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1. Background on Model Reprogramming
Mathematically, let {xi,yi}ni=1 denote n pairs of data sam-
ples {xi} and their classification labels {yi} for a target
image classification task. xi ∈ Rw×h×c and w, h, c are the
image width, height, and number of color channels, respec-
tively. yi ∈ {1, 2, . . . ,K} and K is the total number of im-
age class labels. Let fθ(·) denote a pre-trained image classi-
fier parametrized by θ, which takes an image x ∈ Rw′×h′×c

as input and gives a prediction fθ(x) of prediction prob-
abilities over K ′ classes, where K ≤ K ′, w ≤ w′, and
h ≤ h′. In the standard VP training procedure, a masked per-
turbation, denoted by M⊙ δ, is appended to a zero-padded
version of {xi} (denoted by {x′

i}) in order to match the
input dimension of the pre-trained model. The binary mask
M ∈ {1, 0}w×h×c denotes where to add the trainable per-
turbation to zero-padded images, and δ ∈ Rw×h×c serves
as a trainable universal perturbation. At the model output, a
mapping function hk is assigned for every target class label
k ∈ {1, 2, . . . ,K} such that hk(fθ(x

′ +M⊙ δ)) gives the
prediction probability of the class k for an image x in the
target domain. Finally, VP trains the parameters associated
with the input transformation (e.g. δ) and/or the output map-
ping layers (e.g. if {hk}Kk=1 has trainable parameters) based
on task-specific loss evaluated on {xi,yi}ni=1.

2. Experiment Details
In this section, we describe the hyperparameters used for
all the experiments shown in ?? in the main text and the
experiments in the appendix.

NS 1 2 5 10 20 50 100 Full
BS 8 8 16 32 32 64 128 128

Table 1. The different batch sizes (BS) used for each N-shots (NS)
configuration for all experiments in ?? and Sec. 3

For all experiments discussed in ?? and 3, we train the
model for 100 epochs using the Adam optimizer [? ]. We
employ a multistep learning rate decay scheduler that re-
duces the learning rate by a factor of 1

10 at the 50th and 72nd
epochs, respectively, from its initial value of 0.01. The spe-
cific batch sizes used for training with each N-shots configu-
ration are detailed in Table 1. To ensure reproducibility, we
utilized checkpoints from [? ] for the RigL [? ] and AC/DC
[? ] models, while the sparse checkpoints for ResNet-18,
ResNet-34 and all the VGG [? ] variants were obtained from
NeuralMagic SparseZoo. The dense checkpoints used were
imported from the Torchvision library [? ].

In subsequent sections, we present additional experiments
that go beyond the scope of the results outlined in the main
text.

3. Additional LTH Experiments

Lottery Ticket Hypothesis: In this section, we study the
performance of LTH solutions for ResNet-50 when trans-
ferred at various configurations of sparsity states at different
data-budget settings. In the left subplot for each dataset, we
report the test accuracy of the dense model and the sparsest
model (at ∼12% sparsity) for transfer via the three VP meth-
ods, while each cell of the heatmap subplots on the right
represents the mean difference across seeds between the
dense model performance versus the sparse model transfer at
a specified state of (sparsity,N-shot) pair. We only show the
heatmaps for transfer via ILM-VP and FLM-VP in the main
text and reflect on the RLM-VP heatmaps in the Supplement.
Sec. 3 due to the generally poor performance of RLM-VP re-
gardless of model sparsity or low data volumes compared to
the other two VP methods. The upstream performance of the
LTH solutions at different sparsity levels used in this study is
shown in Figure 1. We show here the results on CIFAR-10,
OxfordPets, DTD, and Caltech101 while the others are in
supplementary Sec. 3.
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Figure 1. Top-1 accuracy of LTH solutions of a ResNet-50 pre-
trained on the ImageNet-1k at different sparsity (S) states.

Taking CIFAR-10 as an example, from the test-accuracy
subplot in Fig. 2 (top) that for every N-shots budget, the
dense model performed superior to that of the LT for transfer
via ILM-VP and FLM-VP, and this trend holds true for all
other datasets as well. Furthermore, we observe that ILM-
VP outperforms FLM-VP in all N-shot settings. RLM-VP,
which generally has a much lower performance compared
to other VP methods, shows a slight deviation from this
trend where we see that the sparse model tends to match
the performance of the dense model, especially at transfer
settings with a higher data budget.

