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Abstract

Multi-modal aerial view image translation involves con-
verting aerial images from one modality to another while
preserving basic details and features. These modalities
encompass Synthetic Aperture Radar (SAR), Infrared (IR),
Visible Light (RGB), Electro-Optical (EO), and other im-
age types. Recently, various methods have been proposed
to tackle this task, but the focus tends to be on paired image
research, overlooking the discrepancies found in aerial im-
ages of the same location captured at different times and
angles, termed incomplete matching or multi-view image
translation. Consequently, we propose MvAV-pix2pixHD
to address this issue. For multi-view data sampling, we
propose two methods: random sampling and time-priority
sampling. Additionally, within the pix2pixHD framework,
we introduce an inverse generator to ensure the basic se-
mantic features of the generated images and incorporate
three robust loss functions to constrain the authenticity of
the generated images. We conduct extensive experiments on
two multi-view image translation tasks in the Multi-modal
Aerial View Imagery Challenge: Translation (MAVIC-T).
Experimental results demonstrate the superiority of our
proposed method, and we achieved second place in the
MAVIC-T competition in the 20th IEEE Workshop on Per-
ception Beyond the Visible Spectrum of the CVPR 2024.

1. Introduction

In recent years, Generative Adversarial Networks (GANs)
models [9] have emerged and gradually gained dominance
in image translation tasks. These models employ an

*Equal contribution.
†Corresponding author.

Figure 1. An illustration on Paired and Multi-view Datasets.
The multi-view datasets exhibit a certain degree of correlation
(same location, different times, different angles).

encoder-decoder structure, where the encoder encodes the
input image from the source domain into a low-dimensional
feature vector, and the decoder decodes this feature vector
into an image with the desired style from the target domain.
During the training process, the models utilize paired data
and attempt to learn how to transform the style of input im-
ages into the style of the target images by minimizing the
discrepancy between the generated images and real target
images. Due to their ability to generate realistic images in

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
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image translation tasks, GAN-based image translation mod-
els have found wide applications in various everyday and
entertainment scenarios [13, 21, 28, 34].

Remote sensing technology involves multiple image
modalities, including EO, SAR, RGB, and IR images. In
remote sensing image translation, it is common to trans-
late SAR images into other modalities; however, due to the
presence of significant noise, the translation results often
fall short of expectations. Among these translations, the
most extensively studied is SAR-to-EO, where Yu et al. [7]
have demonstrated the effectiveness of pix2pixHD on SAR-
to-EO paired datasets, while the translation between other
modalities remains to be further explored.

However, in practical scenarios of aerial image transla-
tion tasks, the collection of paired datasets can be challeng-
ing. Aerial images are often obtained from different plat-
forms and perspectives, and they can be influenced by fac-
tors such as lighting and environment, making it difficult to
directly pair them with images from other modalities, such
as ground-level images. In such cases, a common approach
is to train models using unpaired data and employ unsu-
pervised learning or self-supervised learning methods for
image translation. Unsupervised learning methods can au-
tomatically learn the correspondence between images from
a large set of unpaired images, enabling image transla-
tion. Common unsupervised learning methods include Cy-
cleGAN [35] and Autoencoders [17], which do not require
explicit annotation of paired data but instead learn the trans-
formation relationship between images by minimizing re-
construction errors or adversarial losses.

Multi-modal Aerial View Imagery Challenge: Transla-
tion (MAVIC-T) hosts four different modal image trans-
lation tracks, including two paired translation tasks,
SAR2EO and RGB2IR, and two multi-view translation
tasks, SAR2RGB and SAR2IR, as shown in Fig. 1.
This paper first validates the effectiveness of pix2pixHD
on SAR2EO and RGB2IR tasks, then proposes MvAV-
pix2pixHD for multi-view image translation based on
pix2pixHD. For multi-view data sampling, we propose two
methods: random sampling and time proximity sampling.
Additionally, we introduce identity loss and propose high-
level perceptual loss to constrain the authenticity of gener-
ated images based on the pix2pixHD architecture. Finally,
we introduce a reverse generator to ensure the basic seman-
tic features of the generated images.

