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Abstract

The capabilities of foundation models, most recently the
Segment Anything Model, have gathered a large degree of
attention for providing a versatile framework for tackling a
wide array of image segmentation tasks. However, the inter-
play between human prompting strategies and the segmen-
tation performance of these models remains understudied,
as does the role played by the domain knowledge that hu-
mans (by previous exposure) and models (by pretraining)
bring to the prompting process. To bridge this gap, we
present the PointPrompt dataset compiled across mul-
tiple image modalities as well as multiple prompting an-
notators per modality. We collected a total of 16 image
datasets from the natural, underwater, medical and seis-
mic domain in order to create a comprehensive resource
to facilitate the study of prompting behavior and agreement
across modalities. Overall, our prompting dataset contains
158880 inclusion points and 52594 exclusion points over a
total of 6000 images. Our analysis highlights the follow-
ing: (i) viability of prompts across heterogeneous data, (ii)
that point prompts are a valuable resource in the effort for
enhancing the robustness and generalizability of segmen-
tation models across diverse domains, (iii) prompts facili-
tate an understanding of the dynamics between annotation
strategies and neural network outcomes. Information on
downloading the dataset, images, and prompting tool is pro-
vided on our project website https://alregib.ece.
gatech.edu/pointprompt/.

1. Introduction

Efficient and accurate segmentation of different objects in
an image is a fundamental task in computer vision, im-
pacting a wide array of domains, from natural image un-
derstanding [17, 21] to medical diagnosis [18, 27] and
seismic interpretation [13, 30]. In recent years, the rapid
collection of growing volumes of image data in various
fields coupled with the accelerated progress of deep learn-

ing methods led to the development of foundation models.
In particular, the Segment Anything Model (SAM) [12] has
emerged as a highly flexible segmentation alternative due to
its prompting-based flexibility and intuitive use.

However, there are limited studies on principled or effi-
cient prompting strategies, and whether these strategies are
transferable across different imaging modalities. Moreover,
it has been observed that simply prompting indiscriminately
often leads to over-prompting, where an excessive amount
of cues leads to poor segmentation performance. While
there are works that adapt SAM to a particular domain by
finetuning its components on target datasets [11, 20, 28],
the base zero-shot transfer capabilities and prompting dy-
namics of SAM remain poorly understood. This knowledge
gap severely hinders the principled transferability of SAM
to domains where large amounts of data are not available to
finetune it.

To address this gap, we present the PointPrompt
dataset, a collection of prompting data derived across multi-
ple image modalities and multiple annotators per modality.
The images, prompting data and software are available on
our project website. Our dataset was collected by show-
ing one of 16 image datasets from the natural, underwater,
medical and seismic domain each to a different set of anno-
tators for them to perform point-based prompts on, and col-
lating their responses across 400 images for each dataset.
This dataset constitutes a unified resource to study multi-
modal prompting patterns and advance the development of
efficient domain transfer techniques for foundation models.

2. Related Work

Foundation models are distinguished by their extensive
training on a large scale of data, enabling generalizability
across different domains [5, 31]. Although these models are
based on standard ML algorithms, their capabilities are of-
ten far more versatile than domain-specific (e.g., fine-tuned)
models [19]. These models are often implemented with a
prompting interface to users, in which users can guide these
models to generate the desired output [31].
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Figure 1. A conceptual summary of our prompting dataset. Mul-
tiple sets of annotators (left) are provided with different image
datasets across multiple imaging modalities (middle) to prompt
using our SAM-based segemntation tool, and produce a sequence
of masks (right), each with their own associated prompts and seg-
mentation scores

The revealing of the Transformer architecture [26] has
marked a milestone in the development of foundation mod-
els, and more specifically Natural language processing
(NLP) models. The 345M parameter BERT model [6]
stands as a pioneering example of foundation models in
the application of NLP. The Generative Pre-trained Trans-
former (GPT) models [23] stand as another major milestone
in the development of foundation models. The most recent
GPT-4 model [22] demonstrated state-of-the-art results in
different downstream NLP tasks.

Foundation models have been developed for computer
vision tasks as well, albeit to a lesser extent compared to
their linguistic counterparts. One of the earliest implemen-
tations of these models are the text-to-image models (e.g.
DALL.E [24], and Midjourney [9]) that convert the textual
description of a scene into visuals. In image segmentation,
the Segment anything model (SAM) [12] is marked as the
first foundation model designated for this task. SAM has
been trained on over 1 million images and 1 billion masks
to achieve generalizability across different domains. SAM
engages with its users through prompts, which can be in
various formats, including inclusion and exclusion points,
bounding boxes, masks, or even free-form text.

