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Abstract

While parameter efficient tuning (PET) methods have
shown great potential with transformer architecture on
Natural Language Processing (NLP) tasks, their effec-
tiveness with large-scale ConvNets is still under-studied
on Computer Vision (CV) tasks. This paper proposes
Conv-Adapter, a PET module designed for ConvNets.
Conv-Adapter is light-weight, domain-transferable, and
architecture-agnostic with generalized performance on dif-
ferent tasks. When transferring on downstream tasks, Conv-
Adapter learns tasks-specific feature modulation to the in-
termediate representations of backbones while keeping the
pre-trained parameters frozen. By introducing only a tiny
amount of learnable parameters, e.g., only 3.5% full fine-
tuning parameters of ResNet50. It can also be applied for
transformer-based backbones. Conv-Adapter outperforms
previous PET baseline methods and achieves comparable
or surpasses the performance of full fine-tuning on 23 clas-
sification tasks of various domains. It also presents superior
performance on the few-shot classification with an average
margin of 3.39%. Beyond classification, Conv-Adapter can
generalize to detection and segmentation tasks with more
than 50% reduction of parameters but comparable perfor-
mance to the traditional full fine-tuning 1

1. Introduction
As transfer learning [54] thrives, large-scale foundation
models gradually dominate deep learning over the last few
years [3]. Fine-tuning has become the de-facto paradigm
adapting a foundation model pre-trained on a pretext task to
various downstream tasks for both Computer Vision (CV)
and Natural Language Processing (NLP). Albeit its sim-
plicity and prominence, fine-tuning has been posing chal-
lenges to development and deployment of the large-scale
foundation models on downstream tasks with the drastic
growth of computations and storage costs, as the parame-

*haoc3@andrew.cmu.edu
1Code is available at: https://github.com/Hhhhhhao/

Conv-Adapter/tree/main

10 1 100 101 102

Trainable Parameters (%)

0

-20

-40

-60

-80
Re

la
tiv

e 
Ac

c.
 G

ai
n 

(%
)

Conv-Adapter
Linear-Probing
Visual-Prompt
Bias-Tuning
Fine-Tuning

Figure 1. Performance of Conv-Adapter compared to other trans-
fer learning methods on ResNet-50 BiT-M. We compute the rela-
tive performance gain w.r.t to fine-tuning and percentage of train-
able parameters of the backbone (w/o linear head) on 23 im-
age classification datasets from various domains to compute the
results, with mean and standard deviation highlighted. Conv-
Adapter achieves a superior trade-off between transfer accuracy
and parameter efficiency.

ter size increases from millions [19, 23, 46, 52] to billions
[5, 13, 14, 16, 34–36, 45].

Parameter efficient tuning (PET), as an alternative to
traditional fine-tuning, has become prevalent in NLP [18,
22, 24, 30, 31] for its efficiency and effectiveness. PET
introduces a small number of learnable parameters to a
pre-trained network, whose parameters are frozen, and
learns the extra introduced parameters only. While attain-
ing promising performance, especially for tasks of low-data
regimes [25, 62, 63], PET modules for Convolutional Neu-
ral Networks (ConvNets), the popular architectures for CV
tasks, are still largely unstudied.

Prior arts on fine-tuning ConvNets to multiple visual do-
mains are restrictive in generalization and parameter effi-
ciency. Bias Tuning [2], which tunes only the bias terms of
the backbone, might fail on domains with significant distri-
bution shifts from the pre-training tasks. Residual Adapter
[48] and TinyTL [7] are mainly designed for small net-
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works such as ResNet-26 [19] and MobileNet [6, 23]. It
is prohibitive to scale these previous designs to larger Con-
vNets [36] or more diverse domains [60]. Besides, previous
PET methods [18, 21, 24, 30, 31] are mainly designed with
Transformer [56] architecture for NLP tasks [5, 13]. How-
ever, it is not straightforward to apply Transformer-based
PET to ConvNets because Transformers tokenize and se-
quentialize the input and features, while ConvNets do not.
Recent works [1, 10, 25] that attempt to use Prompt Tuning
[30] and Adapters [21] on CV tasks are also designed for
Vision Transformers rather than ConvNets. Furthermore,
the downstream CV tasks are usually more diverse with a
larger domain gap compared with NLP [45]. These chal-
lenges motivate us to design the architecture and adapting
scheme of PET for ConvNets, which could make it trans-
ferable to various CV tasks, including image classification,
object detection, and semantic segmentation.

In this work, we narrow the gap of PET between NLP
and CV with the proposal of Conv-Adapter – an adap-
tion module that is light-weight, domain-transferable, and
architecture-agnostic. Conv-Adapter learns task-specific
knowledge on downstream tasks and adapts the intermedi-
ate features of each residual block in the pre-trained Con-
vNets. It has a bottleneck structure consisting of depth-wise
separable convolutions [23] and non-linearity. Due to the
variety of CV network architectures and tasks, we explore
four adapting schemes of Conv-Adapter combining two de-
sign perspectives - adapted representations and insertion
form to verify the optimal tuning paradigm on ConvNets.
We find it is essential for Conv-Adapter to maintain the lo-
cality relationship when adapting intermediate feature maps
for transferability. More importantly, Conv-Adapter can be
formulated under the same mathematical framework as the
PET modules used in the NLP field [18]. Conv-Adapter
outperforms previous PET baselines and achieves similar
or even better performance to the traditional full fine-tuning
on 23 cross-domain classification datasets with an average
of 3.5% of the backbone parameters using ResNet-50 BiT-
M [27], as shown in Fig. 1. Conv-Adapter also well gener-
alizes to object detection and semantic segmentation tasks
with same-level performance to fully fine-tuning. To fur-
ther understand Conv-Adapter, in addition, we empirically
analyze the performance of Conv-Adapter with both the do-
main shifting of datasets and the network weights shifting
brought by fine-tuning. The core contributions of this work
can be summarized as:

• To our knowledge, we are the first to systematically inves-
tigate the feasible solutions of general parameter-efficient
tuning (PET) for ConvNets. This investigation can nar-
row the gap between NLP and CV for PET.