We conduct extensive experiments on all four image
translation tasks in MAVIC-T. Firstly, we validate the ef-
fectiveness of pix2pixHD on SAR2EO and RGB2IR tasks,
where SAR2EO and RGB2IR individually rank second.
Subsequently, we thoroughly validate the effectiveness
of MvAV-pix2pixHD on SAR2RGB and SAR2IR tasks,
achieving first place in SAR2RGB. In the final leaderboard
of MAVIC-T across all four tracks, we achieve an average

score of 0.33, ranking the second place.
Overall, our main contribution is as follows:

• We propose two multi-view data sampling methods: ran-
dom sampling and time proximity sampling, aimed at
capturing the representation space of the target domain
from different perspectives.

• We propose MvAV-pix2pixHD aimed at addressing
multi-view translation tasks, achieved through a inverse
generator and three powerful loss functions on top of the
pix2pixHD framework.

• We validate the effectiveness of pix2pixHD on two
paired datasets and demonstrate significant improvements
with our proposed MvAV-pix2pixHD on two multi-view
datasets.

2. Related Work
2.1. Paired Image Translation

The objective of image translation is to acquire the mapping
relationship between images from a source domain and im-
ages from a target domain. Paired image translation meth-
ods aim to establish this mapping by training a collection of
paired image pairs [12, 21, 28, 34]. These methods rely on
datasets that provide a one-to-one correspondence between
input and output images.

The Generative Adversarial Network (GAN) model, in-
troduced by Goodfellow et al. [9], has indeed become a
cornerstone in various fields, including image translation.
Paired image translation, in particular, involves converting
an image from one domain to another while preserving its
semantic content. GANs are well-suited for this task due to
their ability to learn complex mappings between domains
without explicit supervision.

The pix2pix model [14] addresses limitations in tradi-
tional GANs for paired image translation by enforcing a
specific correspondence between input and output images.
However, it struggles with generating high-resolution im-
ages with realistic details and texture. To overcome these
challenges, pix2pixHD [28] introduces enhancements such
as a coarse-to-fine generator, multi-scale discriminators,
and an improved adversarial loss. The coarse-to-fine gener-
ator progressively refines low-resolution images to high res-
olution, enabling the generation of more detailed textures.
Multi-scale discriminators evaluate image details at differ-
ent resolutions, preserving fine-grained textures. Enhanced
adversarial loss encourages the generation of more realis-
tic images. These improvements enhance the performance
of paired image translation, resulting in visually compelling
and detailed output images.

2.2. Unpaired Image Translation

However, collecting datasets with one-to-one mappings for
supervised learning is often difficult in real-world scenar-
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ios [1, 4]. Unpaired image translation methods have been
developed to address this challenge by allowing mapping
between multiple domains where direct matches between
images are not available [16, 20, 27, 29, 30]. However,
these methods can be affected by unwanted images, hin-
dering their ability to focus on the most relevant parts of
the images. Researchers are actively working on improving
these models to enhance their reliability and robustness for
more accurate and meaningful mappings between diverse
domains.

In the context of unpaired image-to-image translation,
various methods have emerged to establish connections be-
tween two data domains, labeled as X and Y. Rosales et
al. [22] introduced a Bayesian framework incorporating a
prior derived from a patch-based Markov random field from
a source image, along with a likelihood term derived from
multiple style images. More recently, CoGAN [19] and
cross-modal scene networks [2] employ a weight-sharing
strategy to learn a shared representation across different do-
mains. In parallel, Liu et al. [20] extended this framework
by combining variational autoencoders (VAEs) and gener-
ative adversarial networks (GANs). Concurrently, another
line of research [17] focuses on encouraging shared ”con-
tent” features between input and output, despite potential
style differences. These methods utilize adversarial net-
works and incorporate additional terms to enforce output
similarity to input within predefined metric spaces, such
as class label space [5], image pixel space [24], or image
feature space [26]. By leveraging neural networks, Cycle-
GAN [34] modifies image style while preserving content,
enabling effective unpaired image translation.

