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Figure 3. (a): The architecture of the base model with a single VMRNN cell, VMRNN-B. (b): The architecture of the deep model with
multiple VMRNN cells, VMRNN-D.

activated by Silu. This combination produces the final out-
put of the VSS block. The architecture takes a novel path
compared to vision transformer design, which typically fol-
lows a Norm → attention → Norm → MLP sequence
within a block, and omits the MLP stage. This deviation
renders the VSS block less complex than the ViT block,
enabling the incorporation of a greater number of blocks
within a comparable total model depth constraint.

VSS block first recovers linear projections to the im-
age shape. (From [B, L, C] to [B, H, W, C]). Then VSS
block addresses the challenges associated with 2D image
data by employing 2D-selective-scan (SS2D), as illustrated
in Fig. 2 (c). This approach unfolds image patches in four
distinct directions: from the top-left to the bottom-right,
from the bottom-right to the top-left, from the top-right to
the bottom-left, and from the bottom-left to the top-right,
creating four distinct sequences, as depicted in the Scan Ex-
pand Stage. Subsequently, each feature sequence(scan) will
be processed through the S6 Block. Finally, these sequences
are reconfigured back into individual images, as depicted in
the Scan Merge Stage. Given input feature z, the output
feature z̄ of SS2D can be written as:

zv = expand(z; v) (7)
z̄v = S6(zv) (8)
z̄ = merge(z̄1; z̄2; z̄3; z̄4) (9)

where v ∈ V = {1; 2; 3; 4} is four different scanning
directions. expand(·) and merge(·) corresponding to the
scan expand and scan merge operations. The selective scan
space state sequential model (S6) in Eqn. 8 is the core SSM
operator of the VSS block. It enables each element in a 1D
array to interact with any of the previously scanned samples
through a compressed hidden state. We plot the equations
of S6 process in Fig. 2 (c). in S6 Block stage.

4. Experiments

4.1. Implementations

We employ the Mean Squared Error (MSE) loss function
across all three datasets. For KTH [39] and TaxiBJ [62], our
methodology aligns with OpenSTL [47]. For the Moving
MNIST [44] dataset, we adhere to the experimental setup
detailed in [48]. The precise model parameters, hyper-
parameters(including batch size, learning rate, and training
epochs), and training machines utilized for each dataset are
comprehensively enumerated in Table 1. For TaxiBJ, we
train 200 epochs with a learning rate of 4e-4 with a single
A6000 GPU, using a batch size of 16. For KTH, we train
100 epochs with a learning rate of 5e-4 and 1e-4 for KTH20
and KTH40, respectively. For the Moving MNIST dataset,
we adhere to the experimental setup detailed in [48] and
train 2000 epochs with a learning rate of 5e-5 and a batch
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