• We propose Conv-Adapter, a light-weight and plug-and-
play PET module, along with four adapting variants fol-
lowing two design dimensions - transferability and pa-

rameter efficiency. Meanwhile, we empirically justify
several essential design choices to make Conv-Adapter
effectively transferred to different CV tasks.

• Extensive experiments demonstrate the effectiveness and
efficiency of Conv-Adapter. It achieves comparable or
even better performance to full fine-tuning with only
around 5% backbone parameters. Conv-Adapter also well
generalizes to detection and segmentation tasks that re-
quire dense predictions.

2. Related Work
2.1. Parameter Efficient Tuning for Transformers

Pre-trained Transformer models in NLP are usually of the
size of billions of parameters [5, 13, 16], which makes fine-
tuning inefficient as one needs to train and maintain a sepa-
rate copy of the backbone parameters on each downstream
task. Adapter [21] is first proposal to conduct transfer with
light-weight adapter modules. It learns the task-specific
knowledge and composes it into the pre-trained backbone
[43, 44] when adapting to a new task. Similarly, LoRA in-
troduces trainable low-rank matrices to each layer of the
backbone model to approximate parameter updates. Differ-
ent from inserting adaption modules to intermediate layers,
Prefix Tuning [31] and Prompt Tuning [30], inspired by the
success of textual prompts [5, 33, 45], prepend learnable
prompt tokens to input and only train these tokens when
transferring to a new task. More recently, a unified formu-
lation of Adapter, LoRA, and Prefix Tuning is proposed in
[18], where their core function is to adapt the intermedi-
ate representation of the pre-trained model by residual task-
specific representation learned by tuning modules.

Visual Prompt Tuning [25] is a recent method adapt-
ing Prompt Tuning from NLP to Vision Transformers [25].
Bahng et. al. [1] also explores visual prompts in input pixel
space for adapting CLIP models [45] and makes connec-
tion with [15]. While showing promising results on Trans-
formers, visual prompts on ConvNets presents much worse
transfer results [1, 25], possibly due to the limited capacity
of input space visual prompts. Conv-Adapter can adapt the
intermediate features thus has larger capacity.

2.2. Transfer Learning for ConvNets

While there is no straightforward approach to applying pre-
vious PET methods designed for Transformers directly on
ConvNets, several attempts have been made in prior re-
search. BatchNorm Tuning [40] and Bias Tuning [2] only
tune the batchnorm related terms or the bias terms of the
pre-trained backbone. Piggyback [39] instead learns weight
masks for downstream tasks while keeping the pre-trained
backbone unchanged. They all have limited transferability
and update partial parameters of the backbone.

More related to our work, Residual Adapter [48] ex-

1552



plores inserting an extra convolutional layer of kernel size 1
to each convolutional layer in pre-trained ResNet-26 [19],
either in parallel or in sequential, to conduct the multi-
domain transfer. Similarly, TinyTL introduces extra resid-
ual blocks to MobileNet [6, 23] for memory efficient on-
device learning. Guo et. al. [17] proposes re-composing
a ResNet with depth-wise and point-wise convolutions,
and re-training only the depth-wise part during fine-tuning.
RepNet [59] exploits a dedicated designed side network to
re-program the intermediate features of pre-trained Con-
vNets. Conv-Adapter differs from previous methods with a
design that considers parameter efficiency and transferabil-
ity from the internal architectures and adapting schemes.
Besides, the proposed Conv-Adapter does not require tun-
ing any backbone parameters to achieve comparable perfor-
mance to fine-tuning.

3. Method

3.1. Preliminaries

Parameter efficient tuning (PET) methods [21, 24, 25, 30,
31] introduce learnable adapting modules plugged into the
backbone that is frozen during tuning. From a unified point
of view, the core function of the adaption modules is to learn
task-specific feature modulations on originally hidden rep-
resentations in the pre-trained backbone [18]. Specifically,
considering an intermediate hidden representation h gener-
ated by a layer or a series of layers with input x in a pre-
trained network, the PET adaption module learns ∆h and
updates h as:

h←− h+ α ·∆h, (1)

where α could be a scalar [24] or a gating function [31].
Previous PET methods in NLP mainly follow a similar
functional form for constructing ∆h – down-sampling pro-
jection, non-linearity, and up-sampling projection. How-
ever, they differ in 1) implementation (architecture) - the
form of the projections and non-linearity, and 2) the adapt-
ing scheme - which h in the model to adapt and compute
∆h from which representation. These differences charac-
terize the adaptation to new tasks and robustness to out-of-
distribution evaluation [31].