2.3. Multi-view image Translation

When source images or target main have multiple views,
achieving satisfactory modeling and image transformation
results becomes extremely challenging due to the excessive
input information. Zhou et al. [32] proposed a method for
generating new views of the same object by learning ap-
pearance flows. Recently, inspired by [25], [3] presented
a cVAE-GAN model for generating multi-view images of
clothing based on a single-view image. However, there are
fewer studies related to the multi-view aerial view transla-
tion task.

3. Methodology

In this section, we first review the pix2pixHD method ap-
plied to paired image translation, focusing on its powerful
generator, discriminator, and the loss function it uses. Then,
we introduce the proposed MvAV-pix2pixHD, applied to
the multi-view aerial view image translation task, as shown
in Fig. 2.

3.1. Preliminary : pix2pixHD

Similar to the pix2pix [14] model, pix2pixHD [28] is a con-
ditional GAN framework for image-to-image translation.
For our task, the goal of the generator G is to translate the
image from the source domain into a realistic image similar
to the target domain, while the goal of the discriminator D is
to distinguish the real image from the translated image. The
framework operates in a supervised environment. In other
words, the training dataset is a set of corresponding image
pairs {(x, y)}, where x is an image from the source domain
and y is the corresponding target domain image. The goal
of conditional GAN is to model the conditional distribution
of real images of the input semantic labeling graph by the
following minimum game:

min
G

max
D

LGAN(G,D) (1)

The pix2pix model is unable to generate high-resolution
images, and the generated images lack details and realistic
texture. Thus, pix2pixHD proposes the following solutions:
coarse-to-fine generator, multi-scale discriminators, and im-
proved adversarial loss to improve the above problems[28].

Coarse-to-fine generator: The generator is divided into
two sub-networks: G1 and G2, with G1 serving as the
global generator and G2 as the local enhancer. The gen-
erator is represented as G = G1, G2, where G1 operates
at a lower resolution and G2 can be utilized to synthesize
higher-resolution images. G1 consists of three components:
a convolutional front-end GF

1 , a set of residual blocks GR
1 ,

and a transposed convolutional back-end GB
1 . Similarly,

G2 also comprises three components: a convolutional front-
end GF

2 , a set of residual blocks[10] GR
2 , and a transposed

convolutional back-end GB
2 . The training process involves

initially training G1, followed by training G2 in ascending
order of resolution. Ultimately, all networks undergo fine-
tuning together. This generator design effectively integrates
global and local information for image synthesis.

Multi-scale discriminators: For a generative network,
designing a discriminator is a rather difficult task. Com-
pared to low-resolution images, for high-resolution images,
the discriminator requires a large receptive field, which re-
quires a large convolutional kernel or a deeper network
structure. Adding a large convolutional kernel or deepening
the network is easy to cause overfitting and will increase
the computational burden. To solve the above problems,
multi-scale discriminators have been proposed. It consists
of three different discriminators, D = D1, D2, D3, which
are the same network structure but operate on different im-
age scales. Then, the generated images are downsampled
with a factor of 2 and 4, resulting in three images with dif-
ferent resolutions, which are then inputted into the three
identical discriminators. This way, the D corresponding to
the image with the smallest resolution will have a larger re-
ceptive field, providing a stronger global sense for image
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Figure 2. The pipeline of our proposed MvAV-pix2pixHD method applied to multi-view image translation tasks. Using the
SAR2RGB task as an example, SAR is the input domain and RGB is the output target domain. The generator G and discriminator D
use coarse-to-fine generator and multi-scale discriminators which are the same as those proposed by pix2pixHD [28], and the structure of
the inverse generator I is exactly similar to that of the generator G, but the training parameters are not shared.

generation, while the D corresponding to the image with
the largest resolution will capture finer features.

