
Exploration of Data Augmentation Techniques
for Bush Detection in Blueberry Orchards

Supplementary Material

A. Appendix

A.1. Generative Model

In our study, we began with a standard Deep Convolutional
Generative Adversarial Network (DCGAN) [33] framework
as our foundation and expanded its layers to better accom-
modate images of size 3x128x128 instead of the conven-
tional 3x64x64. This enhancement was designed to more
accurately capture the intricacies and details of the higher-
resolution images we seek to replicate, thereby improving
the model’s proficiency in generating synthetic images that
closely mirror the real bush photographs quality and texture.

The architecture of our refined DCGAN includes two
main components: a generator (G) and a discriminator (D).
The generator’s objective is to fabricate images that are in-
discernible from real images, beginning from a latent space
vector z, sampled from a standard normal distribution. Con-
versely, the discriminator evaluates images to determine
their authenticity, real (from the dataset) or fake (generated
by G), outputting a probability score.

Our generator is constructed with convolutional-
transpose layers, batch normalization layers, and ReLU
activations, designed to transform a latent vector into a
3x128x128 RGB image. In line with the DCGAN pa-
per’s recommendations, all model weights are initialized
from a normal distribution with mean=0 and standard de-
viation=0.02, to promote effective training dynamics.

1 # i n p u t i s ‘ ‘ ( nc ) x 128 x 128 ‘ ‘
2 nn . Conv2d ( nc , ndf / / 2 , 4 , 2 , 1 , b i a s = F a l s e ) ,
3 nn . LeakyReLU ( 0 . 2 , i n p l a c e =True ) ,
4 # s t a t e s i z e . ‘ ‘ ( ndf / / 2 ) x 64 x 64 ‘ ‘
5 nn . Conv2d ( ndf / / 2 , ndf , 4 , 2 , 1 , b i a s = F a l s e ) ,
6 nn . BatchNorm2d ( ndf ) ,
7 nn . LeakyReLU ( 0 . 2 , i n p l a c e =True ) ,
8 # s t a t e s i z e . ‘ ‘ ( ndf ) x 32 x 32 ‘ ‘
9 nn . Conv2d ( ndf , ndf * 2 , 4 , 2 , 1 , b i a s = F a l s e ) ,

10 nn . BatchNorm2d ( ndf * 2 ) ,
11 nn . LeakyReLU ( 0 . 2 , i n p l a c e =True ) ,
12 # s t a t e s i z e . ‘ ‘ ( ndf *2) x 16 x 16 ‘ ‘
13 nn . Conv2d ( ndf * 2 , ndf * 4 , 4 , 2 , 1 , b i a s = F a l s e ) ,
14 nn . BatchNorm2d ( ndf * 4 ) ,
15 nn . LeakyReLU ( 0 . 2 , i n p l a c e =True ) ,
16 # s t a t e s i z e . ‘ ‘ ( ndf *4) x 8 x 8 ‘ ‘
17 nn . Conv2d ( ndf * 4 , ndf * 8 , 4 , 2 , 1 , b i a s = F a l s e ) ,
18 nn . BatchNorm2d ( ndf * 8 ) ,
19 nn . LeakyReLU ( 0 . 2 , i n p l a c e =True ) ,
20 # s t a t e s i z e . ‘ ‘ ( ndf *8) x 4 x 4 ‘ ‘
21 nn . Conv2d ( ndf * 8 , 1 , 4 , 1 , 0 , b i a s = F a l s e ) ,
22 nn . Sigmoid ( ) ,