It is non-trivial to design effective PET methods for Con-
vNets because previous PET modules are mainly devel-
oped on Transformers rather than ConvNets. Besides, the
components of the architecture and computation dynam-
ics of ConvNets and Transformers are inherently different.
Following the unified formulation of PET methods in Eq.
(1), we propose Conv-Adapter. We construct the ∆h of
Conv-Adapter similarly to previous PET methods and de-
sign the adaption architecture and scheme on ConvNets
from the perspective of transferability and parameter effi-
ciency.

3.2. Motivation

Before delving into the details of our design, we identify the
essential difficulty that prevents utilizing prior arts directly
on ConvNets as an adaption module and thus inspires us
to propose Conv-Adapter. Conventionally, for ConvNets, h
and ∆h are usually 3-dimensional structural features maps
belonging to RC×H×W with C being the channel dimen-
sion and H ×W being the spatial size of the feature maps.

The difference in intermediate feature and processing
dynamics poses obstacles to transferability. For Trans-
formers, h is whereas 2-dimensional sequential features in
RL×D where L is the sequence length and D is the feature
dimension. Previous PET modules for Transformers com-
pute ∆h in various forms, e.g., linear layers over h [21] and
self-attention over additional input prompts [25, 30, 31].
They can all process the sequential features globally with
long-range dependencies as the computing blocks in Trans-
formers. Although it is possible to apply linear layers, or
equivalently 1 × 1 convolutional layers [48], to adapt the
feature maps of ConvNets, it is yet intuitive that this might
produce inferior transfer performance due to the loss of lo-
cality, which is encoded in the structural features maps by
convolutions of kernel size larger than 1. The loss of lo-
cality results in a radical mismatch of the receptive field
in ∆h and h, which might be destructive when adapting
ConvNets on tasks with significant domain shifts. Apart
from the receptive field mismatch, the spatial size of feature
maps in ConvNets also significantly affects the transferabil-
ity of adaption. Earlier attempts to use adapters to transfer
ConvNets usually downsample the feature’s spatial size for
memory and parameter efficiency. However, for CV tasks
beyond image classification like segmentation, the spatial
size matters for achieving good results [9, 49].

In summary, it is crucial to design the architecture and
adapting scheme of the PET module computing ∆h for
ConvNets to have the same spatial size of feature maps and
the same receptive field of convolutions for transferability.

3.3. Architecture of Conv-Adapter

Given the above challenges, we design our Conv-Adapter
as a bottleneck structure, which is also widely used by
PET methods of NLP tasks [19, 21]. However, our
Conv-Adapter designs the bottleneck, particularly for Con-
vNets. Precisely, it consists of two convolutional layers
with a non-linearity function in-between. The first convo-
lution conducts channel dimension down-sampling with a
kernel size similar to that of the adapted blocks, whereas the
second convolution projects the channel dimension back.
For simplicity, we adopt the same activation function used
in the backbone as the non-linearity at the middle of the bot-
tleneck. The effective receptive field of the modulated fea-
ture maps produced by Conv-Adapter is thus similar to that
of the adapted blocks in the backbone. We do not change the
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Figure 2. Architecture of Conv-Adapter, which has a bottleneck
composed of depth-wise separable convolutions with non-linearity
activation. Cin, Cout, H , W is set to keep the same as in back-
bone. α and γ are hyper-parameters to tune.

spatial size of the feature maps for better transferability on
dense prediction tasks. We adopt the depth-wise separable
convolutions [23] for Conv-Adapter to reduce the parameter
size further.

Figure 2 illustrates our Conv-Adapter architecture. For-
mally, let the input feature map to the adapted blocks of
the ConvNets be z ∈ RCin×H×W and the output feature
maps be h ∈ RCout×H×W , where Cin and Cout are the
channel dimension of the input and output to the adapted
blocks respectively. Assuming the spatial size H ×W of
the feature maps does not change along these blocks, we set
the learnable weight as Wdown ∈ R

Cin
γ ×γ×K×K for the

depth-wise convolution and Wup ∈ RCout×
Cin
γ ×1×1 for

the point-wise convolution in Conv-Adapter, with the non-
linearity denoted as f . We use a compression factor of γ to
denote the down-sampling in the channel dimension, where
γ is a hyper-parameter tuned for each task. Mathematically,
Conv-Adapter computes ∆h ∈ RCout×H×W as:

∆h =
(
Wup ⊗ f(Wdown⊗̂z)

)
, (2)

where⊗ and ⊗̂ denotes point-wise and depth-wise convolu-
tion, respectively. To allow the modulation ∆h to be more
flexibly composed into h, we set α in Eq. (1) as a learnable
scaling vector in RCout , which is initialized as ones. The
ablation study on design choices is presented in Sec. 4.5.

3.4. Adapting ConvNets with Conv-Adapter

After setting the architecture of Conv-Adapter, we dis-
cuss the scheme to adapt a variety of ConvNets. Previous
PET methods insert the adapting modules to Self-Attention
blocks, Feed-Forward blocks, or both [18] of Transformers,
which have a relatively unified architecture. In contrast,
modern ConvNets usually stacks either residual blocks
[19, 51, 61] or inverted residual blocks [23, 36, 52, 53],

which consists of a series of convolutional layers (and
sometimes pooling layers) and a residual identity branch,
making it more difficult to use a single adapting scheme to
various architectures.

