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Abstract

Perceptual metrics, like the Fréchet Inception Distance
(FID), are widely used to assess the similarity between syn-
thetically generated and ground truth (real) images. The
key idea behind these metrics is to compute errors in a deep
feature space that captures perceptually and semantically
rich image features. Despite their popularity, the effect that
different deep features and their design choices have on a
perceptual metric has not been well studied. In this work,
we perform a causal analysis linking differences in semantic
attributes and distortions between face image distributions
to Fréchet distances (FD) using several popular deep fea-
ture spaces. A key component of our analysis is the creation
of synthetic counterfactual faces using deep face genera-
tors. Our experiments show that the FD is heavily influ-
enced by its feature space’s training dataset and objective
function. For example, FD using features extracted from
ImageNet-trained models heavily emphasizes hats over re-
gions like the eyes and mouth. Moreover, FD using features
from a face gender classifier emphasizes hair length more
than distances in an identity (recognition) feature space.

1. Introduction

Rapid advances in generative image models such as varia-
tional autoencoders (VAEs) [27, 34], generative adversar-
ial networks (GANs) [8, 14, 20, 21], and diffusion models
[12, 17, 28, 30], point to a future where synthetic images
play a significant role in society [15, 23, 36]. Therefore, it
is crucial to continuously assess and improve how we evalu-
ate the performances of these generative models [6]. In par-
ticular, synthesis evaluation metrics should capture several
factors, including correlation to human perception, robust-
ness to insignificant variations and noise, and sensitivity to
domain-specific semantics.

The gold standard in evaluating image generation quality
is human annotation [40], which can provide nuanced and
interpretable perceptual feedback, but comes at the cost of

money and time. The current standards in automated eval-
uation are deep perceptual metrics, which embed images
into lower-dimensional representations derived from the fi-
nal layers of deep neural networks and compute distances
between images [2, 39]. In particular, the Fréchet Inception
Distance (FID) [16] is currently the de facto image genera-
tion evaluation metric. FID calculates the Fréchet distance
(FD) [13] between two multivariate Gaussians fitted to rep-
resentations extracted from the InceptionV3 [31]) trained
on ImageNet [10] for real and generated images:

FD(µ1,Σ1, µ2,Σ2) = ||µ1 − µ2||22
+ Tr

(
Σ1 +Σ2 − 2(Σ1Σ2)

1
2

)
, (1)

where (µ1,Σ1) and (µ2,Σ2) are the sample means and co-
variances of the real and generated image set embeddings,
and Tr(·) is the matrix trace.

While these metrics have been shown to correlate better
with human evaluation than classical metrics computed di-
rectly from image pixels (e.g. average log-likelihood) [32,
38], unfortunately, the complexity of deep feature spaces
also makes them opaque and hard to interpret. Given that
deep generative models are now typically competing with
each other for less than 5 FID points, it is unclear what
such differences mean semantically. When evaluating face
generators, answering questions such as “What effect does
an imbalanced generation of skin tones have on FID?” or,
“What is the effect of consistent distortion of the eyes on
FID?” is crucial in helping engineers better understand their
evaluation metric, which ultimately will enable them to mit-
igate biases inherent in their models and improve generation
quality.

In this work, we propose a strategy to causally evaluate
the effect variations in domain-specific characteristics have
on a deep perceptual evaluation metric using synthetic data.
We focus on face generation, the most popular domain for
image synthesis studies with many important societal im-
plications in applications like face analysis/recognition [3],
deepfakes [33], virtual avatars [1, 25], and even healthcare
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Figure 1. Sample images in our proposed counterfactual face
dataset. a. The base column shows synthetically generated base
faces with predefined “neutral” characteristics. We manipulate
each base face along different attribute of interest, shown in the
remaining columns. b. The base column shows real faces from
FFHQ. Faces in the remaining columns are distorted versions of
the base faces with blur added to specific semantic regions. Note
that the examples shown for eyes, eyeglasses, and hat are different
because the corresponding base faces do not contain those regions.

[37]. We consider two types of variations: differences in se-
mantic attributes (e.g., hats, skin tone, hair length) and dis-
tortions (blur) to semantic regions (e.g, nose, eyes, mouth).
We perform causal studies using experimental interventions
that manipulate a single characteristic of an image at a time,
enabling us to create synthetic counterfactuals. For seman-
tic attribute interventions, we use deep face generators to
construct a dataset of synthetic face pairs that differ (ap-
proximately) by only a single feature of interest. For distor-
tions, we apply blur to semantic facial regions inferred by
a face segmentation model. Using this synthetic data, we
measure the causal effects the studied characteristic varia-
tions have on the FD in six different deep representations.
The results demonstrate that deep feature spaces have sig-
nificant and unique biases over in-domain attributes due to
both training data and objective functions. These biases
should be understood by researchers during synthesis eval-
uation.

