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Abstract

Combining Convolutional Neural Networks (CNNs) or
Vision Transformers(ViTs) with Recurrent Neural Networks
(RNNs) for spatiotemporal forecasting has yielded unpar-
alleled results in predicting temporal and spatial dynamics.
However, modeling extensive global information remains a
formidable challenge; CNNs are limited by their narrow re-
ceptive fields, and ViTs struggle with the intensive compu-
tational demands of their attention mechanisms. The emer-
gence of recent Mamba-based architectures has been met
with enthusiasm for their exceptional long-sequence model-
ing capabilities, surpassing established vision models in ef-
ficiency and accuracy, which motivates us to develop an in-
novative architecture tailored for spatiotemporal forecast-
ing. In this paper, we propose the VMRNN cell, a new re-
current unit that integrates the strengths of Vision Mamba
blocks with LSTM. We construct a network centered on VM-
RNN cells to tackle spatiotemporal prediction tasks effec-
tively. Our extensive evaluations show that our proposed
approach secures competitive results on a variety of tasks
while maintaining a smaller model size. Our code is avail-
able at https://github.com/yyyujintang/VMRNN-PyTorch.

1. Introduction

In recent years, spatiotemporal prediction has experi-
enced a surge in interest due to its potential to enhance a
wide range of practical applications. These applications
span from precipitation forecasting [41, 42, 49, 54], au-
tonomous driving [1,25,28], traffic flow prediction [59,62],
and human motion forecasting [51, 63] to representation
learning [20, 38]. The ability to accurately predict spatial
and temporal variations holds immense promise for improv-
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Figure 1. Performance comparison on TaxiBJ over spatial-
temporal predictive learning methods. VMRNN outperforms pre-
vious methods in terms of Mean-Squared-Error (MSE, lower the
better) with a lower computational cost (GFLOPs).

ing decision-making processes and operational efficiencies
across diverse sectors, underscoring the importance of con-
tinued research and development in spatiotemporal anal-
ysis. The complex physical interactions and the unpre-
dictable characteristics of spatiotemporal data present sig-
nificant obstacles for solely data-driven deep learning ap-
proaches to attain accurate predictions. The essence of spa-
tiotemporal predictive learning lies in its capability to delve
into the spatial correlations and temporal progressions in-
herent in the physical realm, highlighting its potential to
uncover deep insights into the dynamics of our world.

To address these challenges, a plethora of methodologies
have been developed, including recurrent-based methods
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which combine Convolutional Neural Networks (CNNs)
or Vision Transformers(ViTs) with Recurrent Neural Net-
works (RNNs) [3,14,27,41,48,52-54,56,61] and recurrent-
free methods like SimVP [7, 45], which fully based on
CNN. As for recurrent-based methods, lots of innovative
RNNS are proposed. Among these, ConvLSTM [4 1] repre-
sents a pivotal advancement by augmenting the fully con-
nected LSTM with convolutional operations to simultane-
ously capture spatial and temporal dependencies. Build-
ing upon ConvLSTM, a variety of innovative approaches
have emerged. PredRNN [54] and MIM [56], for instance,
refine the LSTM unit’s internal mechanics, while E3D-
LSTM [53] introduces 3D convolutions into LSTM struc-
tures. PhyDNet utilizes a CNN-based approach to untan-
gle physical dynamics, and MAU [3] introduces a motion-
aware unit for enhanced motion capture. Recent recurrent-
free models, like SimVP [7], and the Temporal Attention
Unit (TAU) [46], which bifurcates temporal attention into
static intra-frame and dynamic inter-frame components, of-
fer fresh perspectives on spatiotemporal modeling. Fur-
thermore, advancements such as the Dynamic Multi-scale
Voxel Flow Network (DMVEN) [19] and the two-stream
MMVP [19] framework underscore the recent innovation in
this field, emphasizing the separation of motion and appear-
ance for improved prediction. SwinLSTM [48] successfully
integrates Swin Transformer [3 1] with LSTM which stands
out as a strong spatiotemporal prediction baseline.

While these approaches have demonstrated notable suc-
cess in spatiotemporal forecasting, CNNs are intrinsically
constrained by their local receptive fields [33], limiting
their capacity to assimilate information from distant image
regions. ViTs generally exhibit superior performance com-
pared to CNNs, which could be attributed to global recep-
tive fields and dynamic weights facilitated by the attention
mechanism. However, the attention mechanism requires
quadratic complexity in terms of image sizes, resulting in
expensive computational overhead when addressing down-
stream dense prediction tasks.

