
Conv-Adapter: Exploring Parameter Efficient Transfer Learning for ConvNets

Supplementary Material

6. Implementation Details

In this section, we provide more implementation details of
Conv-Adapter. We first show the details of the datasets we
used and the pre-trained models we used. Then we present
the details of hyper-parameter used for each method and
each dataset in experiments. We implement all ConvNets
and Conv-Adapter in PyTorch, and the code will be made
available.

6.1. Datasets

The specifications of the all datasets evaluated in experi-
ments are shown in Tab. 6.

Table 6. Specification of all datasets evaluated. We use * to in-
dicated randomly sampled train and validation sets (from original
training set) for datasets which do not have validation split.

Dataset Description # Class # Train # Val # Test

CUB-200-2011

FGVC

200 5,394*/5,994 600* 5,794
NABirds 700 21,536*/23,929 2,393* 24,633
Stanford Dogs 120 10,800*/12,000 1,200* 8,580
Stanford Cars 196 7,329*/8,144 815* 8,041

CIFAR-100

Natural

100

800/200 200

10,000
Caltech101 102 6,084
DTD 47 1,880
Oxford Flowers102 102 6,149
Oxford Pets 37 3,669
SVHN 10 26,032
Sun397 397 21,750

Patch Camelyon

Specialized

2

800/200 200

32,768
EuroSAT 10 5,400
Resisc45 45 6,300
Retinopathy 5 42,670

Clevr/count

Structured

8

800/200 200

15,000
Clevr/dist 6 15,000
DMLab 6 22,735
KITTI/dist 4 711
dSprites/loc 16 73,728
dSprite/ori 16 73,728
SmallNORB/azi 18 12,150
SmallNORB/ele 9 12,150

FGVCAirCraft

Few-Shot

102

shots × classes

3,333 3,333
Food101 101 20,200 30,300
Oxford Flowers102 102 1,633 2,463
Oxford Pets 37 736 3,669
Stanford Cars 196 1,635 8,041

MS-COCO Detection 80 117,266 5,000 -
ADE-20k Segmentation 150 25,574 2,000 -

6.2. Models

We present the details of the pre-trained models used in ex-
periments in Tab. 7, with the checkpoint link.

6.3. Hyper-parameters in Experiments

We provide the hyper-parameters search range and impor-
tant settings used in experiments in this section. The de-
tailed hyper-parameters used in experiments will be made
available as configuration files in code.

6.3.1 Classification on FGVC and VTAB-1k

For classification tasks of FGVC and VTAB-1k, we summa-
rize the hyper-parameter range in Tab. 8. For VTAB-1k, we
use the recommended optimal data augmentations in [60],
rather than solely Resize and Centre Crop as in [63]. We
find the recommended augmentations produces better re-
sults for full-tuning. For FGVC, we use RandomResized
Crop with a minimum scale of 0.2 and Horizontal Flip [50]
as augmentation. For few-shot classifications, we use the
same range as in Tab. 8 and same augmentations as for
FGVC tasks.

6.4. Dense Prediction Tasks

6.4.1 Object Detection

We compare all four schemes of Conv-Adapter with the
fine-tuning baseline. Specifically, we follow a standard 1x
training schedule: all models are trained with a batch size of
16 and optimized by AdamW with an initial learning rate of
0.0002 for Faster RCNN and 0.0001 for RetinaNet, which
are then dropped by a factor of 10 at the 8-th and 11-th
epoch. The shorter side of the input image is resized to 800
while maintaining the original aspect ratio.

6.4.2 Semantic Segmentation

We conduct similar experiments for the segmentation task.
For ResNet50 backbones, we train all models for 80k itera-
tions with an random cropping augmentation of 512 × 512
input resolution. For ConvNeXt models, we use a larger in-
put resolution of 640 × 640 and train the models for 160k
iterations. We apply AdamW optimizer with a polynomial
learning rate decay schedule.

7. Extended Analysis
7.1. Model Analysis

In this section, we provide an analysis of the trainable pa-
rameters, model latency, and GFLOPs, based on ResNet50
[19] and ConvNext-B [36]. Since Conv-Adapter is applied
on each residual block, we first provide a theoretical anal-
ysis of the trainable parameters of each adapting scheme

Table 7. Specification of pre-trained models used in experiments.

