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Abstract

Although unsupervised domain adaptation methods have
achieved remarkable performance in semantic scene seg-
mentation, these approaches remain impractical in real-
world use cases. In practice, the segmentation models may
encounter new data that have not been seen yet. Also, the
previous data training of segmentation models may be in-
accessible due to privacy problems. Therefore, to address
these problems, in this work, we propose a Continual Un-
supervised Domain Adaptation (CONDA) approach that al-
lows the model to continuously learn and adapt with respect
to the presence of the new data. Moreover, our proposed
approach is designed without the requirement of access-
ing previous training data. To avoid the catastrophic for-
getting problem and maintain the performance of the seg-
mentation models, we present a novel Bijective Maximum
Likelihood loss to impose the constraint of predicted seg-
mentation distribution shifts. The experimental results on
the benchmark of continual unsupervised domain adapta-
tion have shown the advanced performance of the proposed
CONDA method.

1. Introduction

Semantic scene segmentation has become one of the most
popular research topics in computer vision recently. Its goal
is to break down an input image and densely assign each
pixel to its corresponding predefined class. There have been
new approaches recently based upon deep learning technol-
ogy that have remarkable results in semantic scene segmen-
tation. [4]. Typically, segmentation is trained on labelled
scene data, but annotating the images for semantic segmen-
tation is a time-consuming and expensive process. This is
because each and every pixel in the input image must be la-
belled. A method to reduce the cost of labelling images is
to use a simulation to create a large-scale synthetic dataset
[47, 49]. Although this strategy saves time, it has a se-

Figure 1. Unsupervised domain Adaptation trains the model on
both labeled source data and unlabeled target data simultaneously
by a single training stage. Meanwhile, Continual Unsupervised
Domain Adaptation first trains on the labeled source data. Then,
it continuously adapts the model to the new target domains and at
each training stage, the model only accesses data at that stage.

rious trade off when deploying supervised models trained
on these synthetic datasets into the real-world data. Par-
ticularly, these supervised models trained on the synthetic
datasets often perform worse on real images due to a pixel
appearance gap between the synthetic and real images and
thus are not well-suited for real-image deployment.

To address the problem aforementioned, unsupervised
domain adaptation has emerged as a feasible solution. In
particular, unsupervised domain adaptation (UDA) aims to
learn a model on the large-scale annotated source datasets
(referred as the source domain) and adapt to unlabeled tar-
get datasets (referred as the target domain) to guarantee
its performance on the new domain. Common unsuper-
vised domain adaptation methods try to minimize the dis-
tribution discrepancy in the deep representations between
the source and target domains. The minimization pro-
cess is done simultaneously with supervised learning on the
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Table 1. Comparisons in the properties between our proposed approach and other prior methods. Convolutional Neural Network
(CNN), Generative Adversarial Net (GAN), Bijective Network (BiN), Entropy Minimization (EntMin), Segmentation Map (Seg), Depth
Map (Depth); ℓIW : Image-wise Weighting Loss, ℓCE : Cross-entropy Loss, ℓFocal: Focal Loss ℓadv: Adversarial Loss, ℓHuber: Huber
Loss. ℓsquare: Maximum Squares Loss, ℓdensity: Negative Log-Likelihood Loss, ℓbml: Bijective Maximum Likelihood Loss.

Methods Source-Free
Data

Forgetting
Aware

Structural
Learning

Source
Label Require

Target Domain
Transfer Architecture Designed Loss

AdaptPatch [60] ✗ ✗ Weak (Binary label) Seg ✓ CNN+GAN ℓadv
CBST [73] ✗ ✗ − Seg ✓ CNN ℓCE

ADVENT [64] ✗ ✗ Weak (Binary label) Seg ✓ CNN+GAN EntMin+ℓadv
IntraDA [44] ✗ ✗ Weak (Binary label) Seg ✓ CNN+GAN EntMin+ℓadv
BiMaL [55] ✗ ✗ Maximum Likelihood Seg ✓ CNN + BiN ℓdensity

SPIGAN [31] ✗ ✗ Weak (Binary label) Seg + Depth ✓ CNN+GAN ℓadv
DADA [65] ✗ ✗ Depth-aware Label Seg + Depth ✓ CNN+GAN ℓadv + ℓHuber

MaxSquare [6] ✗ ✗ Weak (Binary label) Seg ✓ CNN + GAN ℓsquare + ℓIW
SAC [1] ✗ ✗ − Seg ✓ CNN ℓCE + ℓFocal

Ours ✓ ✓
Bijective

Maximum Likelihood − ✓ CNN + BiN ℓbml

source domain [55, 59, 60, 64, 65]. The discrepancy min-
imization can computed at a single level or multiple levels
of deep representation using maximum mean discrepancy
[19, 35], or adversarial loss within a generative adversar-
ial network framework [8, 22, 23, 59, 61], or contrastive
learning [28, 69]. In addition, other domain adaptation ap-
proaches utilize the cross entropy loss with pseudo labels
with well designed learning strategies [1, 70, 73].