Recently, Structured State Space Models (S4) [12, 13]
have emerged as notably efficient and effective in modeling
extensive sequences. Mamba [9] positions itself as a poten-
tial breakthrough for addressing long-range dependencies
in various tasks, which innovatively introduces the selectiv-
ity of the input sequence and uses the scan method. Un-
like transformers, which often exhibit quadratic scaling for
sequence length, Mamba maintains a linear or near-linear
scaling, all the while adeptly handling long-range depen-
dencies. This attribute has catapulted them to the fore-
front of continuous long-sequence data analysis, achiev-
ing state-of-the-art results in fields such as natural language
processing and genomic analysis. A series of pioneering
studies [8, 15, 16,29, 30, 34, 58, 60, 65] have begun to in-
vestigate the utility of Mamba models within the vision

sector, showcasing their versatility across a broad spec-
trum of vision-based applications. These investigations into
Mamba’s application—ranging from basic image recogni-
tion to complex segmentation tasks—have yielded encour-
aging outcomes, underscoring the significant potential that
SSMs hold in revolutionizing vision tasks.

Inspired by these studies, we introduce VMRNN, an in-
novative recurrent cell that merges Vision Mamba blocks
(VSS Block) with an LSTM module to effectively distill
spatiotemporal representations. Furthermore, we develop
a model centered around VMRNN, specifically engineered
to discern both spatial and temporal dynamics crucial for
spatiotemporal forecasting. Unlike previous image-level vi-
sion tasks, spatiotemporal predictive learning predicts fu-
ture frames from past frames at the video level. Our model
processes each frame at the image level, segments them into
patches, and flattens these patches before passing them to
the patch embedding layer for preliminary processing. Our
method inherits the attribute of the recurrent-based meth-
ods. The VMRNN layer utilizes these transformed patches
with previous states to capture spatiotemporal representa-
tions for the next prediction.

The contributions of this research are threefold:

¢ We introduce VMRNN, an innovative recurrent cell
that fuses an LSTM architecture with Vision Mamba
Blocks. To the best of our knowledge, we are the
first to introduce Mamba into vision-based spatial-
temporal forecasting to harness robust sequence mod-
eling prowess.

* We propose two new architectures based on VMRNN,
VMRNN-B, and VMRNN-D, excelling in extracting
spatiotemporal representations and providing a new
strong baseline for spatiotemporal forecasting.

» Extensive evaluation on Moving MNIST, TaxiBJ, and
KTH demonstrates that our VMRNN not only shows a
significant reduction in computational complexity and
parameters but also matches or surpasses SOTA meth-
ods on all three datasets across metrics, validating its
efficacy on three pivotal datasets.

2. Related Work
2.1. Convolution-based Architecture

Previous models that merge CNNs with RNNs adopt a
range of tactics to more effectively grasp the nuances of
spatiotemporal relationships, aiming to enhance predictive
precision. ConvLSTM [41] evolves from FC-LSTM [44]
by integrating convolutional operations instead of fully con-
nected ones, facilitating the learning of spatiotemporal in-
terdependencies. PredRNN [54] and its Spatiotemporal
LSTM (ST-LSTM) unit mark a significant step, enabling the
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Figure 2. (a): The detailed structure of the proposed recurrent cell: VMRNN. VSB and LP denote VSS Block and Linear Projection. (b):
The architecture of VSS Block. (c): The SS2D process, includes three stages: Scan Expand, S6 Block, and Scan Merge.

concurrent processing of spatiotemporal data by propagat-
ing hidden states both horizontally and vertically. Building
on this, PredRNN++ [52] contributes the Gradient Highway
unit to mitigate the vanishing gradient issue encountered by
its predecessor. Meanwhile, E3D-LSTM [53] enhances the
ST-LSTM’s memory capacity by implementing 3D convo-
lutions. The MIM model [56] reimagines the ST-LSTM’s
forget gate with dual recurrent units to better address the
learning of non-stationary information within predictions.
CrevNet [61] employs a CNN-based reversible architec-
ture to decode complex spatiotemporal patterns. Addition-
ally, PhyDNet [14] embeds physical principles into CNN
frameworks to refine the quality of its predictions. Collec-
tively, these models [14,41,52-54,56,61] showcase a vari-
ety of approaches to enhance the capture of spatiotemporal
dependencies and have garnered commendable outcomes.
Nonetheless, conventional convolutional methodologies are
constrained in their ability to seize spatiotemporal depen-
dencies due to their intrinsic localized operation.