With the discriminators, the learning problem in Eq. ( 1)
then becomes a multi-task learning problem of

min
G

max
D1,D2,D3

3∑
k=1

LGAN(G,Dk) (2)

where the objective function LGAN(G,Dk)
1 is given by

E(x, y)[logDk(x, y)] + Es[log(1−Dk(x,G(x)))]. (3)

Improved adversarial loss: To match the generator that
can produce natural statistics at multiple scales, Wang et
al. [28] proposed feature matching loss based on the multi-
scale discriminator. Specifically, they extract features from
the multi-scale discriminator and learn how to match real
image y and synthetic image G(x) with these intermediate
representations. For ease of presentation, we denote the i-
th layer feature extractor of the discriminator Dk as D

(i)
k

(from input to the i-th layer of Dk). The feature matching
loss LFM(G,Dk) is then calculated as:

LFM(G,Dk) = E(x,y)∼pdata(x,y)

T∑
i=1

1

Ni
·

[∥D(i)
k (x, y)−D

(i)
k (x,G(x))∥1]

(4)

1we denote Ex ≜ Ex∼pdata(x)
and E(x,y) ≜ E(x,y)∼pdata(x,y)

for
simplicity.

where T is the total number of layers and Ni denotes
the number of elements in each layer. This GAN dis-
criminator feature matching loss is related to perceptual
loss [6, 8, 15], which has been shown to be useful for im-
age super-resolution [18] and style transfer [15]. Wang et
al. [28] discuss how the discriminator feature matching loss
and the perceptual loss can be jointly used for further im-
proving the performance. For ease of presentation, we de-
note the i-th layer feature extractor of the pretrained VGG-
19 loss network V as V(i) (from input to the i-th layer of
V). The perceptual loss Lp(G) is then calculated as:

Lp(G) = E(x,y)

4∑
i=1

1

26−i
· [∥V(i)(G(x))− V(i)(y)∥1]

+[∥V(5)(G(x))− V(5)(y)∥1]
(5)

The final optimization objective for pix2pixHD are as
follows:

min
G


 max

D1,D2,D3

∑
k=1,2,3

LGAN(G,Dk)


+λ1

∑
k=1,2,3

LFM(G,Dk) + λ2Lp(G)

 (6)

where λ1 and λ2 control the importance of the three
terms. It is worth noting that D3 is not required, and if
the resolution is 512 for image translation tasks, using D1

and D2 is sufficient.
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3.2. MvAV-pix2pixHD

Since pix2pixHD [28] has demonstrated its superiority in
the task of translating 512 × 512 as well as 1024 × 1024
higher resolution images. Wang et al. [28] proved the power
of its generator to outperform common encoder-decoder ar-
chitectures, Unet, etc., and its discriminators have been well
proven to outperform individual discriminators. In addition,
Yu et al. [7] also demonstrated its power in the aerial view
image SAR2EO task compared to pix2pix. Therefore, we
propose MvUAV-pix2pixHD based on pix2pixHD for the
multi-view aerial view image translation, as shown in Fig. 2.

3.2.1 Multi-view dataset sampling

Random sampling. Unlike the Unpaired image dataset,
the multi-view unpaired dataset does not directly randomly
sample images from the complete set of the target domain
for training but requires strategic sampling. We randomly
sample y based on the set of target images Yx matched by
input x, which is used to form the training pair {(x, y)}.

Time proximity sampling. In addition to the random
sampling method, we have proposed a time proximity sam-
pling method. This is motivated by the fact that differ-
ent sensors, when collecting data from different modalities
at the same location, also record the time of acquisition.
Therefore, we can match the images in the source and target
domains with respect to the acquisition time of each image
to obtain a paired dataset. Certainly, due to the heterogene-
ity of sensors and variations in acquisition times, even for
the same spatial location, there may exist differences.

