
plications to find out the most suitable for underwater Arc-
tic echogram analysis: U-Net [37], Attention U-Net [29],
DeepLabV3 [4], UNet++ [49]. We mainly focused on U-
Net-like architectures due to their proven success in sev-
eral semantic segmentation-based echogram studies (see
Sec. 2). U-Net follows an encoder-decoder architecture
in which upsampled feature maps in the decoder are con-
catenated with corresponding feature maps from the en-
coder via skip connections. Attention U-Net adds atten-
tion gate mechanisms to focus on specific regions of in-
terest. DeepLabV3 leverages atrous spatial pyramid pool-
ing. UNet++ builds upon U-Net by adding nested and
dense skip pathways. The nested skip connections facili-
tate the integration of features from different levels of the
network hierarchy, enhancing the model’s ability to capture
fine details and global context simultaneously, whereas the

dense skip connections promote feature reuse and propaga-
tion throughout the network. These enhancements improve
the performance in scenarios with complex image struc-
tures and varying object scales, making UNet++ the best
performing architecture in our case (see Sec. 4.1.2). Our
second step is therefore based on UNet++. We also em-
ployed three learning strategies to improve results, the effect
of which are shown in an ablation study (see Sec. 4.1.4):
1) zoomed-in first (“Zoom”), 2) custom boundary loss
(“BL”), and 3) class weighting (“CW”). In the “Zoom”
strategy, zoomed-in 128×128 tiles, covering the water-air
interface and near surface regions are fed to the model for
the first part of the training, before continuing with the full
echogram. The rationale is for the model to first learn the
subtleties of the near-boundary region and then learn the
global context. The “BL” strategy introduces a custom
boundary loss to augment the model’s ability to capture
fine-grained details at class boundaries. We add a custom
boundary loss term (LB) to the loss function (which also
uses the standard cross entropy). This new term, based on
L1 loss and the Sobel operator, allows the model to quantify
the alignment between predicted and true boundaries:

(2)LB =
1

N

N∑
i=1

|edge predi − edge GTi|

where N is the total number of pixels in the image, and
edge pred and edge GT are the magnitude of the gradient
for each pixel calculated as the convolution between the So-
bel kernels and the one-hot encoded predicted and ground
truth labels, respectively. The “CW” strategy is a bit more
complex than that used in step 1, as it incorporates both
class pixel counts within an echogram and echogram class
presence counts within the dataset, to address the inherent
imbalance between bubble, surface, and background pixels.
The total weight for class i (wtot

i ) is calculated as follows:

wtot
i = max(ŵpi , ŵei) (3)

ŵpi
=

wpi∑
wpi

, wpi
=

N

pi
(4)

ŵei =
wei∑
wei

, wei =

{
M
ei

if ei > 0

0 otherwise
(5)

where ŵpi
is the normalized pixel count weight (wpi

) of
class i, pi is the number of pixels of class i in the echogram,
ŵei is the normalized echogram class presence count weight
(wei ) of class i, M is the total number of echograms, and ei
is the number of echograms in which class i is present.

4. Experimental results
The experimental results cover the sea surface type classi-
fication step with all compared architectures, the echogram
segmentation step with all compared architectures, the full
proposed end-to-end pipeline, and an ablation study. The
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sea surface type classification task was implemented in
MATLAB and trained for 20 epochs using Stochastic Gra-
dient Descent with Momentum (SGDM) optimization, a
mini-batch size of 10, an initial learning rate of 0.0001,
and data augmentations of random reflections along the x-
axis and translations along both axes within a [-30, 30] pixel
range. The echogram segmentation task was implemented
in Python (PyTorch) and trained for 200 epochs using the
Adam optimizer, a learning rate of 0.001, a batch size of
2, with random horizontal flips. When in use, the “Zoom”
strategy covered the first 50 epochs. 20% of the CBASSA
echograms were set aside for testing.

4.1. Quantitative evaluation

The classification task is assessed using the standard accu-
racy, recall, and precision metrics. The segmentation task
is assessed using a combination of standard metrics that
compare the predicted segmentation masks with the ground
truth masks (intersection over union (IoU), recall, and pre-
cision) and of metrics that are more informative of the trac-
ing of the sea surface boundary and the extent of the bub-
bles over time: the overall mean vertical distance (OMVD),
the relative error (RE), false positives time-wise (FP-T), and
false negatives time-wise (FN-T). OMVD computes the ver-
tical distance between the lower border of the predicted and
ground truth masks (with one pixel corresponding to 25.3
cm), while RE normalizes this distance with respect to the
predicted vertical extent of the mask. FP-T and FN-T track
pings (i.e. columns) where a model incorrectly predicts a
segment or misses a segment, respectively, emphasizing the
model’s temporal consistency. For instance, a FP-T value
of 13 for bubbles would indicate that for 13 pings out of
712 (712 being the total number of pings in one hour, or the
width of the echogram), the model predicted bubbles when
there were none in the ground truth. Here, all metrics are
computed echogram-wise then averaged over the entire test
set for each task. Arrows in the following tables indicate
whether higher (↑) or lower (↓) metric values are desirable.