2.2. Transformer-based Architecture

The adoption of the Transformer model [50], initially
celebrated in natural language processing, has prompted its
exploration within the realm of computer vision. The Vi-
sion Transformer (ViT) [4] broke new ground by directly
applying Transformer architecture to image classification,

demonstrating impressive results. Further advancing this
domain, the Swin Transformer [31] delivers remarkable
achievements across a spectrum of tasks such as image
classification, semantic segmentation, and object detection,
thanks to its innovative shifted window strategy and hierar-
chical structure. Building on this, SwinLSTM [48] innova-
tively merges the Swin Transformer [31] with LSTM, es-
tablishing a new robust benchmark for spatiotemporal fore-
casting. However, ViT and its derivatives exhibit a notable
drawback: the attention mechanism’s quadratic complexity
in relation to image size, which imposes considerable com-
putational demands.

2.3. State Space Models

State Space Models(SSMs) are recently proposed mod-
els that are introduced into deep learning as state space
transforming [ 12, 13,43]. Inspired by continuous state space
models in control systems, combined with HiPPO [10] ini-
tialization, LSSL [13] showcases the potential to handle
long-range dependency problems. However, due to the pro-
hibitive computation and memory requirements induced by
the state representation, LSSL is infeasible to use in prac-
tice. To solve this problem, S4 [12] proposes to normalize
the parameter into the diagonal structure. Since then, many
flavors of structured state space models sprang up with dif-
ferent structures like complex-diagonal structure [11, 17],
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multiple-input multiple-output supporting [43], decompo-
sition of diagonal plus low-rank operations [!8], selection
mechanism [9]. These models are then integrated into large
representation models [5, 35, 36]. Among these develop-
ments, Mamba [9] proposes the selective scan space state
sequential model (S6) Block, which stands out as a promis-
ing innovation for tackling long-range dependencies across
a spectrum of tasks. It introduces a novel approach by selec-
tively processing the input sequence and employing a scan-
ning method, marking a potential breakthrough in the field.

Several latest studies have preliminarily explored the ef-
fectiveness of Mamba in the vision domain. For instance,
Vim [65] proposed a generic vision backbones with bidi-
rectional Mamba blocks. In contrast, VMamba [30] builds
up a Mamba-based vision backbone with hierarchical repre-
sentations. Additionally, VMamba introduced a cross-scan
module to solve the direction-sensitive problem due to the
difference between 1D sequences and 2D images. In this
paper, we try to integrate the Vision Mamba blocks pro-
posed in VMamba with the simplified LSTM to form a VM-
RNN recurrent cell and use it as the core to build a model to
capture temporal and spatial dependencies to perform spa-
tiotemporal prediction tasks.

3. Method
3.1. Overall Architecture

The architecture of our predictive model is illustrated
in Fig. 3 (a) and (b). Following the framework presented
in [48], we introduce a base model and a deeper model
centered on the VMRNN Cell, denoted as VMRNN-B and
VMRNN-D, respectively. As shown in Fig. 3 (a), at each
time step, the image is divided into non-overlapping patches
of size P2 with patch size P. And then these image patches
are flattened and sent into the patch embedding layer, which
performs a linear transformation of the patches’ original
features into a specified dimensional space.

For the VMRNN-B model, the VMRNN layer processes
the embedded image patches, along with the previous time
step’s hidden state H;_; and cell state C;_1, to generate
the current hidden state H; and cell state C;. As illus-
trated in Fig. 2(a), H, is replicated, producing two versions:
one is directed to the reconstruction layer, and the other,
in conjunction with Cy, serves the VMRNN layer for the
subsequent time step. For VMRNN-B, the architecture pri-
marily relies on the stacking of VMRNN layers. For the
VMRNN-D variant, we incorporate more VMRNN Cells
and introduce Patch Merging and Patch Expanding layers,
as outlined in [2]. The Patch Merging layer is employed
for downsampling, effectively reducing the spatial dimen-
sions of the data, which aids in reducing computational
complexity and capturing more abstract, global features.
Conversely, the Patch Expanding layer is used for upsam-

pling, which increases the spatial dimensions, facilitating
the restoration of detail and enabling precise localization of
features in the reconstruction phase. Ultimately, the recon-
struction layer takes the hidden state H; from the VMRNN
layer and scales it back to the input size, generating the pre-
dicted frame for the next time step.