3.2.2 Pipeline of MvAV-pix2pixHD

The pipeline of our proposed MvAV-pix2pixHD applied to
the task of multi-view image translation is shown in Fig. 2.
In addition to the common generator G and discriminator
D, we introduce an inverse generator I . Due to the stochas-
tic nature of the sampling process of the Multi-view dataset,
which is not one-to-one pairing, the original adversarial loss
alone does not guarantee that the learned function can map
a single input x to the desired output y. To further narrow
down the space of possible mapping functions, we argue
that for each image x from domain x, the image transfor-
mation loop should be able to reduce G(x) to the original
image, i.e., x → G(x) → I(G(x)) ≈ x. This also shows
that the generated G(x) has enough information to be re-
duced to x, guaranteeing the basic semantic information of
the original image. This idea comes from cycleGAN [33]
but is not exactly the same. CycleGAN [33] requires two
discriminators to be involved so the model architecture is
more complex. In contrast, we focus only on the task of
unidirectional target translation in the aerial view scenario

Figure 3. An illustration of the Identity loss calculation. G is
usually used for X → Y and I for G(X) ≈ Y → X. Here the
computation is G for Y → Y and I for X → X. This makes the
inputs to G and I richer and makes it clearer that the outputs of G
are in the Y domain and the outputs of I are in the X domain.

and only need one discriminator to ensure that the generated
target image G(x) is realistic.

3.2.3 Loss function

Consistency Loss. For each image x from domain X, the
image inverse translation should be able to bring G(x) back
to the original image, i.e., x → G(x) → I(G(x)) ≈ x. We
call this forward inverse consistency. We incentivize this
behavior using a consistency loss:

Lcon(G, I) = Ex[∥I(G(x))− x∥1] (7)

Identity loss. For translation tasks in aerial view im-
age scenarios, the dataset magnitude tends to be small due
to the difficulty of data collection. We adapt the technique
of Taigman et al. [26] and regularize the generator to be
near an identity mapping when real samples of the tar-
get domain are provided as the input to the generator:i.e.,
Lidentity(G, I) = Ey(y)[∥G(y) − y∥1] + Ex(x)[∥I(x) −
x∥1]. As shown in Fig. 3, this loss guarantees that both the
generator and the inverse generator can firmly perform the
task of mapping to the target domain when the amount of
data is small.

High-level perceptual loss. In order to match the fea-
tures of the generated G(x) and the real target domain im-
age y, the pix2pixHD method uses feature matching loss
and perceptual loss but requires that x and y need to be
highly aligned. However, in the multi-view image transla-
tion task, x and y are not fully aligned, and there are shoot-
ing angle deviations or some translations, so we propose
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high-level perceptual loss, which computes the similarity
using only the outputs of the last two layers of the VGG
model. high-level features can represent the deeper se-
mantic features, and the captured perceptual field is larger.
Therefore this loss is not limited by the need for height
alignment requirement and is more suitable for multi-view
aerial view image translation tasks. The high-level percep-
tual loss Lhp(G) is then calculated as:

Lhp(G) = E(x,y)
1

4
· [∥V(4)(G(x))− V(4)(y)∥1]

+[∥V(5)(G(x))− V(5)(y)∥1]
(8)

Full Objective. The final optimization objective for
MvAv-pix2pixHD are as follows:

min
G,I


 max

D1,D2,D3

∑
k=1,2,3

LGAN(G,Dk)


+λ1Lcon(G, I) + λ2Lidentity(G, I) + λ3Lhp(G)


(9)

where λ1, λ2 and λ3 control the importance of the four
terms. It is worth noting that D3 is not required, and if the
resolution is 512 for image translation tasks, using D1 and
D2 is sufficient.