To explore the effective adapting schemes of using Conv-
Adapter to tune a ConvNet, we study it mainly from two
perspectives, similar to [18], 1) the location of adaptation in
pre-trained ConvNets – which intermediate representation
h to adapt, and 2) the insertion form of Conv-Adapter – how
to set the input z to Conv-Adapter to compute ∆h. From
the location perspective, we study plugging Conv-Adapter
to each (inverted) residual block [7] or to each functioning
K × K convolutional layer within a residual block [17].
From the insertion perspective, Conv-Adapter can be in-
serted either in parallel or in sequential to the modified com-
ponents, with the input to Conv-Adapter being x, the input
to the modified components, or being h itself, respectively.
Combining the design dimension from these two perspec-
tives, we propose 4 variants of adapting schemes with Conv-
Adapter: Convolution Parallel, Convolution Sequential,
Residual Parallel, and Residual Sequential.

Taking the bottleneck residual block of ResNet-50 [19]
as an example, we demonstrate the proposed designs in Fig.
3. As 1 × 1 convolution layer can only transfer channel-
wise information, we thus design the adapting of functional
convolutions, i.e., intermediate K×K convolutions, to keep
locality sensitive. On the contrary, adapting the whole resid-
ual block considers the transferring of pre-trained knowl-
edge carried by 1 × 1 convolutions. Intuitively, adapting
the whole residual blocks has a larger capacity for mod-
ulating task-specific features than adapting only K × K
convolution but may introduce more parameters. Plugging
Conv-Adapter stage-wisely is not considered as it is imprac-
tical to make the receptive field of Conv-Adapter similar to
the adapted stage with only two convolutions. It needs a
more sophisticated design on not only the Conv-Adapter ar-
chitecture but also the adaptation location [59], and we em-
pirically find that stage-wise adaptation produces inferior
performance and requires much more parameters. Conv-
Adapter is flexible to be inserted into every residual block
of the ConvNet backbone for transferability of features from
different depths, as in [39, 48]. Other backbones such as
ConvNext [36], and even Swin-Transformer [34] can be
adapted following the same guideline (see experiments).

4. Experiments

This section verifies the transferability and parameter effi-
ciency of Conv-Adapter from various aspects, including im-
age classification, few-shot classification, object detection,
and semantic segmentation. Additionally, we provide an ab-
lation study of Conv-Adapter for its design choices and an
analysis of its performance.
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Figure 3. Four adapting schemes of Conv-Adapter to ResNet50: Convolution Parallel, Convolutional Sequential, Residual Parallel, and
Residual Sequential. The schemes differ regarding the position of of the modified representation and corresponding insertion form. Other
networks can be adapted similarly following the illustration. Green modules are frozen during fine-tuning.

4.1. Transferability of Conv-Adapter

4.1.1 Setup

We first evaluate the transferability of Conv-Adapter on
classification tasks. We experiment on two benchmarks:
VTAB-1k [60] and FGVC. VTAB-1k includes 19 diverse
visual classification tasks, which are grouped into three cat-
egories: Natural, Specialized, and Structured based on the
domain of the images. Each task in VTAB-1k contains
1,000 training examples. FGVC consists of 4 Fine-Grained
Visual Classification tasks: CUB-200-2011 [57], Stanford
Dogs [26], Stanford Cars [29], and NABirds [55].

For evaluation, we compare the 4 variants of Conv-
Adapter with full fine-tuning (FT) and 3 baseline meth-
ods: linear probing (LP), bias tuning (Bias) [7], and vi-
sual prompt tuning (VPT) [1, 25]. We test each method on
ResNet50 [19, 27] with ImageNet21k pre-training. To find
the optimal hyper-parameters of Conv-Adapter (and base-
line methods), we conduct a grid search of the learning rate,
weight decay, and compression factor γ for each dataset
using the validation data split from training data for both
benchmarks. For VTAB-1k, we use the recommended op-
timal data augmentations in [60], rather than solely Resize
and Centre Crop as in [1, 63]. We find the recommended
augmentations produces better results for full-tuning. For
FGVC, we use RandomResized Crop with a minimum scale
of 0.2 and Horizontal Flip [50] as augmentation. Mores de-
tails of the hyper-parameters are shown in Appendix.

4.1.2 Results and Discussion

Results are reported in Tab. 1. Conv-Adapter not only
demonstrates significant improvements over the baseline
methods, but also achieves the same level of performance

Table 1. Performance of Conv-Adapter adapting schemes on
ResNet-50 BiT-M. Each setting includes three runs and averaged
top-1 accuracy (%) over datasets and the averaged total trainable
parameters (M) over all datasets are reported. We compare pro-
posed variants of Conv-Adapter (in gray) with full Fine-Tuning
(FT), Linear Probing (LP), Bias Tuning (Bias), and Visual Prompt
Tuning (VPT). We report the number of wins of (·) for each
method compared to FT. Bold and underline refer to the top and
second result separately.

Tuning # Param. FGVC VTAB-1k

Natural Specialized Structured

# Tasks - 4 7 4 8

FT 23.89 83.46 72.19 85.86 66.72

LP 0.37 75.44 (1) 67.42 (4) 81.42 (0) 37.92 (0)
Bias 0.41 64.98 (0) 66.06 (4) 80.34 (0) 32.18 (0)
VPT 0.42 74.79 (1) 65.43 (2) 80.35 (0) 37.64 (0)

Conv. Par. 0.85 83.77 (3) 72.60 (5) 84.21 (1) 56.70 (1)
Conv. Seq. 0.87 79.68 (2) 72.28 (4) 83.85 (0) 58.50 (1)
Res. Par. 8.21 84.24 (3) 71.75 (4) 84.70 (0) 61.34 (1)
Res. Seq. 3.53 83.45 (2) 71.74 (4) 84.84 (0) 61.33 (2)

or even surpasses their fine-tuning counterparts on all do-
mains evaluated, by introducing only around 3.5% of full
fine-tuning parameters for ResNet-50. Notably, there is
a considerable performance gap, i.e., an improvement of
23.44%, of Conv-Adapter over previous baseline methods
on Structured datasets of VTAB-1k.

