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Abstract

Video Temporal Grounding (VTIG) aims to ground spe-
cific segments within an untrimmed video corresponding to
the given natural language query. Existing VTG methods
largely depend on supervised learning and extensive anno-
tated data, which is labor-intensive and prone to human bi-
ases. To address these challenges, we present ChatVTG,
a novel approach that utilizes Video Dialogue Large Lan-
guage Models (LLMs) for zero-shot video temporal ground-
ing. Our ChatVTG leverages Video Dialogue LLMs to
generate multi-granularity segment captions and matches
these captions with the given query for coarse tempo-
ral grounding, circumventing the need for paired annota-
tion data. Furthermore, to obtain more precise tempo-
ral grounding results, we employ moment refinement for
fine-grained caption proposals. Extensive experiments on
three mainstream VTG datasets, including Charades-STA,
ActivityNet-Captions, and TACoS, demonstrate the effec-
tiveness of ChatVTG. Our ChatVTG surpasses the perfor-
mance of current zero-shot methods.

1. Introduction

With the rapid development of short video platforms, videos
have become the primary form of documenting and sharing
life experiences for people worldwide. Unlike static im-
age data, videos encapsulate dynamic information, provid-
ing a more vivid and immersive way to showcase stories
and memories. Understanding the content of videos is cru-
cial as it enables meaningful interactions based on the video
context [1-3, 35]. Today’s Video Understanding Large Lan-
guage Models (LLMs) [15, 16, 22], have demonstrated re-
markable capabilities in engaging in dialogues based on
video content, enhancing the model’s ability to explore and
comprehend the information conveyed within videos.
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Figure 1. Comparison between previous methods based on Video
LLMs and our approach: Previous methods require fully super-
vised training of the Video LLM, whereas our method does not
require training and can provide temporal grounding zero-shot.

As video content expands, efficiently retrieving specific
segments from extensive video libraries remains with the
rapid development of short video platforms, videos have be-
come the primary form of documenting and sharing life ex-
periences for people worldwide. Unlike static image data,
videos encapsulate dynamic information, providing a more
vivid and immersive way to showcase stories and memo-
ries. Understanding the content of videos is crucial as it
enables meaningful interactions based on the video con-
text. Today’s Video Understanding Large Language Mod-
els (LLMs) [15, 16, 22], have demonstrated remarkable ca-
pabilities in engaging in dialogues based on video content,
enhancing the model’s ability to explore and comprehend
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the information conveyed within videos. crucial but chal-
lenging. The task of Video Temporal Grounding (VTG) has
been developed to address this by aiming to accurately lo-
cate continuous time windows within videos using natural
language descriptions, which is essential for enhancing the
accessibility and usability of video content amidst improved
yet still imperfect comprehension capabilities. Most exist-
ing VTG methods [8, 20, 34, 37] heavily rely on supervised
training with paired annotation data, which requires exten-
sive effort for precise time labeling. Additionally, the anno-
tation process is further complicated by subjective biases in
establishing precise temporal boundaries.

Compared to temporal grounding datasets, text-dialogue
video data is more abundant and simpler to gather from the
internet, with the potential for easier automated annotation.
This data is often employed for tasks like video caption-
ing and video question answering, where Video Language
Models (LLMs) trained on it demonstrate notable conversa-
tional skills. Therefore, we contemplate whether it’s feasi-
ble to leverage Video Dialogue LLMs to zero-shot retrieve
the corresponding video segments for a given query.

In this paper, we introduce an innovative approach
that leverages Video Dialogue LLMs for video temporal
grounding without the need for additional training data or
paired annotations. As shown in Fig. 1, different from ex-
isting methods that utilize VTG data to train Video LLMs
for temporal grounding capabilities, our approach combines
captions and matching to find the moment without train-
ing the Video LLM. Specifically, we start by dividing the
video into multiple coarse segments and guide the Video
LLM to provide captions for each segment through multi-
granularity instructions. Then, we match these segments
with the query provided by the user to identify coarse mo-
ments. To further refine the temporal boundaries, we con-
duct moment refinement by generating additional moment
proposals using a sliding window approach. We then gen-
erate captions for proposals that overlap significantly with
the coarse moments and further match them with the query
to determine the final moment. This approach allows for
seamless integration with existing Video LLMs, eliminat-
ing the need for additional training or specialized datasets.