The interaction between foundation models and users
via the prompting interface introduces an element of un-
certainty, as the precise response of these models to user
prompts can be unpredictable. This uncertainty has given
rise to the concept of prompt engineering, which aims to

Figure 2. Sample use case of the prompting interface used to col-
lect the data. Left: Original image. Middle: Ground-truth seg-
mentation (acquired from source database). Right: SAM-based
segmentation. In this example, a user provides 7 prompts (6 in-
clusion points in green and 1 exclusion point in red), leading to an
10U score of 0.874.

achieve better results by crafting better prompts. Yet, defin-
ing what makes a prompt “better” in the algorithmic percep-
tion of a model remains unclear, thus motivating scholars
to explore ways of optimizing it. Moreover, the diversity
of users engaging with these models—each bringing their
own unique perspectives and problem-solving approaches
shaped by their individual social experiences—adds another
layer of complexity [29].

This uncertainty has motivated scholars to study the im-
pact of the prompts on the model’s output [7, 15], and to
design prompting tools to analyze how users approach these
models through prompts [3, 16]. These studies, however,
are limited to the textual prompts. We hypothesize that
the use of visual prompts by users will fundamentally dif-
fer from textual prompts, which necessitates this line of re-
search.

3. Data Acquisition Methodology

In order to build our prompting dataset, we first curated
16 single-class image datasets across different modalities
in order to achieve a high level of heterogeneity in our
prompts. Each of these image datasets was collected by ran-
domly sampling 400 images along with their corresponding
ground-truth segmentation masks from an existing open-
source dataset as detailed below:

¢ O datasets were extracted from the COCO [14] database,
each corresponding to a single category: dog, cat, bird,
clock, bus, baseball bat, cow, tie, stop sign.

e 2 datasets were extracted from the NDD20 [25] database:
dolphins above water and underwater.

* 3 medical imaging datasets: Chest-X [1] (chest tumors),
Kvasir-SEG [10] (polyp images) and ISIC [8] (skin le-
sions).

* 2 seismic imaging datasets extracted from the F3 Facies
database [2], corresponding to the salt dome and chalk
group categories.

From all of the above described datasets, the seismic

datasets are the only ones that contain 200 images rather

than 400, due to structural constraints in the presence of
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the desired categories across the volumetric seismic data.
We gather prompting data by presenting each of these 16
datasets to separate groups of 3 to 4 annotators, each of
which generates individual prompts for their correspond-
ing dataset, leading to multiple prompting annotations per
category.

In order for the annotators to be able to interact with each
of these datasets, we developed a SAM-based prompting
tool that allowed annotators to add prompts in the form of
inclusion (inside the region of interest) and exclusion (out-
side the region of interest) points through clicks in an image
(the tool is accessible through our project website). Figure
2 shows the standard interface of the tool.

This prompting tool updated the SAM-generated seg-
mentation in a live fashion (after at least 1 inclusion and
1 exclusion points were provided), allowing the annotators
to visualize the result of each consecutive prompt and ad-
just their strategies accordingly. Annotators were generally
instructed to try to maximize their Intersection Over Union
(I0U) score, calculated by comparing the SAM-generated
mask with the ground-truth mask, which was displayed on
top of the segmentation result after each prompt. Once they
were satisfied with their results, users could close the inter-
face and move on to the next image in the set.

Given this live score update scheme, we saved each set
of prompts, their respective IOU scores, and the corre-
sponding SAM-generated masks at each timestep, which
allows for a detailed study of prompt progression and strat-
egy through time. We notice that oftentimes, adding more
points may hinder rather than improve segmentation perfor-
mance. We account for this by closing a round of prompts if
the IOU score did not improve after 5 consecutive prompts
and restarting another prompting round for the correspond-
ing image from scratch (for a maximum of two rounds per
image). Since the data in both rounds (when available) is
saved, this allows for a study both on updated prompting
strategies as well as on the difference in prompting diffi-
culty or uncertainty that different modalities might entail.

4. Dataset and Discussion

We showcase in Figure 3 some of the different image
modalities in our dataset, along with two sample prompt-
based segmentations for each image. The first row shows
the segmentations performed by two different annotators,
and it shows how an excessive amount of prompts can be
highly detrimental to the resulting segmentation mask. The
second row shows consecutive prompts performed by the
same annotator, which differ only in a single point (the sec-
ond one has an additional green point on the tail of the dol-
phin) and it shows a surprising fact: very similar prompts
can lead to significantly different masks. The third row also
shows two dissimilar sets of prompts performed by differ-
ent annotators, which generate qualitatively similar masks.

Figure 3. Image examples of the different prompting modalities
and segmentations in our dataset. The first column corresponds to
an image from a given modality (natural, underwater and medical)
and the two other columns corresponds to different prompts of that
image and their corresponding segmentation. First row: dissimilar
prompts, dissimilar mask. Second row: similar prompts, dissimi-
lar mask. Third row: dissimilar prompts, similar mask.

These examples illustrate that prompt and mask similarity
are not always correlated and there are inherent properties
of different types of image datasets that also affect the mask
generation process.