Backbone Pre-trained Objective Pre-trained Dataset # Param (M) Feature Dim

ResNet50 [19] Supervised ImageNet-1k 23.5 2,048
ResNet50 [19] Supervised ImageNet-21k 23.5 2,048
ResNet50 BiT-M [27] Supervised ImageNet-21k 23.5 2,048
ConvNext-B [36] Supervised ImageNet-1k 87.6 1,024
ConvNext-B [36] Supervised ImageNet-21k 87.6 1,024
ConvNext-L [36] Supervised ImageNet-21k 196.2 1,536
Swin-B [34] Supervised ImageNet-21k 86.7 1,024
Swin-L [34] Supervised ImageNet-21k 194.9 1,536
ResNet50 [45] CLIP CLIP 38.3 1,024
ResNet50x4 [45] CLIP CLIP 87.1 640
ResNet50 [20] MoCov3 ImageNet-1k 23.5 2,048

Table 8. Hyper-parameter range for grid-search on image classifi-
cation tasks of FGVC and VTAB-1k.

All Backbones

Optimizer AdamW [37]
LR Range [1e-3, 5e-4, 1e-4, 5e-5, 1e-5]
WD Range [1e-2, 1e-3, 1e-4, 0]
LR schedule cosine
Total Epochs 100
Warmup 10

proposed in Tab. 9. Take the bottleneck residual block of
ResNet50 as an example, we set the channel size for each
convolution in the residual block as Cin, Cmid, and Cout

respectively, where Cin is usually set to Cin

4 . We assume
the spatial size of the feature maps do not change at each
residual block.

We also provide the measurement of training/testing la-
tency, memory cost, and GFLOPs for all the tasks evaluated
in this paper, as shown in Tab. 10. For image classifica-
tion, we average the inference speed over a batch of 64. Al-
though Conv-Adapter has increased testing latency because
of the inference includes forwarding on both backbone and
Conv-Adapter, the latency and memory cost of training is
not necessarily greater thanks to reduced overhead of gradi-
ent computation.

Table 9. Analysis of trainable parameters of the 4 proposed adapt-
ing schemes, compared to fine-tuning.

Tuning Input Output Trainable Param.

FT Cin ×H ×W Cout ×H ×W K ×K × Cin × Cmid + Cin × Cmid + Cout × Cmid

Conv. Par Cmid ×H ×W Cmid ×H ×W K ×K × Cmid +
Cmid

γ × Cmid

Conv. Seq. Cmid ×H ×W Cmid ×H ×W K ×K × Cmid +
Cmid

γ × Cmid

Res. Par. Cin ×H ×W Cout ×H ×W K ×K × Cin + Cin

γ × Cin

Res. Seq. Cin ×H ×W Cout ×H ×W K ×K × Cin + Cin

γ × Cin

Table 10. Evaluation of model latency, memory, and GFLOPs of 4
proposed variants for ResNet-50 and ConvNext-B on image clas-
sification, object detection, and semantic segmentation

Image Classification, Input Res. (224 × 224)

Backbone Tuning
Train Test

GFLOPsLatency Memory Latency Memory
(ms/img) (GB) (ms/img) (GB)

ResNet50-BiT

FT 1.40 7.46 0.43 2.81 4.12
Conv. Par. 1.21 7.35 0.48 2.81 4.34
Conv. Seq. 1.24 7.62 0.54 2.81 4.34
Res. Par. 1.81 8.45 0.69 2.85 7.0
Res. Seq. 1.83 9.78 0.72 2.83 7.47

ConvNeXt-B

FT 4.18 16.96 1.17 2.92 15.36
Conv. Par. 4.91 13.52 1.70 2.98 17.53
Conv. Seq. 4.94 14.55 1.70 2.98 17.53
Res. Par. 4.84 13.50 1.75 2.98 17.53
Res. Seq. 4.84 14.76 1.72 2.99 17.6

Object Detection (Test only)