To validate the effectiveness of our proposed frame-
work, we conduct experiments on three commonly used
VTG datasets, including Charades-STA [6], ActivityNet-
Captions [14], TACoS [27]. Our ChatVTG outperforms ex-
isting zero-shot methods.

2. Related Work

2.1. Video Temporal Grounding

Video Temporal Grounding (VTG), also known as Video
Temporal Localization (VTL) or Video Moment Retrieval
(VMR), aims to align or ground a natural language query

(often a sentence or phrase) to the corresponding moment
or segment within an untrimmed video. Based on the dif-
ference in experimental setups and types of supervision dur-
ing training, we categorize the related studies into (a) fully
supervised VTG, (b) weakly supervised VTG, (c) unsuper-
vised VTG, and (d) zero-shot (a.k.a language-free) VTG.

Fully supervised VTG. For this approach, previous meth-
ods [17, 20, 34, 37] first extract visual features and textual
features from pre-trained models [11, 26, 30]. After that, a
multi-model model is trained on a large amount of labeled
data, where each video is paired with a corresponding tex-
tual description. The model learns to predict the grounding
results based on the video input. For instance, VDI [20]
generate textual and visual features from the Contrastive
Language-Image Pretraining (CLIP) model [26] and pro-
pose a generic visual-dynamic injection model for captur-
ing the temporal video changes and aligning them with the
corresponding phrases (e.g. verb). While fully-supervised
models can achieve high performance on specific datasets,
they are the most data-intensive approaches, as they require
a large dataset with accurately labeled video-text pairs.

Weakly supervised VIG. To mitigate the fine-grained
labeling problem of fully supervised VTG, weakly-
supervised methods [10, 33, 39, 40] are proposed to learn
the segment-text alignment without marking the precious
starting and ending time. During the training stage, only
the video-level video-sentence matching is used for super-
vision. To predict the precision temporal localization un-
der this setting, some methods [9, 23] utilize the multi-
instance learning (MIL) technique. In detail, these methods
form positive and negative video-level video-language pairs
from the original dataset. Then they amplify the matching
scores for the correct pairs and diminish those of the incor-
rect ones. However, an untrimmed video contains multiple
events and can not correspond exactly with the sentence de-
scribing a specific event at the video level. Therefore, some
methods [10, 40] apply the contrastive proposal learning or
cycle self-training framework to generate positive and nega-
tive proposal at the frame level to optimize the model train-
ing under weak supervision.

Unsupervised VIG. Compared with Weakly supervised
VTG, the unsupervised methods [5, 18, 25, 32] further re-
moves the paired video-level annotated sentences. Due to
the lack of supervision information, these methods optimize
the model with pseudo queries or semantic features of the
entire quire collection. For example, PSVL [25] first gen-
erates the simplified pseudo-quire from the query set of un-
paired annotated annotations and then simulates the multi-
modal model with the pseudo-quire and video segment from
the temporal video proposal module. Unlike PSVL, DSC-
Net [18] propose a linguistic semantic mining module to
extract the implicit semantic feature from the unpaired en-
tire query set. These linguistic semantic features guide the
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composition of the video activities, filtering out the redun-
dant backgrounds and grounding the corresponding events.
To be noted, some studies [25, 32] treat these methods as
the zero-shot task. However, these methods still have access
to unpaired training data, for which we categorize them as
unsupervised tasks.

Zero-shot VT G. With a strict zero-shot setting for real-
world applications, zero-shot VTG [17], sometimes referred
to as language-free VTG, involves completing the video
segment grounding corresponding to the given queries with-
out relying on the training dataset. Therefore, these mod-
els have no access to training data even unpaired data, and
rely entirely on their pre-existing knowledge and general-
ization capabilities to perform the grounding task. In prac-
tical terms, a zero-shot VTG model should typically be pre-
trained on a diverse and extensive dataset without the limi-
tation of tasks that enable it to learn a wide array of visual
and linguistic concepts. This pre-training allows the model
to develop an understanding of how language can describe
video content. Then, when presented with the special zero-
shot VTG task, the model utilizes this multi-modal com-
prehension to make inferences about where the described
events are likely to occur in a video, even though it has
never seen those specific quires during training. For in-
stance, LLM4VG [4] evaluates the performance of existing
LLMs under the zero-shot setting. UniVTG [17] propose a
multi-modal and multi-task learning pipeline to pre-training
the unified large-scale multi-modal model with dozens of
unlimited datasets. In the inference stage, UniVTG is ap-
plied for the video temporal grounding task without fine-
tuning or training on specific datasets.