These approaches have shown their potential perfor-
mance in semantic segmentation with domain adaptation;
however, their practical applications are limited. For exam-
ple, in autonomous driving, vehicles may encounter vari-
ous urban or highway scenarios with a diversity of environ-
ments, e.g., weather, lighting, or geographical conditions,
and each of these conditions can be considered as a new
target domain. Meanwhile, in the domain adaptation ap-
proach, the model is trained on a particular given target
domain not able to update itself with the presence of new
data. Moreover, the training data, in some cases, is pro-
tected during the adaptation phase to preserve privacy. In
this work, we address this problem by introducing a con-
tinual learning framework for semantic scene segmentation
under the domain adaptation setting. The goal of our pro-
posed framework is to sequentially, continuously learn and
adapt the model to the new incoming unlabeled target do-
main while maintaining the performance of the model on
previous target domains and alleviating the catastrophic for-
getting problem. In contrast to prior domain adaptation
approaches, our continual unsupervised domain adaptation
does not access the previous training data during the adap-
tation phase. In other words, only the unlabeled target data
is given during the adaptation phase. Figure 1 illustrates
the difference between unsupervised domain adaptation and
continual unsupervised domain adaptation. Table 1 sum-
maries the difference between our proposed approach and
prior standard domain adaptation approaches.

Contributions of This Work In summary, this work
presents a novel Continual Unsupervised Domain Adapta-
tion (CONDA) approach to semantic scene segmentation.
The contributions in this work can be summarized as fol-
lows. Firstly, the problem of continual domain adaptation is
formulated in semantic scene segmentation by regularizing
the distribution shift of predictions between source and tar-
get domains to avoid the catastrophic forgetting problem.
As opposed to prior adaptation methods, only data from
the target domains are given during the adaptation phase
in our continual learning framework. Secondly, given the
formulated problem, the distribution shift regularizer is fur-
ther derived into the Bijective Maximum Likelihood loss
that can be used to measure the distribution shift without
the demand of the source training data. Then, the bijec-
tive maximum likelihood loss is formed using the bijective
network so that the loss is able to capture global structural
information and represents the distributions of the segmen-
tation. Finally, though our experiments on the benchmark
of GTA → Cityscapes → IDD → Mapillary, our proposed
approach outperforms the prior methods and achieves state-
of-the-art results.

2. Related Work

2.1. Semantic Segmentation via Deep Learning

Fully Convolutional Networks (FCNs) are the preferred ap-
proach for the task of semantic segmenation due to their
capacity for learning and high accuracy. Combining FCNs
with an encoder-decoder structure produces additional re-
finements in accuracy. FCNs [4, 34] were first applied to
the task of segmentation with multiple convolutional lay-
ers followed by spatial pooling. Later approaches [33, 46]
combined upsampled, high-level feature maps with low-
level feature maps prior to decoding, collecting more in-
formation and still producing precise instance borders. Ad-
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ditional works [4, 68] improve the performance of models
while preserving the field of view by using dilated convo-
lutions. Spatial pyramid pooling has seen success in other
recent developments [3, 5]. This method allows the model
to acquire contextual information at multiple levels, gener-
ating more global information at higher network layers. In a
novel FCN architecture, Deeplabv3+ [3] used the encoder-
decoder structure in unison with spatial pyramid pooling to
produce a faster, stronger network. The latest works use
Transformer-based backbones [7, 24, 67] to create more
proficient and advanced semantic segmentation networks.