4.1.1 Sea surface type classification

Table 1 shows the performance of various image classi-
fication architectures (ResNet-101 [12], Darknet-53 [33],
DenseNet-201 [15], and Inception-v3 [44]) for the sea sur-
face type classification problem on the test set, for each of
the six classes and overall. ResNet-101 excels in the OW
class with the highest precision and accuracy, and leads in
accuracy and recall for SC. Darknet-53 does not secure the
top position in any case. DenseNet-201 achieves the highest
recall for OW and the highest precision for WOW and SC.
Inception-v3 outperforms others in IK, INK, and MC across
all three metrics, indicating its robustness in complex clas-
sifications. Additionally, Inception-v3 achieves the overall

Metric OW WOW IK INK SC MC Overall

Acc ↑ 0.943 0.966 0.942 0.955 0.946 0.965 0.858

R
N

10
1

Rec ↑ 0.791 0.943 0.870 0.832 0.854 0.738 0.838
Prec ↑ 0.887 0.922 0.865 0.848 0.793 0.689 0.834

Acc ↑ 0.916 0.950 0.952 0.963 0.930 0.963 0.835

D
N

53 Rec ↑ 0.814 0.875 0.929 0.832 0.378 0.643 0.805
Prec ↑ 0.750 0.922 0.861 0.848 0.776 0.692 0.814

Acc ↑ 0.917 0.955 0.952 0.966 0.944 0.970 0.852

D
N

20
1

Rec ↑ 0.899 0.875 0.955 0.812 0.698 0.714 0.826
Prec ↑ 0.716 0.939 0.845 0.943 0.902 0.769 0.852

Acc ↑ 0.930 0.956 0.967 0.977 0.943 0.976 0.877

In
cV

3

Rec ↑ 0.837 0.926 0.974 0.842 0.777 0.837 0.853
Prec ↑ 0.794 0.911 0.888 1.000 0.825 0.821 0.873

Notes: OW: open water, WOW: windy open water, IK: ice with keels, INK:
ice without keels, SC: slushy conditions, MC: mixed conditions, Acc: accuracy,
Rec: recall, Prec: precision, RN101: ResNet-101 [12], DN53: Darknet-53 [33],
DN201: DenseNet-201 [15], IncV3: Inception-v3 [44].

Table 1. Performance evaluation of various image classification
architectures for the sea surface type classification problem on the
test set. Best results in bold font, selected architecture underlined.

Class Metric U-Net [37] A-UNet [29] DLV3 [4] UNet++ [49]

OMVD ↓ 10.603 1.304 0.920 0.571
RE ↓ 0.382 0.032 0.022 0.014
FP-T ↓ 0.000 0.000 0.000 0.000

Surf FN-T ↓ 0.000 0.000 0.000 0.000
IoU ↑ 0.751 0.969 0.978 0.986
Recall ↑ 0.751 0.980 0.986 0.995
Prec ↑ 1.000 0.989 0.992 0.991

OMVD ↓ 6.712 4.432 2.039 1.112
RE ↓ 0.300 0.416 0.363 0.294
FP-T ↓ 0.366 8.666 132.030 25.710

Bub FN-T ↓ 210.150 177.430 0.560 25.300
IoU ↑ 0.243 0.417 0.424 0.605
Recall ↑ 0.960 0.817 0.470 0.663
Prec ↑ 0.243 0.445 0.576 0.773

Notes: Surf: sea surface, Bub: bubble, OMVD: overall mean vertical distance,
RE: relative error, FP-T: false positives time-wise, FN-T: false negatives time-
wise, IoU: intersection over union, Prec: precision, A-UNet: Attention U-Net,
DLV3: DeepLabV3.

Table 2. Performance evaluation of various architectures for the
echogram segmentation problem on the WOW test set. Best results
in bold font, selected architecture underlined.

highest scores in recall, precision, and accuracy, with a no-
table second-highest performance in accuracy and recall for
OW and accuracy and recall for WOW, confirming its com-
prehensive proficiency for the task and making it a clear
choice for step 1 of our end-to-end pipeline.