2.2. Multi-model Large Language Model

Multi-modal Large Language Models (MLLM) [15, 22],
like other Large Language Models (LLM), are trained
on diverse and extensive multi-model datasets. Vide-
oLLaVa [16] perform visual reasoning capabilities on both
images and videos simultaneously with the binding of uni-
fied visual representations to the language feature space.
Video-ChatGPT [22] is a video conversation model de-
signed for generating meaningful conversations about the
given videos. This model combines the capabilities of
LLMs with a pre-trained visual encoder adapted for spatio-
temporal video representation. VideoChat2 [15] is a ro-
bust video MLLM baseline for multi-model reasoning task.
This model is progressive multi-modal trained with diverse
instruction-tuning data to achieve temporal understanding
in dynamic video tasks. The multi-modal comprehension of
these models allows them to capture complex patterns and
perform a wide variety of tasks. For example, they could
potentially describe the content of a given image or video in
text and have conversations with the user.

LLaViLo [21] exploits the capabilities of these MLLM

in video understanding and designs a specialized adapter
for the VTG task. With the joint training of a set prediction
objective and a captioning objective, LLaViLo achieves sig-
nificant performance improvement on the fully supervised
VTG. VTimeLLM [8] and PG-Video-LLaVA [24] leverage
the powerful conversational capabilities of Vicuna [38] and
LLaVA [19] to treat VTG tasks as Q&A tasks, achieving ro-
bust fully-supervised performance with fine-tuning. How-
ever, the reliance on labeled VTG datasets reduces these
models’ ability to generalize to real-world scenarios that
differ from the training data. To overcome these shortcom-
ings, this paper attempts to accomplish the zero-shot VTG
tasks utilizing the video comprehension capabilities of pre-
trained MLLMs.

3. Method

In this section, we commence by elucidating the task defi-
nition of Video Temporal Grounding (VTG) and provide an
overview of existing generic frameworks utilized for Video
Large Multimodal Models (LMMs). Following this, we
introduce our novel approach, which capitalizes on Video
LMMs without the need for training, and proceed to ex-
pound upon its details.

3.1. Task Definition

The goal of the VTG task is to accurately pinpoint video
segments within untrimmed videos that correspond to the
description provided by a given query description. This can
be formally expressed as:

[ts, te] = F(V,Q), &)

where ts and te represent the start and end timestamps of
the located video segment, respectively. Here, F'(-) denotes
the VTG model, V' denotes the input untrimmed video, and
@ represents the query description.

In this study, our objective is to directly utilize Video
LMMs to achieve temporal grounding and query matching
for the VTG task. These Video LMMs are trained solely
on natural dialogues, enabling proficient performance in
tasks such as video captioning and video question an-
swering, contributing to a comprehensive understanding
of video content. However, they lack training in tem-
poral comprehension, thus unable to directly output mo-
ments through dialogue. This setup is defined as zero-
shot, wherein the model is not trained on specific VTG
datasets yet is expected to perform VTG tasks. In previ-
ous zero-shot approaches, some level of training was still
required [25, 32]. In contrast, our approach adopts a com-
pletely offline, training-free method, obtaining temporal
outputs through dialogue with Video LMMs.
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Figure 2. Pipeline of ChatVTG. Our method pipeline primarily consists of three components: (a) Instruction-Refined Video Captioning;
(b) Query-Caption Matching; and (c) Moment Refinement. Best viewed in color.

3.2. Review of Video LMMs

With the advancement of LMMs, numerous works have fo-
cused on training to establish Video Instruction datasets,
enabling LMMs to comprehend video content and engage
in dialogue based on it. In this section, we briefly review
the common network architectures and training pipeline of
Video LMMs.