Backbone Tuning Input Res. Latency (ms/img) GFLOPs

ResNet50

FT

1280 × 800

9.38 84.08
Conv. Par. 9.37 88.61
Conv. Seq. 11.00 88.61
Res. Par. 17.09 142.89
Res. Seq. 16.30 152.54

ConvNeXt-B

FT

1280 × 800

28.55 313.45
Conv. Par. 41.00 357.66
Conv. Seq. 41.03 357.66
Res. Par. 41.13 357.66
Res. Seq. 41.22 359.22

Semantic Segmentation (Test only)

ResNet50

FT

2048 × 1024

17.18 172.19
Conv. Par. 17.21 181.47
Conv. Seq. 20.23 181.47
Res. Par. 29.79 292.63
Res. Seq. 21.22 312.4

ConvNeXt-B

FT

2048 × 1024

58.67 641.95
Conv. Par. 83.69 732.48
Conv. Seq. 83.77 732.48
Res. Par. 83.07 732.48
Res. Seq. 84.21 735.69

7.2. More Ablation of Conv-Adapter

7.3. CKA Similarity Analysis

While the accuracy performance is well compared for PET
methods, theoretical understandings towards under which
circumstances PET works better than Fine-tuning lack dis-
covery yet. In this section, we study how weights of back-
bones change with Fine-tuning using Centered Kernel Anal-
ysis and empirically discover insightful observations.

7.3.1 Similarity Measurement between Filter Weights
using CKA

As shown in the experimental results, whether the perfor-
mance of PET surpasses Fine-tuning varies from datasets
and domains. From the perspective of trainable weights,
PET replaces the whole backbone with much smaller num-
ber of parameters compared with Fine-tuning. With the
pre-trained backbone and the fine-tuned backbone, we first
compute the similarity between the weights of each con-
volution filter using Centered Kernel Alignment (CKA). In
doing so, the changes of weights brought by Fine-tuning are
quantified by similarity distances between filters.

CKA is used to compute the representation similarity be-
tween hidden layers of neural networks [28, 47]. By in-
putting matrices X ∈ Rn×m1 , Y ∈ Rn×m2 , and their Gram
matrices K = XXT and L = YYT , CKA follows:

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
,

Where HSIC is the Hilbert-Schmidt independence crite-
rion. Instead of analyzing the representation similarity,
we focus on analyzing how filter weights change by Fine-
tuning and utilize CKA to compute the similarity between
filter weights. For each k × k convolution layer with c1
input channels and c2 output channels, weights from the
initial pre-trained backbone is referred as Wi and weights
from the fine-tuned backbone is referred as Wf . The filter
weights are reshaped into matrices for CKA computation:
• For k = 1, the convolutional filter serves as a linear trans-

formation between channels. When computing CKA sim-
ilarity, X = Wi,Wi ∈ Rc1×c2 and Y = Wf ,Wf ∈
Rc1×c2 .

• for k > 1, the weight matrix can be viewed as c1 × c2
filters and each filter carries a size of k×k weights. When
computing CKA similarity, X = Wi,Wi ∈ Rk2×c1c2 ,
Y = Wf ,Wf ∈ Rk2×c1c2 .
For each ConvNet, we compute the average of CKA

similarities among all convolutional filters and show the
results of ResNet, ConvNext and ResNet-CLIP in Fig. 7.
With a relatively low accuracy of Finetuning, the similar-
ity between filter weights may not be well representative
due to insufficient optimization. Thus NABirds is removed

Cars Cub200 Dogs

-4

-3

-2

-1

0

1

Re
la

tiv
e

Ac
c

Ga
in

(%
)

ResNet50
ConvNext-B
CLIP

Cars Cub200 Dogs
0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

CK
A

Si
m

.

ResNet50
ConvNext-B
CLIP

Figure 7. CKA Similarity and Accuracy gap between Conv-
Adapter and fully fine-tuning for FGVC datasets.

in the analysis. We also measure the domain difference
between datasets with ImageNet1k using Maximum Mean
Discrepancy (Details are in the following section). Firstly
we observe that with less domain difference between target
dataset and pre-trained dataset, the Conv-Adapter achieves
closer performance with fully finetuning. Secondly, as
shown in Fig. 7, accuracy gain of Conv-Adapter and CKA
similarities between filter weights share the same trends
over datasets and this phenomenon generalizes over differ-
ent architectures. When fully finetuning only leads to small
changes on filter weights (larger CKA similarities), Conv-
Adapter is more likely to surpass the performance of fully
finetuning.