Listing 1. Generator code

The discriminator is composed of strided convolution
layers, batch normalization layers, and LeakyReLU activa-
tions. It processes input images of size 3x128x128, classi-
fying them as real or fake. Importantly, to avoid the dis-
criminator from becoming overly confident in its assess-
ments—a scenario that could significantly impede the gen-
erator’s learning gradient—we opted to employ soft labels
rather than hard binary labels. Specifically, we adjusted the
labels for the real images to 0.8 (instead of 1.0) and for the
fake images to 0.2 (instead of 0.0). This modification en-
sures that the discriminator’s output probabilities are never
absolute (i.e., 100% real or fake), fostering a more nuanced
and continuous learning environment for both components
of the DCGAN. By implementing soft labels at these lev-
els, we strike a balance that encourages the discriminator to
maintain a level of uncertainty, thereby preventing it from
dominating the generator too early in the training process
and ensuring a healthier gradient flow for the generator’s
ongoing learning. The optimization of both the generator
and discriminator is performed using the Adam optimizer,
with a learning rate of 0.0002 and Beta1 set to 0.5.

1 # i n p u t i s Z , go ing i n t o a c o n v o l u t i o n
2 nn . ConvTranspose2d ( nz , ngf * 8 , 4 , 1 , 0 , b i a s =

F a l s e ) ,
3 nn . BatchNorm2d ( ngf * 8 ) ,
4 nn . ReLU( True ) ,
5 # s t a t e s i z e . ‘ ‘ ( ngf *8) x 4 x 4 ‘ ‘
6 nn . ConvTranspose2d ( ngf * 8 , ngf * 4 , 4 , 2 , 1 ,

b i a s = F a l s e ) ,
7 nn . BatchNorm2d ( ngf * 4 ) ,
8 nn . ReLU( True ) ,
9 # s t a t e s i z e . ‘ ‘ ( ngf *4) x 8 x 8 ‘ ‘

10 nn . ConvTranspose2d ( ngf * 4 , ngf * 2 , 4 , 2 , 1 ,
b i a s = F a l s e ) ,

11 nn . BatchNorm2d ( ngf * 2 ) ,
12 nn . ReLU( True ) ,
13 # s t a t e s i z e . ‘ ‘ ( ngf *2) x 16 x 16 ‘ ‘
14 nn . ConvTranspose2d ( ngf * 2 , ngf , 4 , 2 , 1 , b i a s =

F a l s e ) ,
15 nn . BatchNorm2d ( ngf ) ,
16 nn . ReLU( True ) ,
17 # s t a t e s i z e . ‘ ‘ ( ngf ) x 32 x 32 ‘ ‘
18 nn . ConvTranspose2d ( ngf , ngf / / 2 , 4 , 2 , 1 , b i a s =

F a l s e ) ,
19 nn . BatchNorm2d ( ngf / / 2 ) ,
20 nn . ReLU( True ) ,
21 # s t a t e s i z e . ‘ ‘ ( ngf / / 2 ) x 64 x 64 ‘ ‘
22 nn . ConvTranspose2d ( ngf / / 2 , nc , 4 , 2 , 1 , b i a s =

F a l s e ) ,
23 nn . Tanh ( ) ,

Listing 2. Discriminator code

A crucial aspect of training involves the loss functions



for both G and D, utilizing the Binary Cross Entropy (BCE)
loss, expressed as:

ℓ(x, y) = L = {l1, . . . , lN}⊤,
ln = − [yn · log(xn) + (1− yn) · log(1− xn)]

(1)

This loss function calculates both components of the ob-
jective function, log(D(x)) and log(1 − D(G(z))), allow-
ing for specific parts of the BCE equation to be utilized de-
pending on the input. The GAN loss function, pivotal to the
training of both G and D in their min-max game, is given
by [12]:

min
G

max
D

V (D,G) =Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))]
(2)

In this min-max game, D aims to maximize the proba-
bility of correctly classifying real and fake images, while
G strives to minimize the probability of D identifying its
outputs as fake. The theoretical equilibrium of this game is
achieved when pg = pdata, and D classifies the inputs as real
or fake with equal probability. However, in practice, achiev-
ing this equilibrium remains a complex challenge, with the
convergence theory of GANs still under active investiga-
tion.


	. Appendix
	. Generative Model