2.2. Unsupervised Domain Adaptation via Deep
Learning

The common domain adaptation approaches are domain
discrepancy minimization [19, 35, 61], adversarial learning
[8, 9, 21–23, 59], entropy minimization [39, 44, 64, 71],
self-training [25, 57, 73]. Within this work’s scope, UDA is
focused on semantic segmentation, and adversarial training
is the most commonly employed approach to UDA for se-
mantic segmentation. The adversarial training paradigm is
much like generative adversarial networks (GANs) in that
they both aim to train a predictive discriminator on the do-
main of inputs while the segmentation network tries to fool
the discriminator. Both the training of the adversarial step
and the supervised segmentation task occur simultaneously
on the source and target domains. The first instance of a
GAN-based UDA approach to segmentation was introduced
by Hoffman et al. [21]. Later, global and class-wise adapta-
tion learned from the application of adversarial learning on
pseudo labels was presented by Chen et al. [9]. After con-
sidering the spatial distribution difference, [8] proposed a
spatial-aware adaptation method to align two domains along
with a target-guided distillation loss. A conditional gener-
ator that transforms feature maps of the source domain to
better match the target domain was learned by Hong et al.
[23]. Tasi et al. [59] learned a consistency of scene lay-
out and local context between target and source domains
by using adversarial learning. There exist prior methods
that utilize GANs to use source images to synthesize tar-
get images [39, 71]. Hoffman et al. [22] presented Cycle-
Consistent Adversarial Domain Adaptation which aligns at
both the pixel and feature level representations. Zhu et al.
[72] developed the penalization of easy and hard source ex-
amples by implementing a conservative loss in the adver-
sarial framework. We et al. [66] proposed a DCAN frame-
work that uses channel-wise feature alignment in the seg-
mentation networks. Sakaridis et al. [51] proposed a UDA
framework on scene understanding that can gradually adapt
a segmentation model for increasingly foggy images, i.e.
no fog to high fog. Recently, self-supervised approaches
[1, 24, 70] have shown their state-of-the-art performance
in domain adaptation tasks. Araslanov et al. [1] developed

a simple self-supervised framework trained on pseudo la-
bels without the demand of extra training rounds. Zhang et
al. [70] introduced a self-training approach that is able to
denoise pseudo labels and learns structural information by
enforcing the consistency between augmentations. Hoyer
et al. [24] improved the performance of segmentation mod-
els by utilizing pseudo labels and introducing a powerful
transformer-based backbone. Later, Hoyer et al. further
improved their approach by using multi-resolution cropped
images [25] and masked image consistency learning strat-
egy [26] to enhance contextual learning. Fashes et al. [17]
presented a new prompt-based approach to zero-shot unsu-
pervised domain adaptation.

2.3. Continual Learning

These methods aim to continuously update the model with
respect to an incoming streaming data. The simple ap-
proach to this task is to re-train or fine-tune the model
with the new data. However, under the assumption that
the original training data is inaccessible due to the pri-
vacy problem, fine-tuning the model on the new updated
data could lead to the problem of catastrophic forgetting
[13, 14, 18, 30, 36, 38, 42, 43, 48, 54] which is the most
challenging problem in continual learning. Catastrophic
forgetting refers the existence of performance drops on the
original data when the model is updated. This challenge
can be alleviated by constraining the updated model to a
similar locale of the previous model. This constraint can be
done by imposing the regularization on gradients or weights
[30, 36], or measuring the probabilities [32], or distilling the
intermediary features [13]. Recently, several works [2, 37]
developed the continual learning framework for semantic
segmentation. However, these approaches are not applica-
ble for the unsupervised domain adaptation setting as these
requires the ground truth labels of data during the learn-
ing process. [63] presented a continual learning frame-
work where the model is sequentially trained on multiple
labeled data domains. [50] proposed a continual learning
framework under the unsupervised domain adaptation set-
ting. However, this approach requires storing all data for the
purpose of rehearsal. [53] introduced a multi-dead knowl-
edge distillation framework for the continual unsupervised
domain but this approach requires access to the source data
during the training phase. The recent approaches presented
a clustering approach to continual learning [27, 58] In our
work, we focus on the continual learning framework under
the unsupervised adaptation setting where the source data is
not used in the adaptation process.

3. The Proposed CONDA Framework
In this section, we present the proposed domain adaptation
approach in the context of continual learning. Let xs ∈ Xs

be the RGB input image of the source domain, ŷs ∈ Ys

5644



Figure 2. The proposed CONDA Framework. The input images x are first forward to the segmentation network F . Then, the segmen-
tation maps y are projected into the deep latent space by the bijective network G to measure the distribution shift of target predictions
compared to the original distribution of source predictions.

be the corresponding segmentation ground truth of xs, and
F be the deep network that maps the input image x into
the segmentation y, i.e y = F (x, θ), θ is the deep network
parameters. We assume that the network F has been first
well learned on the source domain by supervised learning
defined as follows,

θ∗ = argmin
θ

Exs,ys∈Xs×YsLs(F (xs, θ), ŷs) (1)

where Ls is the supervised loss, i.e., the cross-entropy loss,
between a predicted segmentation and a ground-truth seg-
mentation. Then, given a well-learned F , we will continu-
ously learn the model on the incoming target data. In our
setting, we assume that the given source dataset is not
used to train during the adaptation phase. Let x ∈ Xt

be the RGB input image of the incoming target domain Xt.
We assume there could be multiple incoming target datasets
that the model needs to continually adapt to. Let q(y) rep-
resent the distribution of predicted segmentation of the pre-
vious model learned on the source domain, p(y) be the dis-
tribution of predicted segmentations of the current updated
model.