7.3.2 Domain Difference Quantification using MMD
(Maximum Mean Discrepancy)

Maximum Mean Discrepancy (MMD): measures the dis-
tance between two data distributions p and q. ϕ() refers to a
feature extractor (could be a functional intermediate layer):

MMD(p, q) = ∥Ep[ϕ(x)]−Eq[ϕ(x)]∥2Hk
, (3)

where Hk refers to the kernel Hilbert space. We con-
sider the domain difference between ImageNet1k and each
dataset from FGVC. Specifically, The features subtracted
from pre-trained backbones namely ResNet50 (pre-trained
by Imagenet1K, ImageNet21K and CLIP), ConvNext-B
(pretrained by ImageNet1K and ImageNet21K). MMD with
Gaussian Kernel is computed using features from each
backbone and the average MMD over all backbones is used
in Fig. 7.

8. Supplementary Results
In this section, we provide some supplementary results to
the main paper.

8.1. Detailed Results on VTAB-1k

We provide the per-task results on VTAB-1k on ResNet50
BiT-M [27] and ConvNext-B [36] in Tab. 11 and Tab. 12
respectively.

Table 11. Per-task VTAB-1k results of ImageNet-21k pretrained ResNet50 BiT-M.

Tuning # Param Caltech101 Cifar100 DTD Flowers102 Pets Sun397 SVHN Patch Camelyon EuroSAT Resisc45 Diabetic Retinopathy Clevr/count Clevr/dist Dmlab Dsprites/loc Dsprites/ori Kitti Smallnorb/azi Smallnorb/ele

FT 23.63 84.79±0.46 48.28±0.56 65.32±0.3 97.5±0.05 86.74±0.46 38.14±0.24 84.57±0.91 85.2±0.39 95.46±0.17 84.03±0.15 78.74±0.11 96.77±1.37 58.15±0.3 51.17±0.08 94.39±0.96 69.77±0.68 78.99±0.46 41.79±0.62 42.74±0.19
LP 0.11 84.35±0.51 44.02±0.18 66.49±0.15 98.85±0.03 88.16±0.23 43.24±0.58 46.8±0.06 79.88±0.33 92.53±0.15 78.65±0.24 74.64±0.08 50.43±0.09 33.91±0.19 37.92±0.16 34.23±0.07 33.67±0.09 66.95±0.34 18.27±0.19 27.96±0.09
Bias 0.15 83.75±0.08 41.99±0.4 66.31±0.35 97.84±0.04 87.91±0.45 39.29±0.21 45.34±0.3 79.82±0.19 91.07±0.03 75.77±0.62 74.72±0.04 41.97±0.13 33.27±0.17 37.86±0.03 18.4±0.13 19.43±0.43 67.32±0.26 13.59±0.23 25.55±0.44
VPT 0.15 83.4±0.87 34.92±0.15 59.06±0.13 98.1±0.38 86.14±0.37 43.34±0.22 53.08±0.31 81.06±0.99 91.04±0.09 75.07±0.21 74.25±0.09 49.2±0.43 46.25±0.31 38.64±0.16 41.87±0.93 33.53±2.25 43.84±31.0 20.6±0.53 27.2±0.49