4.1.2 Echogram segmentation

Table 2 shows the per-class performance of various seman-
tic segmentation architectures (U-Net [37], Attention U-Net
[29], DeepLabV3 [4], and UNet++ [49]) for the echogram
segmentation problem on the WOW test set. To select
the best architecture for the proposed method, the experi-
ments targeted WOW conditions as these include all three
pixel classes (surface, bubble, background). UNet++ dis-
tinguishes itself with the lowest OMVD and RE, indicating
precise boundary capture and shape consistency. It also has
the highest IoU and precision for bubbles and highest IoU
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Model Pixel OMVD ↓ RE ↓ FN-T ↓ FP-T ↓ IoU ↑ Recall ↑ Precision ↑
Class (pixels) (columns) (columns)

OW-specific Surface 0.423 0.010 0.000 0.000 0.990 0.996 0.995
WOW-specific Surface 0.592 0.014 0.000 0.000 0.986 0.990 0.996

Bubble 1.093 0.197 7.030 54.080 0.663 0.908 0.700
IK-specific Surface 0.945 0.021 0.000 0.000 0.979 0.992 0.987
INK-specific Surface 0.423 0.010 0.000 0.000 0.990 0.997 0.993
SC-specific Surface 0.615 0.015 0.000 0.000 0.985 0.997 0.988
MC-specific Surface 0.596 0.014 0.000 0.000 0.985 0.991 0.994

Bubble 1.329 0.306 24.930 41.760 0.533 0.777 0.650

Overall Surface 0.413 0.010 0.000 0.000 0.990 0.995 0.995
(Step 1 GT) Bubble 1.170 0.232 13.000 49.970 0.620 0.864 0.683

Overall Surface 0.650 0.015 0.000 0.000 0.985 0.993 0.992
(End-to-end, proposed) Bubble 1.231 0.223 29.730 41.680 0.598 0.813 0.663

Single Surface 2.380 0.054 0.000 0.336 0.972 0.983 0.989
Bubble 6.319 1.946 222.358 8.896 0.243 0.270 0.610

Notes: OW: open water, WOW: windy open water, IK: ice with keels, INK: ice without keels, SC: slushy conditions, MC: mixed conditions, GT: ground truth annotations,
OMVD: overall mean vertical distance, RE: relative error, FN-T: false negatives time-wise, FP-T: false positives time-wise, IoU: intersection over union.

Table 3. Performance evaluation of the six sea surface type-specific models per model, overall (utilizing sea surface boundary classification
ground truth) and overall (full end-to-end pipeline, i.e. proposed) vs. a single global model for the echogram segmentation problem on the
test set. Best results for each pixel class, between overall (proposed) and single, shown in bold font.

Exp Zoom BL CW OMVD ↓ RE ↓ FN-T ↓ FP-T ↓ IoU ↑ Recall ↑ Precision ↑
(pixels) (columns) (columns)

1 1.112 0.294 25.710 25.300 0.605 0.663 0.773
2 ✓ 1.076 0.257 21.230 25.880 0.659 0.765 0.804
3 ✓ 1.036 0.245 23.860 28.150 0.628 0.716 0.797
4 ✓ 4.102 0.541 2.166 169.58 0.561 0.856 0.591
5 ✓ ✓ 1.102 0.243 23.310 29.980 0.647 0.737 0.765
6 ✓ ✓ 1.060 0.250 28.35 28.65 0.636 0.731 0.771
7 ✓ ✓ 1.149 0.198 15.066 47.280 0.622 0.809 0.676
8 (proposed) ✓ ✓ ✓ 1.093 0.197 7.030 54.080 0.663 0.908 0.700

Notes: Exp: experiment, Zoom: learning features on zoomed-in echogram tiles first, BL: custom boundary loss, CW: class weighting, OMVD: overall mean vertical distance,
RE: relative error, FN-T: false negatives time-wise, FP-T: false positives time-wise, IoU: intersection over union.

Table 4. Ablation study of the proposed segmentation model on the WOW test set for the bubble pixel class. Best results in bold font.
Experiment 1: baseline UNet++, experiment 8: proposed approach.

and recall for surfaces. Interestingly, U-Net performs very
differently for surfaces and bubbles, with the highest pre-
cision and lowest recall for surfaces, and the highest recall
and lowest precision for bubbles. Attention U-Net does not
yield any of the best metrics, but generally improves upon
U-Net’s performance for surfaces. DeepLabV3 performs
best only in terms of FN-T for bubbles. The bubble class
appears harder to segment with overall lower metrics val-
ues, also illustrated by all architectures being able to pre-
vent false detections time wise (FP-T and FN-T) for sur-
faces. UNet++’s performance across key metrics positions
it as the optimal model for step 2 of our end-to-end pipeline.