The integration of downsampling and upsampling pro-
cesses presents significant advantages in our predictive ar-
chitecture. Downsampling simplifies the input representa-
tion, allowing the model to process higher-level features
with reduced computational overhead. This is particularly
beneficial for understanding complex patterns and relation-
ships within the data at a more abstract level. Upsampling,
on the other hand, ensures that the detailed spatial infor-
mation is not lost. This balance between abstraction and
detail preservation is key to achieving high-quality predic-
tions, especially in tasks requiring fine-grained understand-
ing and visual data generation.

3.2. VMRNN Module

VMRNN Module removes all weights W and biases b in
ConvLSTM [41] to obtain Eqn. 3:

iy = fr=o0r =0 (X¢ + Hy1) (D
Ct = ft O) Ct_l + it ® tanh (Xt + Ht—l) (2)
Ht =0t ©® tanh (Ct) (3)

We propose the VMRNN Module, detailed in Fig. 2 (a).
In VMRNN, the long-term and short-term temporal depen-
dencies are captured by updating the information of cell
states C, and hidden states H; are updated from a horizon-
tal perspective. And the VSS Blocks vertically learn spatial
dependencies. We show the key equations of VMRNN in
Eqn. 6, where VSB means the VSS Blocks in Sec. 3.3 and
LP is short for the Linear Projection:

F, =0 (VSB(LP (X;; H;_1))) “)

Cy = F, ® (tanh (VSB (LP (Xy; Hi_1))) + Ci—1)  (5)

Ht = Ft O] tanh (Ct) (6)
3.3. VSS Block

The structure of VSS block is illustrated in Fig. 2 (b).
The process begins with the input being processed through
an initial linear embedding layer, which is then split into
two distinct information streams. The first stream is chan-
neled through a 3 x 3 depth-wise convolution layer, enriched
with a Silu activation function [40] before it progresses into
the SS2D module. After SS2D, its output is refined by a
layer normalization process, and subsequently, it merges
with the second stream’s output, which has been previously
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Figure 3. (a): The architecture of the base model with a single VMRNN cell, VMRNN-B. (b): The architecture of the deep model with

multiple VMRNN cells, VMRNN-D.

activated by Silu. This combination produces the final out-
put of the VSS block. The architecture takes a novel path
compared to vision transformer design, which typically fol-
lows a Norm — attention — Norm — MLP sequence
within a block, and omits the MLP stage. This deviation
renders the VSS block less complex than the ViT block,
enabling the incorporation of a greater number of blocks
within a comparable total model depth constraint.

VSS block first recovers linear projections to the im-
age shape. (From [B, L, C] to [B, H, W, C]). Then VSS
block addresses the challenges associated with 2D image
data by employing 2D-selective-scan (SS2D), as illustrated
in Fig. 2 (c). This approach unfolds image patches in four
distinct directions: from the top-left to the bottom-right,
from the bottom-right to the top-left, from the top-right to
the bottom-left, and from the bottom-left to the top-right,
creating four distinct sequences, as depicted in the Scan Ex-
pand Stage. Subsequently, each feature sequence(scan) will
be processed through the S6 Block. Finally, these sequences
are reconfigured back into individual images, as depicted in
the Scan Merge Stage. Given input feature z, the output
feature z of SS2D can be written as:

2y = expand(z,v) Q)
z = merge(Zz1, Z2, Z3, Z4) ©)

where v € V = {1,2,3,4} is four different scanning
directions. expand(-) and merge(-) corresponding to the
scan expand and scan merge operations. The selective scan
space state sequential model (S6) in Eqn. 8 is the core SSM
operator of the VSS block. It enables each element in a 1D
array to interact with any of the previously scanned samples
through a compressed hidden state. We plot the equations
of S6 process in Fig. 2 (c). in S6 Block stage.

4. Experiments
4.1. Implementations

We employ the Mean Squared Error (MSE) loss function
across all three datasets. For KTH [39] and TaxiBJ [62], our
methodology aligns with OpenSTL [47]. For the Moving
MNIST [44] dataset, we adhere to the experimental setup
detailed in [48]. The precise model parameters, hyper-
parameters(including batch size, learning rate, and training
epochs), and training machines utilized for each dataset are
comprehensively enumerated in Table 1. For TaxiBJ, we
train 200 epochs with a learning rate of 4e-4 with a single
A6000 GPU, using a batch size of 16. For KTH, we train
100 epochs with a learning rate of Se-4 and 1e-4 for KTH20
and KTH40, respectively. For the Moving MNIST dataset,
we adhere to the experimental setup detailed in [48] and
train 2000 epochs with a learning rate of 5e-5 and a batch
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size of 8 using a single RTX 3090Ti GPU.