In general, domain adaptation in the context of contin-
uous learning of the semantic segmentation task can be
formed as follows,

θ∗ = argmin
θ

[Ex∼Xt
Lt(y) + λD(p(y), q(y))] (2)

where λ is the hyper-parameter imposing the impact of the
distribution shift, Lt is the unsupervised loss used in the
domain adaptation setting (e.g. entropy loss [64], cross-
entropy loss with pseudo labels [1], adversarial loss [65]),
and D(p(y), q(y)) is the distance between distributions of
source predictions and target predictions, respectively. As
shown in Eqn. (2), the constraint D(p(y), q(y)) ensures
that the unsupervised adaptation procedure does not lead to
catastrophic forgetting. In particular, while the model con-
tinuously updates with respect to the incoming target data, it

must not forget the knowledge that has been learned in pre-
vious training using the source data. This is ensured by im-
posing the distribution shift between source prediction and
target prediction distributions. Figure 2 illustrates our pro-
posed framework.

3.1. Distribution Shift Modeling by Bijective Net-
work

There are several options for D to measure the divergence
between the two distributions p(y) and q(y). In our paper,
we define distance D as the Kullback–Leibler (KL) diver-
gence which is a common statistical distance shown in Eqn.
(3).

D (p(y), q(y)) =

∫
log

(
p(y)

q(y)

)
p(y)dy (3)

Eqn. (3) measures the divergence between distributions
p(y) and q(y). However, Eqn. (3) requires access to the
source dataset during the adaptation phase which conflicts
with the setting in our problem. Thus, Eqn. (3) is re-formed
as follows,∫

log

(
p(yt)

q(yt)

)
p(y)dy

= Ey∼p(y) log(p(y))− Ey∼p(y) log(q(y))

≤ −Ey∼p(y) log(q(y))

(4)

With any form of the distribution p, the above inequality
always holds as p(y) ∈ [0, 1] and log(p(y)) ≤ 0. Then,
instead of directly computing the KL divergence between
p(y) and q(y), we define DMaL as the upper bound of Eqn.
(3),

DMaL (p(y), q(y)) = −Ey∼p(y) log(q(y)) (5)

As Eqn. (5) is an upper bound of Eqn. (3) due to Eqn.
(4). Then, minimizing Eqn. (5) also imposes the distance
between two distributions p(y) and q(y).
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As q(y) represents the distribution of predicted segmen-
tation of the model learned on the source dataset, we pro-
pose to model the distribution q(y) by the bijective network.
Let G : YS → Z be the bijective network that maps a seg-
mentation to the latent space, i.e. z = G(y, θG), where
z ∼ π(z) is the latent variable, θG is the set parameters of
G, and π is the prior distribution.

Then, by the change of variable formula, the distribution
p(y) can be formed as follows,

log p(y) = log π(z) + log

∣∣∣∣∂G(y, θG)

∂y

∣∣∣∣ , (6)

where
∣∣∣∂G(y,θG)

∂y

∣∣∣ is the Jacobian determinant of
G(y, θG) with respect to y. Then, the network G can be
learned by minimizing the negative log-likelihood on the
source segmentation maps as follows,

θ∗G =argmin
θG

Ey∈Ys

[
− log(q(y))

]
=argmin

θG
Ey∈Ys

[
log π(z) + log

∣∣∣∣∂G(y, θG)

∂y

∣∣∣∣] . (7)

Generally, there are several choices for the prior distribu-
tion π. However, the ideal prior distribution should meet
two conditions: (i) simplicity in the density estimation, and
(ii) easy in sampling. Therefore, taking these conditions
into account, we adopt the the Normal distribution as the
prior distribution π. It should be noted that the prior distri-
bution is not limited to the Normal distribution; any form
of distribution that satisfies the two conditions can also be
adopted.