4. Experiments

In this section, we first briefly discuss the dataset and evalu-
ation metrics, followed by implementation details. In addi-
tion, we will quantitatively evaluate the performance of our
approach on different types of datasets. Finally, we perform
some ablation experiments to demonstrate the effectiveness
of each component.

4.1. Dataset

The dataset used for SAR2EO consists of two types of small
window areas (chips) taken from large images captured by
multiple EO and SAR sensors mounted on the aircraft. The
EO chips are 256 × 256 pix images and belong to targets
taken from an airplane. The SAR chips contain roughly the
same field of view as the corresponding EO images and are
of matching resolution to the EO images. The dataset is
divided into:

The SAR2IR, SAR2RGB, and RGB2IR tasks are derived
from the same dataset. This dataset contains four separate
locations with a stack of geo-spatially aligned images. The
locations are UC Davis, Califonia; Manhattan, New York;
Bingham Copper Mine, Utah; and Centerfield, Utah. The
distribution of the four datasets varies greatly, and it is not
suitable to use all of them together for the translation task;
instead, the appropriate training set is selected for training

according to the actual situation. Among them, the Bing-
ham Copper Mine and Centerfield datasets are mostly sub-
urbs and deserts, the Manhattan dataset is concentrated on
the seashore, and the UC Davis dataset is mostly concen-
trated in the city.

The RGB2IR task is the paired dataset and the SAR2IR
and SAR2RGB tasks are the multi-view datasets. Due to
sensor variability, the resolutions vary widely for each chip.
The resolution of the training data is mostly less than 656 ×
656 pix, but validation and testing require the output image
resolution of 1024 × 1024 pix.

4.2. Metrics

It is open and difficult to evaluate the quality of synthesized
images [23]. L2 Norm, FID and LPIPS are used as the met-
rics.

L2 Norm, also known as Euclidean distance or L2 dis-
tance, is a commonly used distance metric to measure the
difference between two vectors.

The L2 Norm measures the length of the vector, which is
the distance from the origin to the point represented by the
vector. In image processing, the L2 Norm is often used to
calculate the pixel-wise difference between two images.

LPIPS (Learned Perceptual Image Patch Similarity) is a
perceptual image quality metric that measures the similarity
between two images based on the response of deep neural
networks. LPIPS was introduced in a paper by [31] and
has been shown to correlate well with human perception of
image quality.

FID (Fréchet Inception Distance) [11] is a metric for
evaluating the quality of generated images by measuring the
similarity between the feature representations of generated
and real images. It combines two key concepts: the feature
representations from the intermediate layers of the Incep-
tion network and the Fréchet distance. A lower FID score
indicates higher similarity between generated and real im-
ages, indicating better image quality produced by the gen-
erator. FID has been widely used for evaluating the quality
of images generated by Generative Adversarial Networks
(GANs).

The evaluation metric for the final ranking of the
MAVIC-T Challenge is the average of the above three met-
rics for the four translation tasks.

4.3. Implementation Details

Because of the differences in the datasets and types of indi-
vidual tasks, we discuss the implementation details of each
of the four tasks separately.

SAR2EO. We use pix2pixHD to address this paired
dataset translation task. We train our model for 200 epochs
on 4 Nvidia A6000 GPUs with a batch size of 128 and input
resolution of 256 × 256 pix. The other settings are consis-
tent with the SAR2EO solution proposed by Yu et al. [7].
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Task Method Validation phase Test phase