4.1.3 Single vs. multiple segmentation models

Table 3 compares the performance of the six sea surface
type-specific segmentation models (per model, overall uti-
lizing the sea surface boundary classification ground truth
(called “Step 1 GT”), and overall utilizing the full pipeline,
(called “End-to-end, proposed”)), to that of a single global
model trained on all data (all sea surface types at once),
for the echogram segmentation problem on the test set.
All are based on Inception-v3 and UNet++ and include the
“Zoom”, “BL”, and the “CW” improvements. The “Step 1

GT” case allows us to remove any error propagation from
step 1, whereas the “End-to-end, proposed” case showcases
the actual end results. All models related to classes with-
out bubbles have high recall, precision, and IoU. The per-
formance is nuanced for models associated with bubbles
(WOW and MC), as the bubble class has proven more dif-
ficult to segment (see Sec. 4.1.2). MC model results are
less remarkable, attributable to the complexity of learn-
ing a class combining multiple conditions. Comparing our
approach to “Step 1 GT”, there are minor variations (2-
3 points) for bubbles in IoU and precision, with a larger
change in recall due to some step 1 misclassifications. For
surface pixels, the metrics remain consistent (negligible dif-
ference of 0.05 points). There is thus an error propagation
effect, with errors in sea surface type classification affect-
ing the end results, but of limited scope. Utilizing a sin-
gle model applied globally without the classification step
shows a significant drop in performance, with OMVD in-
creasing fivefold, decreases in recall and IoU (significant
for bubbles), and a marked increase in FN-T for bubbles,
compared to the proposed end-to-end approach. This illus-
trates the advantages of our approach’s specialized models
over a generalized single model.
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Figure 5. Sample segmentation results (rows 3 to 7) for fused
echograms (row 1) across models, with ground truth (GT) masks
in row 2. Color code of pixel masks: background (black), blue
(surface), red (bubbles). Timestamp: YYMMDDHH.

4.1.4 Ablation study

Table 4 presents a full ablation study of the proposed
echogram segmentation model on the WOW test set, for the
more difficult bubble class. Experiments #1 to 8 cover all
combinations of adding (or not) the three proposed learn-
ing strategies while training the retained UNet++ architec-
ture: “Zoom”, “BL”, and “CW”. #1 corresponds to the
baseline UNet++, whereas #8 corresponds to the proposed
method. The baseline UNet++ (#1) minimizes FP-T, the
“Zoom” feature (#2) maximizes precision, the “BL” feature
(#3) yields the most accurate boundary tracing (OMVD),
while the “CW” (#4) minimizes FN-T. The combination
of all three learning strategies enhances the performance,
making our approach (#8) the overall best: best RE, IoU,
and recall. This study validates our end-to-end approach’s
superiority over the baseline UNet++ for segmenting intri-
cate echogram features, particularly for the nuanced task of
bubble detection, which is central to the thorough analysis
of Arctic underwater imagery.

4.2. Qualitative evaluation

Fig. 5 shows typical segmentation results of fused multi-
frequency echograms for all compared architectures and for
the proposed segmentation model (UNet++ with custom
learning strategies). Our model exhibits the closest align-
ment with the ground truth, particularly in the accurate de-
lineation of boundaries, essential for the purpose of finding
the sea surface line and bubble extent. Fig. 6, showing ad-
ditional sample results of our method for both the classifi-
cation step and the end results (segmentation), demonstrates
our method’s proficiency in classifying and segmenting var-
ious sea ice conditions. Complex scenarios like WOW and
MC (Fig. 6(b,f,g)) are particularly well processed. Fig. 6(h)
is a noteworthy exception, where a misclassification in step
1 led the (wrong) segmentation model to falsely detect a

Figure 6. Additional sample results of the proposed method
for both classification (GT: ground truth, pred: predicted) and
segmentation. Color code of pixel masks: background (black),
blue (surface), red (bubbles). Timestamps (YYMMDDHH):
(a) 17082416, (b) 17100614, (c) 17112019, (d) 18011204, (e)
17100904, (f) 18010302, (g) 17081505, (h) 17081607. OW: open
water, WOW: windy open water, IK: ice with keels, INK: ice with-
out keels, SC: slushy conditions, MC: mixed conditions.

small layer of bubbles, highlighting a limitation due to error
propagation. However, the infrequency of such errors un-
derscores the reliability and overall accuracy of the pipeline.

5. Conclusion
This paper tackles the automatic identification of ocean
boundaries and near-surface phenomena under challenging
Arctic conditions in multi-frequency echograms using DL
models, to advance the monitoring of coupled ice-ocean
ecosystems. It characterizes the problem as a two-step pro-
cess, first identifying the sea surface type present in a given
echogram via an image classification paradigm, and then
locating the sea surface boundary and identifying any near-
surface bubble cloud and its vertical extent in the water col-
umn via a semantic segmentation paradigm. Several widely
used DL models for both paradigms are compared on the
CBASSA datset, with Inception-v3 and UNet++ standing
out. The paper also proposes three learning-related strate-
gies for the segmentation step that, used in conjunction
UNet++, further improves the performance. Future work
will put an emphasis on differentiating near-surface biol-
ogy signals from bubbles, as these get typically discarded
from biomass estimates when they co-occur with bubbles,
providing more reliable biological analyses, and on testing
how well our models generalize to other Arctic locations.
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