One can observe that the proposed four variants of Conv-
Adapter all achieve comparable performance compared to
full fine-tuning. Among the four variants, Convolution
Parallel achieves the best trade-off between performance
and parameter efficiency. On the evaluated classification
tasks, inserting Conv-Adapter in parallel generally outper-
forms inserting sequentially. In terms of the modified repre-
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sentation, one can find that, on most of the datasets, adapt-
ing only the K ×K convolutions of ResNet-50 can achieve
performance close to fine-tuning. However, on Structured
datasets, adapting whole residual blocks is far better than
adjusting only the middle convolutions with more parame-
ters, demonstrating the superior capacity of adjusting resid-
ual blocks when there is a more significant domain gap.

4.2. Universality of Conv-Adapter

4.2.1 Setup

We evaluate the universality of Conv-Adapter on classi-
fication tasks in this section, where Conv-Adapter is in-
serted to various ConvNets architectures with different pre-
training. We adopt the simple yet effective adapting scheme
– Convolution Parallel, and mainly compare it with full
fine-tuning. More specifically, we adopt ImageNet-21k pre-
trained ResNet50 [27], ConvNext-B and ConvNext-L [36],
and even Swin-B and Swin-L [34]. Apart from ImageNet-
21k, we evaluate ImageNet-1K, CLIP [20], and MoCov3
[11] pre-training. Similarly, we conduct a hyper-parameter
search on the validation set, and report the accuracy on the
test set of FGVC and VTAB-1k. Model details are shown
in Appendix.

4.2.2 Results and Discussion

We present the results in Tab. 2. On various ImageNet-21k
pre-trained ConvNets, Conv-Adapter demonstrates its uni-
versality with comparable performance to fine-tuning. For
large models such as ConvNext-L and Swin-L, conducting
traditional fine-tuning requires training nearly 196M param-
eters, whereas Conv-Adapter improves the parameter effi-
ciency with only 7.8% and 4.5% of the fine-tuning param-
eters on ConvNext-L and Swin-L respectively. Although
the transfer performance of Conv-Adapter on ImageNet-1k
pre-trained models is more limited, compared to ImageNet-
21k pre-training, Conv-Adapter still demonstrates its supe-
rior parameter efficiency and shows improvement over fine-
tuning on several tasks. For the CLIP vision models, Conv-
Adapter consistently outperforms fine-tuning on Structured
tasks of VTAB-1k. We observe a performance gap of Conv-
Adapter on MoCov3 pre-trained [11], and we argue this
is possibly due to the difference in feature space of self-
supervised and supervised models in CV [25].

4.3. Few-Shot Classification

4.3.1 Setup

PET methods usually present superior performance for
tasks with low-data regimes [18, 31]. We thus evaluate
Conv-Adapter on few-shot classification using ImageNet-
21k pre-trained ResNet50 Bit-M [27] and ConvNext-B [36].
We evaluate 5 FGVC datasets using 1, 2, 4, 8 shots for

Table 2. Comparing Conv-Adapter (CA) with full Fine-Tuning
(FT) using various backbone architectures of different pre-
training. Each setting includes three runs and averaged top-1 accu-
racy (%) over datasets and the averaged total trainable parameters
(M) over all datasets are reported. We report the number of wins
of (·) for each method in compared to FT. Bold indicates the best
results.

Pre-train Backbone Tuning # Param. FGVC VTAB-1k

Natural Specialized Structured

# Tasks 4 7 4 8

ImageNet
21k

ResNet50
BiT-M

FT 23.89 83.46 72.19 85.86 66.72
CA 0.85 83.77 (3) 72.60 (5) 84.21 (1) 56.70 (1)

ConvNext-B FT 87.75 89.48 81.59 87.32 65.77
CA 6.83 89.28 (1) 80.62 (4) 86.29 (0) 64.88 (2)

ConvNext-L FT 196.50 90.64 82.25 87.94 67.65
CA 15.52 90.69 (3) 81.7 (2) 86.85 (0) 64.98 (3)

Swin-B FT 86.92 90.01 78.65 87.59 64.69
CA 4.98 88.55 (1) 80.00 (4) 85.84 (0) 62.57 (2)

Swin-L FT 195.27 91.04 80.64 87.85 66
CA 8.86 90.54 (2) 81.39 (3) 86.29 (1) 63.19 (2)

ImageNet
1k

ResNet50 FT 23.87 85.84 67.15 83.53 53.32
CA 0.72 83.48 (0) 64.20 (0) 81.33 (1) 52.74 (2)

ConvNext-B FT 87.75 88.95 74.51 85.33 61.34
CA 10.82 87.84 (1) 74.72 (4) 84.29 (0) 63.77 (2)

CLIP
ResNet50 FT 38.50 81.38 58.53 80.8 57.18

CA 2.23 76.64 (0) 56.33 (3) 79.12 (0) 58.96 (4)

ResNet50x4 FT 87.17 84.23 65.71 82.22 58.84
CA 6.14 82.71 (0) 62.54 (2) 80.72 (1) 59.10 (4)

MoCov3 ResNet50 FT 23.87 83.92 66.25 83.89 60.26
CA 0.89 79.69 (0) 65.31 (3) 81.59 (0) 53.87 (1)

each class following following previous studies [25, 45, 63]
including Food101 [4], Oxford Flowers [41], Oxford Pets
[42], Stanford Cars [29], and Aircraft [38]. Averaged top-1
accuracy is reported in Tab. 3. We search from the same
range as before and adopt the same augmentations as for
FGVC tasks. The detailed hyper-parameters and more re-
sults for each dataset are in Appendix.