Furthermore, we observe that the detrimental impact on
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Figure 2. Performance Gap of LT solutions on Transfer. In
each subfigure, from left to right, the first subplot represents
the comparison between transfer via various VP methods for
both the dense network and LT at ≈ 11% sparsity on CIFAR-
10 (top), OxfordPets, DTD and Caltech101 (bottom) at dif-
ferent target N -shot settings, while the two subplots on the
right represent the ∆−difference for ILM-VP and FLM-VP re-
spectively. S represents increasing levels of %-sparsity levels
of Dense (leftmost), 79.122, 62.575, 49.35, 38.793, 30.407,
23.807, 18.664, 14.671, and 11.571 (rightmost).

performance due to LTs was significantly more pronounced
in the case of ILM-VP where, for example, in the case of
20-shot configurations, LTs in all sparsity states studied in
this work had on average a 20% reduction in top-1 accuracy
compared to their dense counterpart (see Figure 2 (top)). In
the case of FLM-VP, the performance of LTs was actually
better than that of the dense model for the few-shot settings
as seen in the case of the one-shot and two-shot data budget
settings; however, at higher data budget settings, the degra-
dation of performance increases. The trend for ILM-VP
transfer remains consistent across all four datasets, but there
is a variation in that of FLM-VP based transfer. Specifi-
cally, for OxfordPets while the LTs overall seem to match
or outperform their dense counterparts, for Caltech101 (see
Figure 2 (bottom)) this only holds for the higher data budget

settings. For DTD, on the other hand, barring a few data
budget settings, the sparse model transfer seems to hurt the
transfer performance overall.

We primarily base our conclusions on the trends for ILM-
VP as it is the SOTA method, and thus in general, it is
clear that the transfer of these LT solutions using VP-based
methods does not keep their performance intact under low
data volumes, although their upstream performance matches
or outperforms their dense counterpart (see Figure 1).

In this section, we expand upon the findings of the lottery
ticket hypothesis (LTH) discussed in Section Sec. 3. We
present the results of transferring ResNet-50 LTH solutions
using ILM-VP [? ] and FLM-VP [? ] to the four remaining
downstream datasets: SVHN [? ], GTSRB [? ], Flowers102
[? ], and EuroSAT [? ]. Subsequently, we evaluate the
transfer performance of RLM-VP on all eight datasets.

Figure 3. Performance Gap of LT solutions on Transfer.
In each subfigure, from left to right, the first subplot repre-
sents the comparison between transfer via various VP meth-
ods for both the dense network and LT at ≈ 11% sparsity on
SVHN (top), GTSRB, Flowers102, and EuroSAT (bottom) at
different target N -shot settings, while the two subplots on the
right represent the ∆−difference for ILM-VP and FLM-VP re-
spectively. S represents increasing levels of %-sparsity levels
of Dense (leftmost), 79.122, 62.575, 49.35, 38.793, 30.407,
23.807, 18.664, 14.671, and 11.571 (rightmost).
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From the heat maps depicted in Figure 3, a notable con-
trast emerges when comparing the performance on SVHN,
GTSRB, and Flowers102 with the four datasets discussed
in Sec. 3 in the main text. On these three datasets, the dis-
crepancy between the sparse and dense models is relatively
small, generally within the range of approximately 5%.

For SVHN, it is observed that sparse model transfer yields
a performance dip compared to its dense counterpart in spo-
radic instances of low- and high-data volumes, particularly
noticeable in the case of FLM-VP. However, in other data
volume scenarios, the sparse model either matches the dense
model or slightly outperforms it, regardless of the visual
prompting (VP) method employed.

In the case of GTSRB, under higher data volumes, trans-
ferring the sparse model results in performance degradation
compared to the dense models for both ILM-VP and FLM-
VP. Conversely, for Flowers102, while the transfer of sparse
models through FLM-VP incurs performance loss across
nearly all sparsity and data volume settings, ILM-VP ex-
hibits a reversed trend. Here, sparse models outperform the
dense counterpart by approximately 1% in high data volume
settings and by around 0-1% in lower data volume settings.

For EuroSAT, it is observed that, for both FLM-VP and
ILM-VP, the sparse model outperforms the dense counter-
part, particularly in low-data-volume scenarios.