Model Architecture The model architecture of Video
LMMs typically involves several components. Initially,
visual encoders extract features from raw visual signals.
These features are then linearly mapped to the textual fea-
ture space, creating a unified visual representation. Subse-
quently, shared projection layers encode this representation
before integration with textual queries, which are then in-
putted into a Large Language Model (LLM) to generate re-
sponses. Alignment between the video and language spaces
converges into a unified visual feature space, bridging the
gap between different visual signals and preparing them for
input into the large language model to generate dialogue.
Training Pipeline The training pipeline of Video LMMs
consists of two main stages: understanding training and in-
struction tuning. During the basic understanding training
phase, the model is trained to interpret visual signals using
an extensive dataset of image/video-text pairs. Each visual
signal corresponds to a single round of conversation data
(X g, Xa), where X g represents the input query and Xa is
the ground truth response. The training objective involves
the original auto-regressive loss, enabling the model to learn
the basic ability to interpret visual information. Parameters
unrelated to vision interpretation are frozen during this pro-
cess. In the instruction tuning phase, the model is tasked
with providing responses based on different instructions,
which typically involve more complex visual comprehen-
sion tasks beyond simply describing visual signals.

Upon reviewing Video LLMs, it becomes apparent that

traditional methods for completing the VTG task require
training Video LLMs with paired video-query-moment data,
a process attempted by some prior studies [8, 24]. However,
this approach is characterized by its time-consuming and
labor-intensive nature. In this paper, we propose a straight-
forward approach to address the VTG task, utilizing exist-
ing Video Dialogue Large Models. Our strategy involves
generating captions and subsequently matching them with
queries, aiming to efficiently achieve VTG.

3.3. ChatVTG

As illustrated in Fig. 2, our method pipeline primarily con-
sists of three components: (a) Instruction-Refined Video
Captioning; (b) Query-Caption Matching; and (c) Moment
Refinement. The specific details of each component are
elaborated below.

3.3.1 Instruction-Refined Video Captioning

As shown in Fig. 2 (a), given the untrimmed video for query,
to facilitate effective temporal grounding, we initiate the
process by segmenting the video V' into m equal-length
video clips, thus obtaining segments that are more manage-
able for analysis,

V%{Sl,SQ,...,Sm} 2)

Where S; denotes the ith video clip, and each clip has a
time duration 7. Subsequently, we feed each segmented
video clip S5; into the Video LLM, leveraging its capabilities
to comprehend and interpret visual content. By providing
the Video LLM with a specific instruction tailored to the
task, we guide the model to generate captions for each video
segment,

C; = Video LLM(S;, I) 3)

Where C; represents the generated caption for the i-th
video clip, I represents the specific instruction tailored to
the task provided to the Video LLM.
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Due to the diverse nature of queries in the VTG task,
which may describe events from various perspectives, we
have established multi-granularity instructions to ensure a
comprehensive understanding of video content and provide
detailed descriptions. This aims to avoid mismatches be-
tween queries and captions resulting from overlooking im-
portant details. These instructions cover different aspects of
the video, facilitating more nuanced guidance to ensure that
the generated captions align with the video content. Specif-
ically, we include the following five multi-granularity in-
structions, including “action”, “place”, “dressing”. “emo-
tion” and “interaction”:

Taction = “Describe the action of the person in the video.”

Tplace = “Where does this video take place?”

Liressing = “What are the people in the video wearing?” “)
Temotion = “illustrate the person’s emotion or facial expression.”
Tinteract = “Describe the interaction of person and other people or things.”

Through these multi-granularity instructions, we can
achieve a more comprehensive understanding of various as-
pects of the video content, thereby providing more accurate
and detailed descriptions for video caption generation, The
process can be represented as:

Lt = {Iactiom Iplacea IdTCSSinga IEXPTCSSi"“’ Ii"temdi(m} ®
Cv', = VldeOLLM(Sz 5 I’mult) (6)

- {Ci,aclion, Ci,p]ace7 Ci,dressing7 Ci,expressinm Ci,interaction}

This formulation encapsulates the essence of our ap-
proach, wherein the Video LLM is employed to generate
descriptive captions for each segmented video clip based on
the provided instruction.