4.3.2 Results and Discussion

Compared with Fine-tuning, Conv-Adapter boosts few-shot
classifications with an average 3.39% margin over differ-
ent shots using only around 5% trainable parameters. Es-
pecially for 1/2-shot cases, Conv-Adapter shows supreme
performance compared with Fine-tuning and VPT [25]
(11.07% on 1-shot and 6.99% on 2-shot with larger archi-
tecture ConvNext-B). Meanwhile, Conv-Adapter provides
a better accuracy-efficiency trade-off than Visual Prompt
Tuning on few-shot classifications. It surpasses VPT with
an average margin of 1.35% with ResNet50 Bit-M and
3.69% with ConvNext-B. In the 8-shot case, VPT drops
around 8% performance compared with Fine-tuning due to
limited capacity, while Conv-Adapter can achieve compa-
rable or better performance to Fine-tuning and maintain pa-
rameter efficiency.
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Table 3. Few-shot classification: the average Top-1 accuracy over
5 FGVC datasets, with 1, 2, 4, 8 shots. We compare Conv-Adapter
(CA), Visual Prompt Tuning (VPT), and full Fine-Tuning (FT).
Bold indicates the best results.

Backbone Tuning # Param 1 2 4 8

ResNet50
Bit-M

FT 23.72 29.30 38.96 50.09 61.27
VPT 0.24 32.56 42.18 52.21 59.37
CA 1.02 34.31 43.55 52.43 61.42

ConvNext-B
FT 87.68 36.34 48.83 63.69 76.91
VPT 0.13 42.25 51.85 62.89 69.04
CA 4.6 47.41 55.82 63.25 74.29

Table 4. Object detection & Semantic Segmentation results. We
report the results of fine-tuning and Conv-Adapter with the Resid-
ual Parallel scheme.

Object Detection with Faster-RCNN
Backbone Tuning # Param AP AP50 AP75

ResNet50 FT 41.53 38.1 59.7 41.5
CA 35.72 38.4 61.1 41.5

ConvNeXt-B FT 67.09 45.2 67.2 49.9
CA 24.62 41.9 64.5 45.7

Semantic Segmentation with UPerNet
Backbone Tuning # Param (M) mIoU

ResNet50 FT 66.49 42.1
CA 45.65 43.0

ConvNeXt-B FT 81.87 48.7
CA 39.40 46.9

4.4. Object Detection and Semantic Segmentation

4.4.1 Setup

Beyond image classification tasks, we also validate the gen-
eralization of Conv-Adapter on dense prediction tasks, in-
cluding object detection and semantic segmentation. We
use ImageNet-21k pre-trained ResNet50 and ConvNeXt-
S as backbones. For object detection, we implement
Conv-Adapter with Faster-RCNN using the MMDetection
[8] framework compared with fine-tuning. We report the
average precision (AP) results on the validation split of the
MS-COCO dataset [32]. For semantic segmentation, we
implement Conv-Adapter with UPerNet [58] using MM-
Segmentation framework [12] and conduct experiments on
the ADE20K dataset [64], with mIoU reported on the vali-
dation split.

For object detection, we compare all four schemes of
Conv-Adapter with the fine-tuning baseline. Specifically,
we follow a standard 1x training schedule: all models are
trained with a batch size of 16 and optimized by AdamW
with an initial learning rate of 0.0002 for Faster RCNN and
0.0001 for RetinaNet, which are then dropped by a factor
of 10 at the 8-th and 11-th epoch. The shorter side of the
input image is resized to 800 while maintaining the original
aspect ratio. For segmentation, we train all models for 80k
iterations with an random cropping augmentation of 512 ×

512 input resolution. For ConvNeXt models, we use a larger
input resolution of 640× 640 and train the models for 160k
iterations. We apply AdamW optimizer with a polynomial
learning rate decay schedule. More detailed training setting
and hyper-parameters are shown in Appendix.

4.4.2 Results and Discussion

The dense prediction results are summarized in Tab. 4. We
observe a different effect of Conv-Adapter on two types of
backbones. On ResNet50, Conv-Adapter surpasses fine-
tuning with fewer trainable parameters (including the dense
prediction heads) for object detection and semantic segmen-
tation. On ConvNeXt-S, the performance is lower than their
fine-tuning counterparts. We argue that the inferior per-
formance of Conv-Adapter on ConvNeXt-S on dense pre-
diction tasks is due to severely reduced model capacity as
the number of trainable parameters is reduced by more than
50%. Nevertheless, they can still outperform the ResNet50
with fewer total parameters. This indicates there might be
overfitting issues, and we encourage more future studies on
this topic.