The accompanying test accuracy plot (leftmost) in Fig-
ure 3 reveals that, except for Flowers102, the performance
of sparse and dense model transfer under all three visual
prompting methods is closely aligned, with ILM-VP often
exhibiting a slight edge over the other two methods.

Figure 4. Performance of LT solutions on Transfer via
RLM-VP. ∆−difference for RLM-VP transfer of LTH solu-
tions. S represents increasing levels of %-sparsity levels of
Dense (leftmost), 79.122, 62.575, 49.35, 38.793, 30.407,
23.807, 18.664, 14.671, and 11.571 (rightmost).

Subsequently, we examine the transfer performance using
RLM-VP in Figure 4 across the eight datasets. It is essential
to highlight, based on the accuracy plots encompassing vari-
ous model architectures, data volumes, and sparsity settings
thus far, that RLM-VP consistently emerges as the least
effective visual prompting (VP) method. It is frequently
outperformed by a considerable margin compared to both

FLM-VP and ILM-VP.
Across almost all datasets, with the exceptions of Eu-

roSAT and GTSRB, the performance trends indicate a close
similarity between the lottery ticket hypothesis (LTH) solu-
tions and dense models, with sparse model transfer generally
resulting in performance deterioration. In EuroSAT, sim-
ilar to transfers using ILM-VP and FLM-VP, even under
RLM-VP, the sparse model outperforms the dense model by
approximately 2-5%.

In summary, considering the LTH solution trends pre-
sented in both the main text and this section, it becomes
evident that, for the state-of-the-art visual prompting (VP)
method ILM-VP and, for the most part, across various data
and sparsity configurations of FLM-VP, sparse model trans-
fer typically leads to performance degradation compared
to their dense counterparts. For RLM-VP, a mixed trend
is observed, though the interpretation is challenging due to
the consistently poor transfer performance under this VP
method.

4. Additional CLIP Experiments

Figure 5. Transfer performance of uncompressed and compressed
variants of CLIP across different N-shots configurations on a range
of downstream datasets.

In this section, we extend our analysis beyond the results
presented in ?? of the main text, where the reported results
pertain only to the full data volume setting. For consistency
with the settings of the other experiments detailed in this
manuscript, we apply the same N-shot variability set-up to
three different variants of CLIP [? ] - uncompressed, 2x
compressed and 4x compressed - obtained through the UPop
[? ] compression method. Using the identical hyperparame-
ter configuration outlined in Section ??, the results presented
in Figure 5 reaffirm the trends observed in the full data vol-
ume setting from the main text. Across all N-shot settings
within the seven downstream datasets used, a consistent de-
cline in performance is observed when transitioning from
the uncompressed CLIP variant to the 2x and 4x compressed
variants.
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With the exception of EuroSAT, there is a statistically
significant performance gap between the uncompressed and
compressed variants across all datasets. Across all settings,
the performance follows the pattern: uncompressed variant
≫ 2x compressed variant > 4x compressed variant. For
example, in the OxfordPets dataset, we note a decrease in
accuracy exceeding 40% and 65% when comparing the un-
compressed variant to the 2x compressed and 4x compressed
variants, respectively, at N-shot values of 1 and 5.

4.0.1 What Leads to the Hidden Cost in VP?

The aforementioned results on different model compression
methods and sparse vision models unveil the existence of
a common weakness in the severely degraded performance
of VP. We hypothesize that the observed degradation is a
hidden cost of model compression that accidentally weakens
the label-mapping capability of the original model in VP. To
verify this hypothesis, we conduct the following experiments
and analyses to track the changes of VP in label mapping
and training dynamics.

To explore the differences between visual prompting with
compressed models and their dense, full-precision counter-
parts, extending beyond accuracy, we begin by examining
the label mapping process under ILM-VP for a ResNet-50
LT (S = 14.671) in a few-shot setting (N=5) on the Oxford-
Pets [? ] and DTD [? ] datasets. As depicted in Figure ??,
our analysis reveals that the dense model maps the ‘Bom-
bay’ class from the OxfordPets dataset to the ‘Schipperke’
class from the ImageNet [? ] dataset, establishing a semanti-
cally closer mapping. On the contrary, the sparse LT model
maps the same class to the ‘Carton’ class from the ImageNet
dataset, a less semantically related mapping.