3.3.2 Query-Caption Matching

After obtaining multi-dimensional captions for each video
clip, we proceed to match these captions with the query.
Specifically, we employ SentenceBERT [28] to encode both
the captions and the query,

fo = SentenceBERT(Q), 7
fc, = SentenceBERT(C;) ®)

We calculate their cosine similarity,

Cosine Similarity(fc, , fo) = JoiJa_ ©)

~ fedlifell

where fc, represents the caption feature for the i*" video

clip, and fq represents the query feature. Then we get a
cosine similarity score matrix. Let S denote the similarity
matrix, where rows represent different granularity captions,
and columns represent different video clips. Each entry in
the matrix represents the cosine similarity score calculated

between the caption and query for a specific video clip. The
similarity matrix .S can be represented as:

S11 812 e Sim
S21 522 e S2m

S=1|. . . (10)
Snl Sn2 T Snm

where n is the number of different granularity captions and
m is the number of video clips. Each s;; represents the co-
sine similarity score between the caption generated from the
it" granularity instruction and the query for the j** video
clip.

To ensure fair comparison across different granularity
levels and comprehensively consider the maximum poten-
tial similarity between each granularity caption and the

query, we employ Column-wise Maximum Normalization.

This method selects the maximum similarity score sr(,fa)x for
each column j (representing a video clip) across all gran-
ularity levels from the similarity matrix S, denoted as S.;,
and then normalizes these scores. By doing so, it accounts
for the highest potential match between each video clip and
the query while allowing for fair comparison among differ-
ent granularity levels. This normalization process scales the
similarity scores proportionally, ensuring that the maximum
similarity score for each column becomes 1.0, while pre-
serving the relative relationships among the scores within
each column. This process is illustrated in Fig. 2 (b).

After obtaining the normalized scores, we need to se-
lect the best clip or combinations of clips with closely re-
lated scores to determine the final moment window. This is
achieved by setting a threshold based on the cosine similar-
ity scores of the video clips. We select the longest consecu-
tive combination of clips with scores exceeding the thresh-
old as the final moment window.

3.3.3 Moment Refinement

Given the segmentation of the video into non-overlapping
m clips in the previous step, it’s essential to acknowledge
that the initial moment boundaries might lack the precision
needed for accurate temporal grounding. To address this,
we adopt a strategy to refine these boundaries and enhance
the fidelity of the moment detection process as in Fig. 2 (c).

Firstly, we segment the video using a sliding window ap-
proach into smaller segments. For a video of length L, we
use “wide” to represent the window size and “step” to rep-
resent the step size, where wide < L and step < wide.

The number of windows is denoted by k = {mJ + 1.

step
The start time of the ith window is t; = (i — 1) x step,
and the end time is ¢; + wide. Therefore, the ith window
corresponds to the video segment .S;, where i = 1,2, ..., k.
Subsequently, we select the window combinations that
have an intersection over union (IoU) greater than 0.7 with
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the coarse moment proposals obtained initially. This sig-
nificant overlap between the selected windows and the pro-
posed segments indicates their importance in capturing es-
sential content from the video. Next, we input these selected
window combinations into the VideoLLM for caption gen-
eration as in Eq. (3). This approach allows us to capture
important details.

Query-caption matching proposed in Sec. 3.3.2 is then
performed again to determine the final moment. In sum-
mary, with moment refinement, we are able to obtain more
precise moment boundaries.

4. Experiments

In this section, we first introduce benchmark datasets, eval-
uation metrics, and implementation. After that, we compare
the quantitative results of our ChatVTG with existing meth-
ods. At last, we provide ablation studies of each module.

4.1. Datasets

To evaluate the effectiveness of our approach, we perform
experiments on three widely used datasets: Charades-STA,
ActivityNet Captions, and TACoS. Our method stands out
as it operates without any training, refraining from the use
of training data during the experiments, with results being
directly derived and calculated on the test sets.
Charades-STA [6] The work presented by Gao et al. [6]
builds upon the Charades dataset [31] for action recogni-
tion and localization. They tailored the Charades dataset
for Video Moment Retrieval (VMR) by incorporating query
annotations. The resulting Charades-STA dataset comprises
6,670 videos with 16,124 associated queries. The aver-
age duration of the videos is 30.59 seconds, while the mo-
ments have an average duration of 8.09 seconds. Among the
16,124 queries, there are 37 long moments (Lmoment/ Lvid >
0.5) included in this dataset.