To enhance the modeling capability of the bijective net-
works G, we design G as a multi-scale architecture network
in which each scale is designed as an invertible network.
Several deep neural structures [11, 12, 15, 16, 29, 41, 56]
can be adopted to construct the invertible network at each
scale. We assume that the bijective network G and the seg-
mentation network F are given during the adaptation phase.

4. Experimental Results

In this section, we first review the datasets used in our ex-
periments. Then, we describe our implementation in de-
tail and the evaluation metric used to measure the perfor-
mance of the segmentation models. Next, we present our
experimental results on the standard benchmark of contin-
ual unsupervised domain adaptation. Finally, we compare
our qualitative results with the baselines.

4.1. Datasets and Network Architectures

GTA5 is a collection of synthetic images and semantic la-
bels at a resolution of 1914 × 1052 pixels. The 24, 966
images were collected from the GTA5 game engine using

the communication between the game engine and the graph-
ics hardware. In total, 33 class categories are included in
the dataset, but only 7 categories are compatible with the
Cityscapes [10], IDD [62], and Mapillary [40] datasets used
in our experiments.
Cityscapes includes 3, 975 images captured from 50 differ-
ent cities. Each image has a high-quality, semantic, dense
pixel annotation of 30 object classes from the urban set-
tings. Cityscapes was created to give researchers more an-
notated, high quality, and real world data.
Vistas (Mapillary Vistas Dataset) [40] is a dataset
of various street-level images with pixel-accurate and
instance-specific human annotations from areas throughout
the world. The data includes 25, 000 high-quality images
and 124 object categories.
IDD [62] contains images from several cities in India. The
dataset has 10, 000 semantically labeled images. Of the 34
object classes included in the dataset, only 7 classes that are
commmon to SYNTHIA, Cityscapes, and Vistas are used in
our experiments.
Implementation The DeepLab-V2 [4] architecture with a
Resnet-101 [20] backbone is used in all experiments. In
our experiments, the image size is set to the resolution of
640 × 320. We use Exponential Moving Averages (EMA)
to update the model. In our work, the unsupervised loss
Lt is defined as the cross-entropy loss with the pseudo la-
bels computed by the EMA model. The value of λ is set to
0.005.
We adopt the structure of [16, 29, 55] for our generator
G. We used PyTorch [45] to implement the framework. 4
NVIDIA Quadpro P800 GPUs with 48GB of VRAM each
were utilized during development. The model is optimized
by the Stochastic Gradient Descent optimizer where the
learning rate is set to 2.5× 10−4.
Evaluation Metric The performance of semantic segmen-
tation models are often measured by the mean Intersection
over Union (mIoU) metric over all classes, expressed in per-
centage. Follow the evaluation protocol of prior domain
adaptation methods [1, 55, 64, 65], we also adopt the mIoU
metric in our experiments to measure the performance of
different methods.

4.2. Quantitative Results

In our experiments, we compare our methods with the base-
line (AdvEnt) [64], Multi-Dis. [52], and MTKT [52] on the
benchmark of GTA5 → Cityscapes → IDD → Mapillary.
There are two setting in our experiments, i.e., (1) The Multi-
target Oracle setting means the model is simultaneous train-
ing on all the target domains, and (2) The Continual setting
means that the model is trained target domains sequentially.
It should be noted that the baseline (AdvEnt) use the source
data during the adaptation phase.

GTA → Cityscapes: Table 2 displays our method’s
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Multi-Target
Baseline [64]

Cityscapes 93.6 80.6 26.4 78.1 81.5 51.9 76.4 69.8
67.8IDD 92.0 54.6 15.7 77.2 90.5 50.8 78.6 65.6

Mapillary 89.2 72.4 32.4 73.0 92.7 41.6 74.9 68.0

Multi-Dis. [52]
Cityscapes 94.6 80.0 20.6 79.3 84.1 44.6 78.2 68.8

68.2IDD 91.6 54.2 13.1 78.4 93.1 49.6 80.3 65.8
Mapillary 89.0 72.5 29.3 75.5 94.7 50.3 78.9 70.0

MTKT [52]
Cityscapes 94.6 80.7 23.8 79.0 84.5 51.0 79.2 70.4

69.1IDD 91.7 55.6 14.5 78.0 92.6 49.8 79.4 65.9
Mapillary 90.5 73.7 32.5 75.5 94.3 51.2 80.2 71.1

C
on

tin
ua

l
Se

tti
ng

Continual
Baseline [64]

Cityscapes 92.9 79.0 18.7 76.9 84.1 47.3 72.9 67.4
67.0IDD 91.8 51.1 11.6 79.0 91.6 47.5 72.5 63.6

Mapillary 90.3 71.7 30.1 76.1 93.9 50.2 77.3 70.0

Cityscapes 89.4 71.1 32.8 75.8 92.8 48.1 75.6 69.4
IDD 88.0 69.4 30.6 73.0 92.8 47.1 62.6 66.2 68.9Ours

Mapillary 90.4 73.3 33.1 76.4 93.8 51.2 80.1 71.2
-

Table 2. Segmentation performance (%) on GTA5 → Cityscapes → IDD → Mapillary.