LPIPS ↓ FID ↓ L2 ↓ Average ↓ LPIPS ↓ FID ↓ L2 ↓ Average ↓
SAR2EO Pix2pix [14] 0.715 0.056 0.202 0.324 - - - -
SAR2EO Pix2pixHD [28] 0.609 0.041 0.118 0.256 0.234 0.020 0.033 0.096
RGB2IR Pix2pixHD [28] 0.438 0.447 0.094 0.327 0.377 0.462 0.109 0.316
RGB2IR Grayscale mapping - - - - 0.178 0.216 0.105 0.166
SAR2IR MvAV-pix2pixHD(R) 0.632 0.835 0.141 0.536 0.665 0.715 0.176 0.519
SAR2IR MvAV-pix2pixHD(T) 0.645 0.879 0.172 0.565 0.443 0.900 0.240 0.528

SAR2RGB MvAV-pix2pixHD(R) 0.734 0.868 0.136 0.579 0.701 0.862 0.164 0.575
SAR2RGB MvAV-pix2pixHD(T) 0.689 0.764 0.139 0.530 0.687 0.783 0.157 0.542

Table 1. Validation and Test Metrics for Image Translation Tasks of MAVIC-T challenge. R and T respectively represent random
sampling and time proximity sampling. These metrics comprise LPIPS, FID, and L2, along with the average value of these three metrics.

SAR Output: IR Output: RGB

Figure 4. The effect demonstration of MvAV-pix2pixHD Ap-
plied to Multi-View Image Translation Task(SAR2IR and
SAR2RGB).

RGB2IR. We use pix2pixHD to address this paired
dataset translation task. We train our model for 200 epochs
on 1 Nvidia A6000 GPU with a batch size of 1 and input
resolution of 656 × 656 pix. In the development phase, we
train with the UC Davis dataset, and in the testing phase,
we train with the Manhattan dataset. In the testing stage,

the image of 1024 × 1024 target resolution is obtained by
resizing. Other settings are consistent with the SAR2EO
solution described above.

Due to the nature of this task of RGB2IR, both are noise-
free. We analyze the RGB and IR images of the training
data, such as grayscale mapping and luminance extraction.
We try grayscale mapping then adjusting the brightness of
the grayscale maps by setting the adjustment factor, and fi-
nally outputting images with a similar distribution as IR.

SAR2RGB and SAR2IR. We use our proposed MvAV-
pix2pixHD to address this multi-view dataset translation
task. We use the UC Davis dataset to train our all models for
200 epochs on 2 Nvidia A6000 GPUs with a batch size of
4 and input resolution of 656 × 656 pix. The hyperparam-
eters of the loss function are set λ1 = λ2 = λ3 = 10, and
the other parameter settings are consistent with pix2pixHD.
In the testing stage, the image of 1024 × 1024 target reso-
lution is obtained by resizing.

4.4. Main results

As shown in Tab. 1, we present various metrics for four
tasks during both the validation and testing phases. In the
SAR2EO task, all metrics of pix2pixHD significantly out-
perform the baseline, the pix2pix method. Therefore, we
applied pix2pixHD to the RGB2IR task, which also oper-
ates on a paired dataset. Additionally, for the RGB2IR task,
we employ grayscale mapping during the testing phase.
This proves to be a simple yet effective method, further en-
hancing the quality of generated images, specifically yield-
ing an LPIPS score of 0.178, a FID score of 0.216, and an
L2 score of 0.105.

For the Multi-view dataset, as showmn in Tab. 1, we uti-
lize our proposed MvAV-pix2pixHD method. We assess
the impact of using two data sampling methods, namely
random sampling and time proximity sampling, on the re-
sults. It can be observed that the SAR2IR task performs bet-
ter with Random sampling, while the SAR2RGB task per-
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Rank Team Name SAR2EO RGB2IR SAR2RGB SAR2IR Average

1 NJUST-KMG 0.08 (1) 0.16 (1) 0.55 (3) 0.51 (1) 0.32 (1)
2 USTC-IAT-United 0.10 (2) 0.17 (2) 0.54 (1) 0.52 (2) 0.33 (2)
3 up6 0.12 (5) 0.19 (3) 0.56 (4) 0.54 (3) 0.35 (3)
4 wangzhiyu918 0.11 (4) 0.22 (4) 0.54 (2) 0.55 (4) 0.36 (4)
5 hsansui 0.10 (3) 0.36 (5) 0.57 (5) 0.58 (5) 0.40 (5)

Table 2. The final leaderboard of Multimodal Aerial View Imagery Challenge: Translation(listing the top five).