ActivityNet-Captions [14] is compiled specifically for
the task of video captioning, sourced from ActivityNet
[7], where videos are annotated with 200 distinct activity
classes. This dataset, named ActivityNet-Captions, com-
prises 19,811 videos accompanied by 71,957 queries. On
average, the videos span approximately 117.75 seconds,
with individual moments lasting around 37.14 seconds.
Within this dataset, there are 15,736 instances of long mo-
ments out of the total 71,957 queries.

TACoS [27] comprises 127 videos sourced from MPI-
ICooking [29]. It encompasses a total of 18,818 video-text
pairs depicting cooking activities in the kitchen, meticu-
lously annotated by Regneri et al. [27].

4.2. Evaluation Metric

To assess the effectiveness of our model, we employ well-
established metrics, including R @tIoU (Recall at temporal

Intersection over Union) and mIoU (mean Intersection over
Union), as delineated in previous research [20, 34, 37], to
ensure a comprehensive and fair evaluation. Specifically,
we measure temporal alignment accuracy by calculating
the temporal Intersection over Union (tloU) between pre-
dicted and ground-truth boundaries. R@tloU quantifies the
proportion of predictions exceeding predefined thresholds,
namely {0.3, 0.5, 0.7}. Conversely, mloU offers a consoli-
dated evaluation by averaging the IoU scores across all pre-
dictions, providing a holistic perspective of model perfor-
mance across various thresholds.

4.3. Implementation Details

In the Instruction-Refined Video Captioning stage, we pri-
marily utilize VideoChatGPT [22] as the Video LLM, and
conduct ablation experiments on VideoChat2 [15] as well.
We adhere to the acceptable input frame numbers for each
Video LLM during the video retrieval process. For the
Query-caption Matching stage, Sentence-BERT [] is em-
ployed as the text feature extraction model, and cosine simi-
larity calculation is used to evaluate the correlation between
queries and captions. The initial number of segments is set
to 5, and the refinement sliding window has a width of 10
with a step size of 5. These settings are thoroughly com-
pared and explained in the ablation experiments. Our exper-
iments don’t involve any training processes, and inference
is the only requirement. All experiments are conducted on
an NVIDIA A100 GPU.

4.4. Comparison with Existing Methods

We compare our ChatVTG with previous methods across
fully supervised, weakly supervised, unsupervised, and
zero-shot settings. The performance on Charades-STA and
ActivityNet-Captions is reported in Tab. 1. On Charades-
STA, our ChatVTG significantly outperforms previous
zero-shot methods with an improvement of 8.6% R@0.3
(44.09%—52.69%). For ActivityNet-Captions, the perfor-
mance approaches the previous unsupervised methods, in-
dicating the robustness of our ChatVTG. Additionally, we
report the results on TACoS in Tab. 2. The results indicate
that our method outperforms zero-shot UniVTG.

4.5. Ablation Studies

To showcase the individual efficacy of every module within
our ChatVTG framework, we conduct comprehensive abla-
tion studies on the Charades-STA dataset.

Impact of Different Instructions. We first investigate the
impact of using different instructions. As shown in Tab. 3,
the performance comparison from captions generated un-
der different instructions yields relatively similar outcomes.
This suggests that queries cover a range of perspectives,
with each query potentially focusing on different aspects.
However, a notable deviation is observed in the “Dress-
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Method Year Setup Charades-STA ActivityNet-Captions
R@0.3 R@05 R@0.7 mloU | R@0.3 R@05 R%0.7 mloU
2D-TAN [37] ICCV’20 57.31 45.75 27.88 41.05 60.43 43.41 25.04 42.45
MMN [34] AAAT22 FS 65.43 53.25 31.52 46.46 64.48 48.24 29.35 46.61
VDI [20] CVPR’23 - 52.32 31.37 - - 48.09 28.76 -
UniVTG [17] ICCV’23 72.63 60.19 38.55 52.17 - - - -
VCA [33] MM’21 58.58 38.13 19.57 38.49 50.45 31.00 - 33.15
CNM [39] AAAT’22 WS 60.04 35.15 14.95 38.11 55.68 33.33 13.29 37.55
CPL [40] CVPR’22 65.99 49.05 22.61 43.23 55.73 31.37 13.68 36.65
Huang et al. [10] CVPR’23 69.16 52.18 23.94 45.20 58.07 36.91 - 41.02
PSVL [25] ICCV’21 46.47 31.29 14.17 31.24 44.74 30.08 14.74 29.62
Gao et al. [5] TCSVT’21 46.69 20.14 8.27 - 46.15 26.38 11.64 -
DSCNet [18] AAAT22 UsS 44.15 28.73 14.67 - 47.29 28.16 - -
PZVMR [32] MM’22 46.83 33.21 18.51 32.62 45.73 31.26 17.84 30.35
Kim et al. [13] WACV’23 52.95 37.24 19.33 36.05 47.61 32.59 15.42 31.85
LLM4VG [4] ArXiv'23 25.97 1091 3.47 - - - - -
UniVTG* [17] ICCV’23 A 44.09 25.22 10.03 27.12 - - - -
Ours - 52.69 33.01 15.89 34.87 40.67 22.49 9.42 27.21