Figure 4 depicts the average amount of total prompting
timestamps per image (blue), and the average amount of
prompts until achieving the optimal score per image (or-
ange) for each of the image categories in the dataset. Note
that “optimal score” refers to the mask that attains the high-
est IOU with respect to the ground truth. We can see that for
every category, on average, people prompt approximately
twice as much as they need to, or by a range of approx-
imately 2 to 9 unnecessary prompts. This further corrob-
orates the issue showcased in the first two rows of Figure
1, in which people arrive at poor segmentation masks by
prompting excessively.

In Figure 5, we provide statistics on the number of in-
clusion (blue) and exclusion (orange) prompting points at
the optimal segmentation (highest IOU score) timestamp for
each category. As intuition would dictate, we can see that
the number of inclusion points significantly dominates the
amount of exclusion points. An interesting pattern however,
is that in many cases the total amount of prompts (taken
by summing the number of inclusion and exclusion points)
does not closely resemble the average amount of optimal
prompting timpestamps (orange bars in Figure 4), implying
that many prompts are being performed solely on the first
timestamp.

We analyze this pattern more closely in Figure 6, in
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Average number of rounds

Figure 4. Average amount of total (blue) and optimal (orange)
prompting timestamps for each image category.
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Figure 5. Average number of inclusion (blue) and exclusion (or-
ange) points for each image category at the optimal segmentation
performance.

which we directly compare the total number of prompt-
ing timestamps (orange bars) against the total number of
prompts (blue bars). A large difference between these
two bars (as in the case of the bird, stop sign and polyp
categories) implies that annotators perform more than 10
prompts on average for these images before even seeing the
first round of ‘feedback’ in the form of a result generated by
SAM. In contrast, cases where these two bars are very simi-
lar (like the dolphins or clock categories) imply that annota-
tors start off with a single pair of inclusion/exclusion points
and continue prompting based on the visual result returned
by SAM. This patterns implies that prompting heavily early
on before seeing the result stems either from an established
degree of confidence in the domain one is prompting on
(and therefore an expectation of a good segmentation on
that first attempt), or from a preconceived notion of com-
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Figure 6. Total number of prompting timestamps (orange) com-
pared against total number of prompts (blue).
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Figure 7. Average disagreement across different datasets for last
(blue) and best (orange) timestamp.

plexity in the image one is looking at, which is preemptively
accounted for by performing an initially large number of
prompts. These questions could be further explored by ana-
lyzing the relationship between the structures at the dataset
and image levels and the prompting patterns elicited by the
data.

In Figure 7 we compare the level of disagreement be-
tween the prompts performed by the annotators within each
dataset. The disagreement is calculated for each possi-
ble pair of annotators within a dataset using the Chamfer
distance [4] between two sets of points (each correspond-
ing to the prompt locations) P, = {z; € R?}*,; and
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where NN(z, P) denotes the nearest neighbor of z in the
point set P. For a given pair of annotators, we calculate the
disagreement by taking the average of this metric across all
prompted images. The final disagreement for each dataset is
then computed by averaging the disagreement between all
possible pairwise combinations of annotators in that dataset.
For this metric we consider only the inclusion points, given
that the exclusion points are much more arbitrary (since
they correspond to the conceptual background) and lead
to a disagreement almost an order of magnitude higher.
From the plot, it is interesting to observe that the skin le-
sion dataset is the most controversial one by a large mar-
gin, even though it has on average far fewer points than (for
instance) the cow dataset, which although has on average
more prompts (see Figure 5), is drastically more agreed on.
We also want to highlight that both the final (blue) and best
(orange) disagreements are extremely close for all datasets,
which when contrasted with the data on Figure 4 implies
that even when adding excessive prompts, annotators do it
in very similar and consistent manners. This seems to sug-
gest overprompting is highly homogeneous (it does not in-
crease disagreement once an optimal segmentation has been
achieved), which provides further evidence on the value of
studying the structure of overprompting patterns in order to
develop strategies to alleviate or prevent it.

5. Conclusions and future work

In this paper, we introduced a comprehensive image
prompting dataset based on SAM, comprising multiple
imaging modalities and several human annotators per
modality, in order to provide a resource to improve the
understanding of the complex interplay between prompt-
ing strategies and segmentation results, and the role do-
main knowledge (in humans and models) plays into this
dynamic. Our dataset provides insights into prompting be-
haviour across multiple imaging categories, and presents
opportunities for improving zero-shot transfer capabilities
of foundation models in domains where large amounts of
labeled data are not necessarily available for finetuning.
We are actively working on expanding this dataset, and
plan to acquire prompting data in other modalities, as well
as re-prompt on the already gathered modalities after fine-
tuning SAM to each specific category, in order to better
study how prompting strategies evolve as models receive
more exposure to specific domains. The dataset, images and

software can be accessed at https://alregib.ece.
gatech.edu/pointprompt/.
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