We utilize an extensive array of evaluation metrics, in-
cluding Mean Squared Error (MSE), Mean Absolute Error
(MAE), Peak Signal Noise Ratio (PSNR), and the Struc-
tural Similarity Index Measure (SSIM) [57]. These met-
rics are computed across all predicted frames, where lower
MAE and MSE scores, or higher SSIM and PSNR scores,
signify superior prediction precision. To assess the models’
computational demand, we measure the number of parame-
ters, and floating-point operations (FLOPs) on TaxiBJ, and
report the inference speed in frames per second (FPS) on a
single NVIDIA A6000 GPU. This multifaceted evaluation
provides insight into the efficiency and scalability of differ-
ent models.

Following SwinLSTM [48], we adopt MSE and SSIM as
our metrics for evaluating the Moving MNIST dataset, and
SSIM and PSNR for the KTH dataset. Following Open-
STL [47], we provide a comprehensive analysis of the Tax-
iBJ dataset that includes not just MSE, MAE, and SSIM,
but also detailed evaluations of model parameters and com-
putational complexity, measured in FLOPs.

We chose three pivot datasets across various domains, in-
cluding synthetic moving object trajectory, human motion,
and traffic flow.

Moving MNIST. The moving MNIST dataset [44] serves
as a benchmark synthetic dataset for evaluating sequence
prediction models. Our approach to generating Moving
MNIST sequences is in line with the methodology de-
scribed in [44], where each sequence comprises 20 frames.
We designate the initial 10 frames for input and the subse-
quent 10 frames as the prediction target. We adopt 10000
sequences for training and for fair comparisons, we use the
pre-generated 10000 sequences [7] for validation.

KTH. The KTH dataset [39] contains 25 individuals per-
forming six types of human actions (walking, jogging, run-
ning, boxing, hand waving, and hand clapping) in 4 differ-
ent scenarios. Following previous works [7,47,53], we use
persons 1-16 for training and persons 17-25 for validation
and resizing each image to 128 x 128. The models predict
10 frames from 10 observations at training time and 20 or
40 frames at inference time.

TaxiBJ. TaxiBJ [62] includes GPS data from taxis and me-
teorological data in Beijing. Each data frame is visualized
as a 32 x 32 x 2 heatmap, where the third dimension encap-
sulates the inflow and outflow of traffic within a designated
area. Adhering to the experimental framework proposed in
[62], we allocate the final four weeks of data for testing,
while the preceding data is utilized for training. Our predic-
tion model is tasked with using four sequential observations
to forecast the subsequent four frames.

4.2. Main results

Tables 2, 3, and 4 provide quantitative comparisons be-
tween VMRNN and previous state-of-the-art models across
three distinct datasets. These comparisons highlight VM-
RNN’s exceptional capability as an efficient and highly gen-
eralizable approach for spatiotemporal prediction.

Moving MNIST We present the quantitative outcomes in
Table 2, where our VMRNN model demonstrates notably
superior performance compared to all other evaluated mod-
els. We report the results of previous research directly. On
the Moving MNIST dataset, VMRNN not only achieves ob-
viously lower MSE but also secures higher SSIM scores,
significantly surpassing earlier methods by a substantial
margin and archives 6.8% improvement over SwinLSTM.
TaxiBJ We present the quantitative outcomes in Table 3,
where our VMRNN model demonstrates notably superior
performance compared to all other evaluated models. For
SwinLSTM, which is not reported in OpenSTL, we follow
the same hyper-parameters with our VMRNN to ensure a
fair comparison. For other methods, we use the results re-
ported in OpenSTL. Obviously, on the TaxiBJ dataset, VM-
RNN not only registers substantially lower MSE and MAE
values but also attains higher SSIM scores, thereby eclips-
ing previous methodologies to a considerable extent.