Table 1. Performance comparison of methods under different setups on the test set of Charades-STA [6] and ActivityNet-Captions [14].
FS denotes fully supervised, WS denotes weakly supervised, US denotes unsupervised, and ZS denotes zero-shot. UniVTG* represents

the results reported in UniVTG [17] under the zero-shot setting.

Method Setup | R@0.3 R@0.5 R@(0.7 mloU
2D TAN [37] 40.01 2799 1292 2722
VSLNet [36] FS 3554 2354 13.15 2499
MDETR [12] 37.97 2467 1197 2549
UniVTG [17] 56.11 4344 2427 38.63

UniVTG* [17] 75 5.17 1.27 0.27 4.40
Ours 8.12 3.74 1.25 5.54

Table 2. Performance comparison of methods under different se-
tups on the test set of TACoS [27]. FS denotes fully supervised and
ZS denotes zero-shot. UniVTG* represents the results reported in
UniVTG [17] under the zero-shot setting.

ing” instruction, indicating that certain scenarios may heav-
ily or entirely lack key descriptions related to attire. De-
pending solely on dressing may not provide sufficient ac-
curacy in event timing matching. Conversely, instructions
such as “Action,” “Place,” “Emotion,” and “Interaction’ are
frequently utilized to differentiate and describe specific seg-
ments more effectively.

Different Matching Computation. In our exploration of
effectively leveraging multi-granularity captions to match
queries and obtain the final moment accurately, we have ex-
perimented with various computation methods for merging
similarity scores of multi-granularity captions. Reference
to Eq. (10), computation methods in Tab. 4 are as follows:
(1) Baseline: The baseline method involves calculating
the cosine similarity score between the captions generated
solely from the “action” granularity and the query.

(2) Normalization After Summation: This method adds up
the cosine similarity score of all granularities before nor-
malizing. With the incorporated information from multiple
granularities, it makes a more comprehensive understand-
ing of the video content. However, potential redundancy or
conflicting information between different granularities may

Instruction ‘ mloU R@0.3 R@0.5 R@0.7
Action 32.73 51.05 29.54 13.90
Place 32.46 50.48 27.37 13.60
Dressing 27.38 42.83 21.82 9.10
Emotion 31.71 48.47 28.66 14.49
Interaction 31.15 48.22 27.13 13.61

Table 3. Experimental results using different instructions.

lead to performance fallback in certain scenarios.

(3) Summation after Normalization: This method normal-
izes the cosine similarity score of all granularities before
adding up. Therefore, each granularity contributes equally
to the overall similarity score, regardless of its inherent
scale. However, similar to method (2), it may be sensitive
to outliers or uneven distributions within the data.

(4) Normalization after Row-wise Maximum: This method
identifies the granularity with the highest correlation with
the given query and considers its score as the overall caption
score. However, this approach overlooks the correlations
between the given query and other granularity captions and
may lead to biased results.

(5) Normalization after Column-wise Maximum: This
method selects the maximum similarity score for each col-
umn (video clip) and then normalizes these scores. It com-
prehensively considers the maximum potential similarity
between each granularity caption and the query while allow-
ing for a fair comparison across different granularity levels.
It effectively captures the diverse perspectives provided by
each granularity level and results in improved performance,
as adopted in our final implementation.