Conv. Par. 0.48 85.26±0.49 48.29±0.07 68.79±0.44 98.28±0.18 86.16±0.03 43.9±0.34 77.55±0.18 84.25±0.59 95.45±0.13 80.67±0.17 76.48±0.21 78.57±1.45 49.17±0.42 46.37±0.73 68.3±6.06 70.55±0.75 78.11±0.52 27.84±0.71 34.69±0.22
Conv. Seq. 0.67 83.43±0.49 48.92±0.38 68.09±0.64 97.89±0.25 85.75±0.35 42.78±0.17 79.11±1.13 84.08±0.55 94.23±0.17 80.78±0.53 76.32±0.09 73.73±2.04 50.61±0.47 46.16±0.2 85.51±3.07 71.7±0.63 75.76±1.57 30.52±0.24 34.03±0.22
Res. Par. 4.61 85.94±0.57 44.2±0.77 67.29±0.67 98.1±0.02 86.57±0.6 40.4±1.93 79.75±0.61 84.07±0.62 94.84±0.31 83.3±0.13 76.59±0.09 84.18±1.87 54.83±1.03 45.42±0.61 95.78±0.23 66.81±0.58 76.98±0.59 30.72±0.62 35.97±0.43
Res. Seq. 7.06 85.4±0.49 45.27±0.76 65.44±0.37 98.18±0.05 86.21±0.17 42.18±0.1 79.53±0.32 84.9±0.37 95.38±0.12 82.43±0.52 76.67±0.15 79.23±1.13 56.54±1.45 48.02±0.58 96.38±0.62 70.41±0.23 72.85±1.21 31.17±1.0 36.05±0.08

Table 12. Per-task VTAB-1k results of ImageNet-21k pre-trained ConvNext-B.

Tuning # Param Caltech101 Cifar100 DTD Flowers102 Pets Sun397 SVHN Patch Camelyon EuroSAT Resisc45 Diabetic Retinopathy Clevr/count Clevr/dist Dmlab Dsprites/loc Dsprites/ori Kitti Smallnorb/azi Smallnorb/ele

FT 87.62 91.97±0.69 69.06±0.42 76.15±0.28 99.55±0.02 92.12±0.26 52.48±0.19 89.78±0.22 86.41±0.31 96.08±0.16 88.32±0.26 78.48±0.27 93.78±0.98 55.9±5.55 56.06±0.67 96.35±0.18 70.21±0.81 78.44±0.74 39.15±0.47 36.29±0.39
LP 0.05 89.48±0.11 60.53±0.28 75.71±0.07 99.58±0.01 92.02±0.15 57.44±0.17 55.96±0.15 83.13±0.36 93.59±0.18 82.78±0.3 75.74±0.0 55.39±0.1 37.69±0.04 43.1±0.07 26.01±0.06 37.72±0.03 67.23±0.71 19.94±0.1 27.71±0.17
Bias 0.18 89.14±0.75 61.38±0.31 76.33±0.04 99.65±0.02 90.64±0.97 51.26±0.31 86.38±0.19 85.76±0.32 95.33±0.18 83.71±0.18 77.17±0.35 74.3±1.65 48.27±0.47 52.19±0.48 93.78±1.71 65.5±0.83 75.34±1.26 31.51±0.34 29.18±0.23
VPT 0.10 89.79±0.46 57.8±0.23 73.46±0.22 99.58±0.03 92.3±0.22 55.55±0.1 58.33±0.24 83.11±0.16 93.13±0.2 83.01±0.12 74.76±0.38 58.58±0.45 46.52±0.76 39.0±0.47 53.09±0.52 27.38±3.56 64.93±0.43 20.75±0.46 31.44±1.06

Conv. Par. 7.83 90.94±0.32 66.0±0.06 74.91±0.44 98.81±0.21 92.4±0.18 52.87±0.26 88.44±0.46 85.96±0.17 95.61±0.08 85.72±0.25 77.86±0.11 86.53±1.66 59.48±1.19 55.0±0.19 93.67±0.65 67.11±0.78 83.5±0.88 39.01±0.21 34.72±0.21
Conv. Seq. 9.58 90.28±0.31 68.28±0.94 76.22±0.54 98.48±0.09 91.29±0.08 53.43±0.27 88.03±0.25 86.32±0.05 94.98±0.24 85.64±0.18 77.69±0.16 91.17±0.7 51.15±6.0 52.88±0.44 90.58±0.79 68.22±0.24 83.08±0.83 38.26±0.66 37.41±0.79
Res. Par. 9.14 91.41±0.9 64.98±0.25 73.33±0.5 99.43±0.02 91.66±0.28 52.21±0.21 88.94±0.38 85.59±0.34 95.51±0.13 84.51±0.22 77.58±0.21 89.23±0.41 56.34±0.99 55.14±0.13 90.88±0.1 65.65±0.52 81.25±1.19 38.1±0.28 37.78±0.4
Res. Seq. 10.73 89.26±1.24 63.75±0.76 74.61±0.33 99.33±0.11 90.69±0.34 51.37±0.38 88.47±0.45 85.77±0.27 95.57±0.13 85.47±0.7 77.72±0.12 91.54±0.47 52.26±1.89 55.06±0.51 61.9±1.12 64.35±0.49 82.93±0.07 36.74±0.2 38.72±1.47