In Fig. 1, we provide a comparative analysis of param-

eters and FLOPs among recent spatiotemporal predictive
learning methodologies applied to the TaxiBJ dataset. A po-
sition towards the lower left indicates a model that not only
requires fewer parameters and computational resources but
also delivers superior predictive performance, as evidenced
by lower MSE values. Our VMRNN model showcases
remarkable efficiency and effectiveness, achieving a clear
lead by requiring fewer parameters and FLOPs while main-
taining high prediction accuracy. As for Moving MNIST
and KTH, the performance is similar, with fewer parame-
ters and FLOPs than other methods.
KTH We present the quantitative results in Table 4. Our
VMRNN model shows higher SSIM than all previous meth-
ods and comparable PSNR value with SwinLSTM. We re-
port the results from the previous study directly and from
our practice in OpenSTL, VMRRN achieves both better re-
sults in PSNR and SSIM than SwinLSTM by a large mar-
gin, either following the hyper-parameter setting in SwinL-
STM or adopting the same setting as VMRNN.

4.3. Ablation Study

In this section, we perform ablation studies on TaxiBJ to
analyze the impact of different elements on model perfor-
mance. We discuss three major elements: the convolution
layer, patch size, and the number of VSS Blocks.

The Convolution Layer. The role of the VSS Block convo-
lution layer is to decode the spatiotemporal representations
extracted by the VMRNN cell. We conduct experiments
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Table 1. Experimental setup. VMRNNSs denotes the number of the VMRNN Cells in the spatio-temporal forecasting network. VSB
denotes the number of the VSS Blocks in VMRNN cell. Patch size indicates the patch token size.

Dataset Model VMRNNs VSB Patch Size Resolution Train Test Epochs Learning Rate Batch Size GPU
Moving MNIST  VMRNN-D 4 (2,6,6,2) 2 (64,64, 1) 10 — 10 10 — 10 2000 Se-5 8 1 * RTX 3090
KTH VMRNN-B 1 6 2 (128,128,1) 10 — 10 10 — 20/40 100 Se-4/1e-4 2/1 4 * A6000
TaxiBJ VMRNN-B 1 12 4 (32,32,2) 4 -4 4 -4 200 4e-4 16 1 * A6000

Table 2. Quantitative comparison of VMRNN and other methods
on Moving MNIST. Each model observes 10 frames and predicts
the subsequent 10 frames. Lower MSE and higher SSIM indicate
better predictions.

Table 3. The performance on the TaxiBJ dataset. We provide
a comparative analysis of parameters and FLOPs among recent
spatiotemporal predictive learning methodologies. Our VMRNN
model showcases remarkable efficiency and effectiveness.

Method Para(M) FLOPs(G) FPS MSE| MAE| SSIM1?
Method MSE | SSIM ConvLSTM [41]  15.0 20.7 815 03358 1532 0.9836
PredNet [32] 12,5 0.9 5031 03516 1591  0.9828
ConvLSTM [41] 103.3 0.707 PredRNN [54] 237 24 416 03194 1531 09838
DEN [21] 89.0 0.726 PredRNN++[52] 384 63.0 301 03348 1537 0.9834
FRNN [ ] 69.7 0.813 E3DLSTM [53] 51.0 98.19 60  0.3421 1498 0.9842
) ) PhyDNet [14] 3.1 5.6 982 0.3622 1553  0.9828
VPN [24] 64.1 0.870 MIM [56] 37.9 64.1 275 03110 14.96  0.9847
PredRNN [54] 56.8 0.867 MAU [3] 4.4 6.0 540 03268 1526  0.9834
CausalLSTM [57] 46.5 0.898 PredRNNv2 [55]  23.7 42.6 378 03834 1555 0.9826
) ’ SimVP [7] 13.8 3.6 533 0.3282 1545  0.9835
MIM [56] 44.2 0.910 TAU [46] 9.6 25 1268 0.3108 14.93  0.9848
E3D-LSTM [53] 41.3 0.910 SimVPv2 [45] 10.0 2.6 1217 0.3246 15.03  0.9844
LMC [27] 415 0.924 TUMRNN 26 05 536 02687 149 0988
MAU [3] 27.6 0.937 - - - - -
PhyDNet [14] 24.4 0.947
CrevNet [61] 22.3 0.949
SimVP [7] 23.8 0.958
TAU [46] 19.8 0.957 . .
MMVP [64] 272 0.948 of different patch sizes on performance, we conducted ex-
SwinLSTM [48] 17.7 0.962 periments on the TaxiBJ and the KTH dataset using patch
VMRNN 16'5 0'965 sizes 2, 4, and 8. As depicted in Table 5, a patch size of 4

on depth-wise convolutions (DW Conv), convolution, and
depth-wise convolutions with dilations (DW-D Conv) to an-
alyze the impact of different decoding methods. Follow-
ing [46], we combine DW Conv-DW-D Conv-1x1 Conv to
model the large kernel convolutions, Table 6 shows that DW
Conv performs much better than the other two methods.