4.5. Ablation Study

4.5.1 Setup

We provide an ablation study on the design choices of
Conv-Adapter, where we explore different architectures and
adapting schemes. In this section, we mainly report the Top-
1 accuracy on the validation set of VTAB-1k.

4.5.2 Architecture and Adapting Schemes

We first compare the performance of Conv-Adapter using
depth-wise separable, regular, and 1×1 convolutions (linear
layers). As shown in Tab. 5, depth-wise separable convolu-
tion introduces the minimal parameter budget while achiev-
ing the best results. Apart from 4 adapting variants pro-
posed in this work, we also explore other design choices
used in previous works. We experiment on spatial down-
sampling of feature maps [7]. Compared to channel down-
sampling with a bottleneck in Conv-Adapter, spatial down-
sampling introduces nearly 27 times of parameters with in-
ferior accuracy. We also validate the adapting scheme of
applying 1× 1 convolution to all convolutional layers [48],
which introduces nearly 16 times of parameters to Conv-
Adapter with -12.27% accuracy gain. Finally, we evalu-
ate the adapting scheme that inserts Conv-Adapter stage-
wisely, which is less effective in both parameter size and
performance than the proposed schemes.
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Table 5. Ablation study on more adapting scheme and more archi-
tectures of Conv-Adapter. The different schemes and architectures
mainly come from previous works. The proposed adaptation and
architecture achieve the best results.

Adapting Scheme Down-sample # Convs Type of Conv. # Param VTAB-1k

K ×K Conv. Par. Channel 2 Depth-wise 0.67 71.03
K ×K Conv. Par. Channel 2 Regular 5.66 70.52
K ×K Conv. Par. Channel 2 Linear 1.22 68.32

K ×K Conv. Par. Spatial 2 Depth-wise 18.45 68.54
All Conv. Par - 1 Linear 10.74 58.75
Stage Par. Channel 2 Depth-wise 1.90 65.06
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Figure 4. Sensitivity to hyper-parameters of initialization of learn-
able scaling vector α and compression factor γ.

4.5.3 Sensitivity to γ and initialization of α

We explicitly study the sensitivity of the transfer perfor-
mance to the initialization of the learnable scaling vector α
and compression factor γ in Conv-Adapter, as shown in Fig.
4. When initializing α as ones, Conv-Adapter achieves the
best performance on the validation set of VTAB-1k. Com-
pared to α, Conv-Adapter is more robust to the compression
factor γ, achieving similar performance with the compres-
sion factor of 1, 2, and 4. Setting γ with a larger value
results in inferior performance with a more limited capacity
of Conv-Adapter.

4.5.4 Kernel size in Conv-Adapter

We show the performance of Conv-Adapter on VTAB-1k
validation set in Fig 5, of using different kernel size for
the depth-wise convolution to verify our argument of the
loss of locality. One can observe that, for both ResNet50
and ConvNext-B, using smaller kernel size results in infe-
rior performance. When setting the kernel size larger to that
of the residual blocks, i.e., 5 and 7 for ResNet50, the perfor-
mance is further boosted, with more parameters introduced.

4.5.5 CKA Similarity of Conv-Adapter

We observe from Tab. 1 and Tab. 2 that, on datasets with
large domain shifts, Conv-Adapter (and baseline methods)
may fail to generalize well. To investigate the reason, we
compute the CKA similarity [28, 47] between weights of
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Figure 5. Sensitivity to kernel size of depth-wise convolution in
Conv-Adapter, for both ResNet50 and ConvNext-B.
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Figure 6. CKA similarity and accuracy gap between
Conv-Adapter and fully fine-tuning for FGVC datasets.

convolutional filters for the pre-trained and fine-tuned back-
bone. The lower the CKA similarity, the larger capacity is
required for good transfer performance. We plot the CKA
similarity and the relative accuracy gain of Conv-Adapter to
fine-tuning in Fig. 7, where the same trends over datasets
exhibit for different architectures. When fully fine-tuning
only leads to small changes in filter weights (larger CKA
similarities), Conv-Adapter is more likely to surpass the
performance of fully fine-tuning. More detail on CKA sim-
ilarity comparison is in Appendix.

5. Conclusions
In this work, we propose Conv-Adapter, a parameter
efficient tuning module for ConvNets. Conv-Adapter is
light-weight, domain-transferable, and model-agnostic.
Extensive experiments on classification and dense
prediction tasks show it can achieve performance
comparable to full fine-tuning with much fewer pa-
rameters. We find Conv-Adapter might fail on tasks
with large domain shifts and subject to feature qual-
ity determined by pre-training. Future work includes
more exploration of Conv-Adapter on domain robust-
ness and dense predictions and NAS for Conv-Adapter.