SOTA performance when compared with prior methods on
7 shared classes from the Cityscapes validation set. In par-
ticular, our approach achieved a higher IoU than the pre-
vious baseline by +1.9%. Comparing the per class results
with the baseline, 3 of the 7 classes saw notable improve-
ments, namely “object” (+14.1%), “sky” (+8.7%), and
“vehicle” (+2.9%). The remaining classes did not differ
from the baseline by a large degree.

GTA → Cityscapes → IDD: In the IDD row of Table
2, the improvements for the 7 shared classes can be seen
when adapting from GTA5 → Cityscapes → IDD. Again,
our approach improves the baseline IoU results, with a per
class improvement in IoU of 18.3%, 19.0%, and 1.2% for
the classes of “constr”, “object”, and “sky”, respectively.
Furthermore, the overall mIoU accuracy improved by 2.6%
from the previous baseline.

GTA → Cityscapes → IDD → Mapillary: The final
experiment tested the adaptation of the model to the Mapil-
lary dataset. Table 2 displays the results of this experiment.
Our approach improved the previous baseline’s mIoU of all
classes by an average of 1.2%. The improvement by class
was 0.1% for “flat”, 1.6% for “constr”, 3.0% for “object”,
0.3% for “nature”, 1.0% for “sky”, and 2.8% for “vehi-
cle”. Across all experiments, our new approach improved
the mIoU average by 1.9%, setting a new SOTA result for
the task of continuous learning. It should be noted that with-
out accessing the source training data during the adaptation
phase, overall, our approach still gains better results com-

Figure 3. Qualitative Results. We compare our results with the
baseline method without baseline method (AdvEnt) [64].

pared to the baseline method.

4.3. Qualitative Results

Figure 3 illustrates the qualitative results our experiments.
Our new method achieves better results than without adap-
tation. The continuous learning structure allows our model
to continue the learning process, so improvements are made
across all classes. The predictions produced by the model
more closely matches the ground truth than the baseline
without adaptation. The noise is reduced, the edges are
clearly defined, and the structure of predictions reflects the
objects in the image to a greater degree. Overall, the model
maintains the ability to generate accurate predictions and
improves these predictions during test time.
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5. Conclusions

In this paper, we have presented a novel solution to the prob-
lem of continual domain adaptation in semantic scene seg-
mentation. By using the proposed Maximum Likelihood
Loss to impose the constraint of distribution shift, we have
avoided the problem of catastrophic forgetting and allowed
the models to continuously update and improve their per-
formance with respect to the new target data. Moreover,
the proposed approach does not require the presence of pre-
vious training data. Therefore, our approach ensures the
privacy of the previous training data. Experiments on the
standard benchmark have shown the performance improve-
ments of our method.
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Peter Kontschieder. The mapillary vistas dataset for semantic
understanding of street scenes. In ICCV, 2017. 5

[41] Chi Nhan Duong, Kha Gia Quach, Khoa Luu, Ngan Le,
and Marios Savvides. Temporal non-volume preserving
approach to facial age-progression and age-invariant face
recognition. In ICCV, 2017. 5

[42] Firat Ozdemir and Orcun Goksel. Extending pretrained seg-
mentation networks with additional anatomical structures.
International journal of computer assisted radiology and
surgery, 14:1187–1195, 2019. 3

[43] Firat Ozdemir, Philipp Fuernstahl, and Orcun Goksel. Learn
the new, keep the old: Extending pretrained models with
new anatomy and images. In Medical Image Computing

and Computer Assisted Intervention–MICCAI 2018: 21st In-
ternational Conference, Granada, Spain, September 16-20,
2018, Proceedings, Part IV 11, pages 361–369. Springer,
2018. 3

[44] Fei Pan, Inkyu Shin, Francois Rameau, Seokju Lee, and
In So Kweon. Unsupervised intra-domain adaptation for
semantic segmentation through self-supervision. In CVPR,
2020. 2, 3

[45] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
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