Furthermore, for the target dataset DTD, the dense model
maps the ‘Zig-Zagged’ class to the ‘Chiffonier’ class of the
dataset ImageNet. While the object categories do not directly
correspond, it can be argued that zig-zag textures are more
prevalent on the furniture texture frames of chiffoniers, as
evident from the second example of the ‘Zig-Zagged’ class
compared to the third example of the ‘Chiffonier’ class. This
highlights a critical drawback of sparse models, indicating
that they suffer from inferior label mapping, which ultimately
hinders downstream performance.

A comparable pattern emerges in the context of model
quantization. For example, in the case of the target class
"Sphynx" (a cat breed) from the OxfordPets dataset, the
2-bit quantized version of DeiT incorrectly assigns it to
the unrelated label "tub," whereas the full-precision 32-bit
variant of DeiT accurately maps it to the semantically related
class "Mexican Hairless" (a dog breed) from the source
ImageNet dataset.

To accurately characterize and distinguish the class-wise
performance of visual prompted sparse and dense models,
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Figure 6. Class-wise Performance Analysis. Classes with Top-5
drop and gains in accuracy of transfer via ILM-VP on the three
datasets of OxfordPets, DTD, and Caltech101. ∆ represents the
mean difference in top-1 accuracy of the dense model and the sparse
model for each of the classes.
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(a) Evolution of VP. Visual prompt pattern versus number of training epoch
for a ResNet-50 dense model and sparse LTH solution (S = 11.571%).
(Best viewed when zoomed in)
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(b) From left to right: (i) Change in L2-norm of the difference between
the learned visual prompts of a dense ResNet-50 model and its sparse LTH
solutions variants at varying sparsity. (ii) Convergence Analysis: Training
loss trajectories of the dense and sparse LTH solutions.

Figure 7. Training dynamics of Visual Prompting for ResNet-50
dense and sparse LTH variants on the Caltech101 dataset under
few-shot settings (N=5).

we conduct an analysis across three datasets: (a) OxfordPets
[? ], DTD [? ], and Caltech101 [? ]. Specifically, we identify
the top five classes in which the sparse model outperforms
the dense counterpart and vice versa. Using the sparse mod-
els featured in Figure ??, we analyze visual prompted dense
ResNet-50 and sparse LT ResNet-50 (S = 14.671) trained
in a few-shot setting (N=5). As illustrated in Figure 6, our
results indicate that while certain classes exhibit improved
performance with the sparse model, the magnitude of this
improvement is often less pronounced compared to the per-
formance advantage of the dense model. For example, in the
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case of the Caltech101 dataset, the dense model achieves a
100% increase in accuracy for the ‘Mandolin’ class when
compared to the sparse LT model. Although these findings
offer preliminary insights into the class-wise performance
dynamics between sparse and dense models, a more com-
prehensive understanding of these dynamics is deferred to
future investigations.

Finally, we examine the evolutionary trajectories and
training dynamics of the visual prompts learned by sparse
models compared to their dense counterparts. To conduct
this analysis, we consider both ResNet-50 dense and sparse
LTH solutions (S = 11.571, 18.664, 49.35) trained on the
Caltech101 dataset in a few-shot setting (N=5). The insights
gained from this examination are illustrated in Figure 7.

As training progresses, we observe a gradual increase in
the L2-norm of the difference between the visual prompt
learned by the dense model and each of the sparse model
variants. This analysis demonstrates how the visual prompt
of the sparse models with more compute diverges from the
more optimal visual prompt learned by the dense model.

5. Additional Experiments

Figure 8. GMP-pruned ResNet-18/34. Transfer performance
measured by test accuracy of pruned ResNet-18/34 model on a
variety of downstream datasets and varying levels of data budgets.
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Figure 9. AC/DC-pruned ResNet-50. Transfer performance mea-
sured by test accuracy of pruned ResNet-50 model on a variety of
downstream datasets and varying levels of data budgets.
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Figure 10. RigL-pruned ResNet-50. Transfer performance mea-
sured by test accuracy of pruned ResNet-50 model on a variety of
downstream datasets and varying levels of data budgets.

Figure 11. VVTQuantized DeiT-T. Transfer performance mea-
sured by test accuracy of quantized DeiT-T models on a variety of
downstream datasets and varying levels of data budgets.

Figure 12. VVTQuantized Swin-T. Transfer performance mea-
sured by test accuracy of quantized Swin-T models on a variety of
downstream datasets and varying levels of data budgets.
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