Patch Size. The choice of image patch size critically influ-
ences the length of the input token sequences, where smaller
patch sizes yield longer sequences. To evaluate the impact

for TaxiBJ and 2 for KTH distinctly outperforms the others.

The Number of VSS Blocks. To investigate the capabili-
ties of different VSS blocks to model global spatial infor-
mation, we examined the impact of varying the number of
VSS blocks from 2 to 18. Fig. 5 illustrates the MSE and
SSIM outcomes across different counts of VSS blocks on
the TaxiBJ dataset. The results exhibit a trend of improve-
ment followed by deterioration as the number of blocks in-
creases, with an optimal performance observed at 12 VSS
blocks, which achieve the best results in terms of both MSE
and SSIM metrics.
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Table 4. Quantitative evaluation on the KTH test set. We present
the model observing 10 frames to predict 20 or 40 frames, and all
metrics are averaged over the predicted frames. Higher SSIM and
PSNR indicate better prediction quality.

KTH (10 — 20) KTH (10 — 40)
Method SSIM 7 PSNR T SSIM 1 PSNR T

ConvLSTM [41] 0.712 23.58 0.639 22.85

SAVP [6] 0.746 25.38 0.701 23.97
FRNN [37] 0.771 26.12 0.678 23.717
DFEN [21] 0.794 27.26 0.652 23.01
PredRNN [54] 0.839 27.55 0.703 24.16
VarNet [23] 0.843 28.48 0.739 25.37

SVAP-VAE [26] 0.852 27.71 0.811 26.18
PredRNN++ [52] 0.865 28.47 0.741 25.21
E3d-LSTM [53] 0.879 29.31 0.810 27.24
STMFANet [22] 0.893 29.85 0.851 27.56
SwinLSTM [48] 0.903 34.34 0.879 33.15

VMRNN 0.907 34.06 0.882 32.69

Table 5. Ablation study on patch size of TaxiBJ and KTH.

TaxiBJ KTH 10 — 20

Patchsize | MSE MAE SSIM | SSIM  PSNR
2 0.3566 1546 09823 | 0.907  34.06

4 0.2887 14.69 0.9858 | 0.887 32.87

8 0.3400 1532 09843 | 0.874  32.10

Table 6. Ablation study on different convolution methods of VSS
Block on TaxiBlJ.

TaxiBJ
Convolution Method | MSE  MAE  SSIM
DWConv 0.2887 14.69 0.9858
Conv2d 0.3185 16.58 0.9797
DW-DW-D-1x1 0.3050 15.02 0.9853
2 ‘ = 09845
S 031 2
’ Vss Bloz!;l Number o : VSs Bloclﬁ Number N
(a) MSE (b) SSIM

Figure 5. Ablation study on the different numbers of VSS Block
with VMRNN on TaxiBJ.

4.4. Visualization

We present qualitative results of VMRNN on Moving
MNIST in Fig. 6, TaxiBJ in Fig. 7, and KTH in Fig. 4. For
all datasets, the first line is the input, the second line is the

ground truth, and the third line is the prediction of VMRNN.
For TaxiBJ, we add the fourth line to show the difference be-
tween prediction and target. The visualization results reveal
that VMRNN delivers impressive predictive performance,
maintaining high accuracy across extended horizons.

Figure 6. Qualitative results of VMRNN on Moving MNIST.
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Figure 7. Qualitative results of VMRNN on TaxiBJ.

5. Conclusion

In this work, we introduce VMRNN, a novel approach
that integrates LSTM architecture with VSS Blocks to
tackle spatiotemporal forecasting challenges. Through
rigorous evaluation across diverse datasets, VMRNN has
proven its prowess by delivering superior performance
while maintaining a smaller model size. This advancement
is attributed to the model’s enhanced capability to learn and
leverage global spatial dependencies with linear complex-
ity, enabling a more refined understanding of spatiotempo-
ral dynamics. The findings show that VMRNN sets a new
strong baseline for future explorations in the field.
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