8.2. Detailed Results on FGVC

We provide the per-task results on FGVC on ResNet50 BiT-
M [27] and ConvNext-B [36] in Tab. 13 and Tab. 14 respec-
tively.

Table 13. Per-task FGVC results of ImageNet-21k pre-trained
ResNet50 BiT-M.

Tuning # Param CUB200 Stanford Dogs Stanford Cars NABirds

FT 24.15 84.51±0.08 79.75±0.08 89.59±0.25 79.97±0.15
LP 0.63 86.07±0.13 80.48±0.07 64.31±0.26 70.89±0.02
Bias 0.67 79.13±0.28 76.49±0.11 34.63±0.1 69.68±0.11
VPT 0.69 85.96±0.1 79.58±0.11 56.9±0.46 76.72±0.1

Conv. Par. 1.22 86.41±0.2 82.07±0.1 85.78±0.25 80.83±0.09
Conv. Seq. 1.06 85.48±0.19 80.5±0.09 73.47±11.62 79.27±0.15
Res. Par. 7.82 85.98±0.15 81.91±0.11 88.96±0.05 80.13±0.16
Res. Seq. 11.80 85.85±0.22 80.69±0.01 87.59±0.16 79.68±0.12

Table 14. Per-task FGVC results of ImageNet-21k pre-trained
ConvNext-B.

Tuning # Param CUB200 Stanford Dogs Stanford Cars NABirds

FT 87.87 89.31±0.18 87.18±0.07 93.43±0.24 88.01±0.17
LP 0.31 90.46±0.02 89.86±0.1 74.96±0.06 85.76±0.02
Bias 0.44 90.86±0.07 89.46±0.03 92.05±0.12 88.25±0.04
VPT 0.37 89.83±0.02 89.95±0.12 74.64±0.06 85.69±0.05

Conv. Par. 5.81 89.83±0.22 88.38±0.34 91.83±0.18 87.06±0.07
Conv. Seq. 3.11 76.5±18.24 86.77±0.28 91.32±0.23 87.4±0.05
Res. Par. 5.73 90.09±0.08 88.06±0.18 90.78±0.14 86.53±0.06
Res. Seq. 8.04 88.57±0.07 87.68±0.07 91.61±0.1 87.03±0.04

	. Introduction
	. Related Work
	. Parameter Efficient Tuning for Transformers
	. Transfer Learning for ConvNets

	. Method
	. Preliminaries
	. Motivation
	. Architecture of Conv-Adapter
	. Adapting ConvNets with Conv-Adapter

	. Experiments
	. Transferability of Conv-Adapter
	Setup
	Results and Discussion

	. Universality of Conv-Adapter
	Setup
	Results and Discussion

	. Few-Shot Classification
	Setup
	Results and Discussion

	. Object Detection and Semantic Segmentation
	Setup
	Results and Discussion

	. Ablation Study
	Setup
	Architecture and Adapting Schemes
	Sensitivity to and initialization of bold0mu mumu subsubsection
	Kernel size in Conv-Adapter
	CKA Similarity of Conv-Adapter

	. Conclusions
	. Implementation Details
	. Datasets
	. Models
	. Hyper-parameters in Experiments
	Classification on FGVC and VTAB-1k

	. Dense Prediction Tasks
	Object Detection
	Semantic Segmentation

	. Extended Analysis
	. Model Analysis
	. More Ablation of Conv-Adapter
	. CKA Similarity Analysis
	Similarity Measurement between Filter Weights using CKA
	Domain Difference Quantification using MMD (Maximum Mean Discrepancy)

	. Supplementary Results
	. Detailed Results on VTAB-1k
	. Detailed Results on FGVC