In summary, given the rationale and performance of the
“Normalization after Column-wise Maximum” approach,
we opt to utilize this method for matching computations.
Impact of Clip Number. To understand the impact of the
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Fusion method | mloU R@0.3 R@05 R@07
) 3273 5105 2954 1390
@ 3417 5171 3162 1485
3) 3443 5245 3167 1532
) 3330 5148 3175 1524
®) 3469 5277 3290 1570

Table 4. Experimental results of selecting the final moment
through different matching computation methods.

ClipNum. | mloU R@03 R@05 R@07
3 3228 4956 2978 1255
5 3242 4998 2967  13.39
10 3096 4779 2847 1241
20 28.19 4250 2511 1L10

Table 5. Experimental results of different clip numbers.

Slide window ‘ mloU R@03 R@0.5 R@0.7
Baseline 32.73 51.05 29.54 13.90
(20,5) 32.54 51.02 31.34 12.90
(10, 5) 34.09 52.69 34.19 14.92
(10,2) 32.56 50.94 31.67 13.60

Coarse-to-Fine | 34.87 52.79 33.04 15.89

Table 6. Experimental results of different slide window settings.

number of clips, we conducted ablation experiments on the
coarsely segmented clips. We tested different numbers of
clips, specifically 3, 5, 10, and 20. As shown in Tab. 5,
the results indicate that the performance is relatively better
when the number of clips is 5. Therefore, we have selected
5 as the initial number of coarsely segmented clips.

Impact of Slide Window Size. To achieve more precise
moments, we partition the coarse-grained moments into
smaller and denser time windows using a sliding window
approach, followed by re-captioning the segments. The
baseline performance represents the no sliding window used
method, as shown in Tab. 6. We denote the window width
and step size for the sliding window as (wide, step). The re-
sults show that employing a sliding window improves per-
formance, especially when the window is set to (10, 5).
However, adopting a sliding window for the entire dura-
tion increases computational complexity significantly. Ad-
ditionally, it is not meaningful to refine segments with low
matching scores. Therefore, we only select coarse-grained
moments with an initial IoU greater than 0.7 for refinement,
with a window setting of (10, 5). The results of this ap-
proach, as indicated as the “Coarse-to-Fine”, show a per-
formance improvement compared to the baseline.

Performance of Different Video LLMs Testing is also
conducted on another Video LLM, VideoChat [15], which
exhibited superior video understanding performance com-
pared to VideoChatGPT. As shown in Tab. 7, an enhance-
ment in the captioning capability of Video LLMs leads to
an overall improvement in VTG performance.

’

Query “Person put down a phone on the counter.’

Query “A person is cooking at a stove.”

o A A
I \
S

GT |
0 11.9s
Ours | [ ]
0s 12.6s

”

Query “Person eating food from a plate.

) a | [ |
Video o ! = - ]
GT | I ]
16.0s 21.0s

Ours | \ [ ]

12.6s 16.8s

Figure 3. Above the dashed line are successful examples on the
Charades-STA dataset, and below are the failed ones.

Video LLM ‘ R@0.3 R@0.5 R@0.7 mloU
Video-ChatGPT | 34.87 5279  33.04 15.89
VideoChat2 36.55 56.56 3452 1634

Table 7. Experimental results of different Video LLMs

4.6. Qualitative Results

Fig. 3 displays selected prediction outcomes. Successful
predictions from the Charades-STA dataset appear above
the dashed line, while unsuccessful ones are presented be-
low. Our observations indicate that predictions tend to be
more precise for videos featuring simpler, prolonged ac-
tions. In contrast, accuracy diminishes in videos charac-
terized by intricate action sequences and rapid alternation
of multiple actions.

5. Conclusion and Future Work

We introduce ChatVTG in this paper, a novel and effec-
tive approach for zero-shot VTG that leverages the ad-
vanced capabilities of Video Dialogue LLMs. The success
of ChatVTG signifies a leap forward in VTG tasks, offering
a scalable and efficient solution for understanding and inter-
acting with video content through natural language. In the
future, our work can be applied to online video search, as
its ability to enable the pre-processing of offline conversion
from videos to textual descriptions. It can also be used for
cross-video matching and retrieving, beyond the confines of
individual videos.
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