I loss LPIPS ↓ FID ↓ L2 ↓
w/o Lp 0.70 0.97 0.30
w/o Lidentity,Lp 0.65 0.87 0.17
w/o Lidentity,Lhp 0.64 0.84 0.15
w Lcon,Lidentity,Lhp 0.63 0.83 0.14

Table 3. Ablation study on the MvAV-pix2pixHD method.
Here, Inverse generator I: w/o and loss: Lp represent the ba-
sic pix2pixHD architecture, indicating only the use of the initial
adversarial loss and perceptual loss. The data sampling method
for the aforementioned experiments adopts random sampling, and
evaluation is conducted specifically on the SAR2IR task.

forms better with Time proximity sampling. Furthermore,
as shown in Fig. 4, we demonstrate the generation of high-
quality images for the SAR2RGB and SAR2IR tasks.

In the MAVIC-T competition, our USTC-IAT-United
team achieve an excellent second place in the final test
set. This achievement is attributed to its outstanding per-
formance metrics, notably with SAR2EO task scoring 0.10,
RGB2IR task scoring 0.17, SAR2RGB task scoring 0.54,
and SAR2IR task scoring 0.52. Our team’s composite score
is calculated as 0.33, representing the average of the afore-
mentioned performance metrics. These results strongly
demonstrate the effectiveness of the team’s competition
strategy. The final test set leaderboard is provided in Tab. 2,
listing the top five teams’ scores. It is evident that our pro-
posed MvAV-pix2pixHD application achieved Top-1 and
Top-2 rankings for the SAR2RGB and SAR2IR tasks, re-
spectively, showcasing remarkable performance.

4.5. Ablation studies

In this section, we conduct ablation experiments to demon-
strate the effectiveness of our framework. The validation
dataset was utilized for the experimentation.

Effectiveness of identity loss. Identity loss can be ap-
plied in unpaired image translation tasks and similarly en-
hances multi-view tasks significantly. As shown in Table
Tab. 3, it reduces LPIPS and L2 metrics by 10% and 13%,
respectively.

Effectiveness of high-level perceptual loss. The per-
ceptual loss simultaneously incorporates low-level and

high-level features for computation, which is unreasonable
for multi-view image pairs. Therefore, we only utilize high-
level features for calculation. As shown in Table Tab. 3,
compared to Lp, the introduction of Lhp results in higher
quality image generation.

Effectiveness of inverse generator. The inverse genera-
tor ensures that the generated image G(x) can be restored to
the original image x and largely preserves the semantic con-
tent of the original image. In our experiments, we find that
adding the inverse generator and the corresponding consis-
tency loss yields better results.

5. Conclusion

This paper validates the effectiveness of pix2pixHD on
SAR2EO and RGB2IR paired translation tasks. Addition-
ally, we propose MvAV-pix2pixHD based on pix2pixHD,
suitable for translation tasks on multi-view high-definition
datasets. We utilize the coarse-to-fine generator and
multi-scale discriminators from pix2pixHD to construct our
model architecture, ensuring the resolution and quality of
the generated images. Furthermore, we introduce the re-
verse generator and consistency loss to further improve the
conversion quality. Additionally, we propose high-level
perceptual loss and introduce identity loss to constrain the
authenticity of the generated images. We evaluate the per-
formance of our proposed method in the MAVIC-T com-
petition, where all our pix2pixHD-based models achieved
an average score of 0.33 across four tasks, ranking second
place in the competition. In the future, we will continue
to delve into this field, aiming to devise model architectures
that are better suited for multi-view aerial view image trans-
lation.
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