References
[1] Hyojin Bahng, Ali Jahanian, Swami Sankaranarayanan, and

Phillip Isola. Exploring visual prompts for adapting large-

1558



scale models. arXiv preprint arXiv:2203.17274, 2022. 2,
5

[2] Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bit-
fit: Simple parameter-efficient fine-tuning for transformer-
based masked language-models. Proceedings of the 60th
Annual Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), 2022. 1, 2

[3] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Alt-
man, Simran Arora, et al. On the opportunities and risks of
foundation models, 2021. 1

[4] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.
Food-101 – mining discriminative components with random
forests. In European Conference on Computer Vision, 2014.
6

[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-
ford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners, 2020. 1, 2

[6] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct
neural architecture search on target task and hardware. In In-
ternational Conference on Learning Representations, 2019.
2, 3

[7] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. Tinytl:
Reduce memory, not parameters for efficient on-device
learning. In Advances in Neural Information Processing Sys-
tems, pages 11285–11297. Curran Associates, Inc., 2020. 1,
4, 5, 7

[8] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tian-
heng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu,
Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
Chen Change Loy, and Dahua Lin. MMDetection: Open
mmlab detection toolbox and benchmark. arXiv preprint
arXiv:1906.07155, 2019. 7

[9] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for seman-
tic image segmentation. arXiv preprint arXiv:1706.05587,
2017. 3

[10] Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang,
Yibing Song, Jue Wang, and Ping Luo. Adaptformer: Adapt-
ing vision transformers for scalable visual recognition, 2022.
2

[11] Xinlei Chen, Saining Xie, and Kaiming He. An empirical
study of training self-supervised vision transformers. arXiv
preprint arXiv:2104.02057, 2021. 6

[12] MMSegmentation Contributors. MMSegmentation:
Openmmlab semantic segmentation toolbox and
benchmark. https : / / github . com / open -
mmlab/mmsegmentation, 2020. 7

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding, 2018. 1, 2

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale, 2020. 1

[15] Gamaleldin F. Elsayed, Ian Goodfellow, and Jascha Sohl-
Dickstein. Adversarial reprogramming of neural networks,
2018. 2

[16] William Fedus, Barret Zoph, and Noam Shazeer. Switch
transformers: Scaling to trillion parameter models with sim-
ple and efficient sparsity, 2021. 1, 2

[17] Yunhui Guo, Yandong Li, Liqiang Wang, and Tajana Rosing.
Depthwise convolution is all you need for learning multiple
visual domains. Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 33:8368–8375, 2019. 3, 4

[18] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. Towards a unified view of
parameter-efficient transfer learning. In International Con-
ference on Learning Representations, 2022. 1, 2, 3, 4, 6

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2016. 1, 2, 3, 4, 5

[20] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2020. 6, 2

[21] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for NLP. In Proceedings of the 36th International
Conference on Machine Learning, 2019. 2, 3

[22] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for NLP. In Proceedings of the 36th International
Conference on Machine Learning, pages 2790–2799. PMLR,
2019. 1

[23] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications, 2017.
1, 2, 3, 4

[24] Edward Hu, Yelong Shen, Phil Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Lu Wang, and Weizhu Chen. Lora: Low-rank
adaptation of large language models, 2021. 1, 2, 3

[25] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie,
Serge Belongie, Bharath Hariharan, and Ser-Nam Lim. Vi-
sual prompt tuning. In European Conference on Computer
Vision (ECCV), 2022. 1, 2, 3, 5, 6

[26] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng
Yao, and Li Fei-Fei. Novel dataset for fine-grained image
categorization. In First Workshop on Fine-Grained Visual
Categorization, IEEE Conference on Computer Vision and
Pattern Recognition, Colorado Springs, CO, 2011. 5

1559

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation


[27] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan
Puigcerver, Jessica Yung, Sylvain Gelly, and Neil Houlsby.
Big transfer (bit): General visual representation learning,
2019. 2, 5, 6, 3, 4

[28] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and
Geoffrey Hinton. Similarity of neural network represen-
tations revisited. In International Conference on Machine
Learning, pages 3519–3529. PMLR, 2019. 8, 3

[29] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
4th International IEEE Workshop on 3D Representation and
Recognition (3dRR-13), Sydney, Australia, 2013. 5, 6

[30] Brian Lester, Rami Al-Rfou, and Noah Constant. The power
of scale for parameter-efficient prompt tuning. In Proceed-
ings of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 3045–3059, Online and
Punta Cana, Dominican Republic, 2021. Association for
Computational Linguistics. 1, 2, 3

[31] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing
continuous prompts for generation, 2021. 1, 2, 3, 6

[32] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir
Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva
Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Mi-
crosoft coco: Common objects in context, 2014. cite
arxiv:1405.0312Comment: 1) updated annotation pipeline
description and figures; 2) added new section describing
datasets splits; 3) updated author list. 7

[33] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hi-
roaki Hayashi, and Graham Neubig. Pre-train, prompt, and
predict: A systematic survey of prompting methods in natu-
ral language processing, 2021. 2

[34] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2021. 1, 4, 6, 2

[35] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie,
Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong,
Furu Wei, and Baining Guo. Swin transformer v2: Scaling
up capacity and resolution. In International Conference on
Computer Vision and Pattern Recognition (CVPR), 2022.

[36] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2022. 1, 2, 4,
6, 3

[37] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization, 2017. 2

[38] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi.
Fine-grained visual classification of aircraft. Technical re-
port, 2013. 6

[39] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggy-
back: Adapting a single network to multiple tasks by learn-
ing to mask weights, 2018. 2, 4

[40] Pramod Kaushik Mudrakarta, Mark Sandler, Andrey Zh-
moginov, and Andrew Howard. K for the price of 1:
Parameter-efficient multi-task and transfer learning, 2018. 2

[41] M-E Nilsback and Andrew Zisserman. A visual vocabu-
lary for flower classification. In 2006 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition
(CVPR’06), pages 1447–1454. IEEE, 2006. 6

[42] Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and
C. V. Jawahar. Cats and dogs. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 2012. 6

[43] Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Ka-
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