2. Methods
For a given deep feature space, our goal is to quantify the
sensitivity of an evaluation metric to image characteristics.
In our experiments, we focus on face images and FD, and so
we describe our methods here in that context. We form two
questions for a given feature space: (1) How do differences
between the semantic attribute distributions of two face im-
age sets quantitatively affect FD? (2) How do distortions
localized to a semantic region of a face quantitatively affect
FD? These questions align with two broad image charac-
teristics that a generative model must capture: (1) semantic
attributes for the domain, and (2) realistic details.

Answering these questions requires causal reasoning,

Figure 2. Method overview for measuring causal effects of se-
mantic attribute differences on Fréchet distance. a. We gen-
erate a set of base and counterfactual (CF) face pairs for an at-
tribute or semantic distortion (for this figure, we use skin tone as
an example). Given a difference in proportion for this attribute
between two distributions (∆ ∈ [0%, 100%]) and the number of
faces per set (N ), we construct two image sets A and B by ran-
domly assigning base and CF faces to them such that this differ-
ence is achieved. We then extract the features for each image set
using a pre-trained deep model (e.g., Inception, CLIP), and com-
pute the FD between the two feature distributions. b. By creating
set pairs for ∆ ∈ [0%, 100%], we can generate a curve that sum-
marizes the causal effect of a difference in attribute proportions on
FD computed in a feature space.

and ideally a counterfactual dataset consisting of pairs of
faces that are identical except for a difference along one
characteristic (i.e., semantic attribute or distortion). Real-
face datasets contain significant attribute correlations [3]
and are therefore not appropriate. Instead, we propose a
synthetic approach. In the following sections, we outline
the proposed methodology to construct synthetic data to an-
swer each question. Example images synthesized by the
proposed methods are shown in Fig. 1.

2.1. Measuring the effect of semantic attribute dif-
ferences on Fréchet distance

Consider two image sets A and B with feature distributions
pA(x) and pB(x), where x ∈ RD is a feature space of an
image. Furthermore, assume that A and B are identical ex-
cept for a difference in their distributions over one semantic
binary attribute with value a ∈ {0, 1}, which we denote by
pA(a) and pB(a). Our goal is to quantify how the difference
in attribute proportions between pA(a) and pB(a) (ranging
from 0% when identical to 100% when completely dissim-
ilar), affects FD(µA,ΣA, µB ,ΣB), the FD between pA(x)
and pB(x). Fig. 2 describes our analysis methodology to
do so. We construct multiple sets of nearly identical faces
using deep generative models (described below), each con-
sisting of different proportions of values to a, and compute
FD between the pairs to yield a curve summarizing causal
effects (see Fig. 2-right, and Fig. 3).

This analysis requires the creation of sets A and B, coun-
terfactual face sets that differ based on only a. We use a
two-step process to create this data synthetically. First, we
synthesize a set of base faces that exhibit predefined uni-
form characteristics of light skin tones and short hair, and
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no: facial hair, make-up, frowning expressions, hats, or eye-
glasses. To do this, we obtained the face generation models
of a previous facial causal benchmarking study [3] based on
StyleGAN2 [21] trained on the Flickr-Faces-HQ (FFHQ)
dataset [20] and orthogonalized linear latent space traver-
sals (OLLT). We filter these faces via human evaluations to
ensure they meet the defined criteria. In our experiments,
we used a total of 1427 filtered base faces. In the sec-
ond step, we synthesize counterfactual pairs from the base
faces for each attribute a. In our experiments, we analyzed
8 binary attributes corresponding to various facial seman-
tics including geometry, skin tone, skin texture, hair length,
and accessories. The attributes analyzed are shown by the
columns in Fig. 1a. We utilize one of three different im-
age manipulation methods based on the attribute type: (1)
OLLT, (2) StyleCLIP [24], and (3) image inpainting with
Stable Diffusion [35]. We choose the best method for each
attribute based on a qualitative assessment of how well each
method can manipulate the attribute while holding others
constant. We show some example attribute counterfactuals
in Fig. 1a. We provide a complete account of models, exper-
imental parameters, and details used to create the synthetic
dataset in Supplementary.

2.2. Measuring the effect of blurring semantic re-
gions on Fréchet distance

The purpose of this analysis is to understand how a system-
atic distortion outputted by a face generator for a specific se-
mantic region impacts FD. In our experiments, we focused
on heavy blur, though many others may also be explored.
For each region, we use real FFHQ face images that contain
that region (accessories like hats and eyeglasses are not in
every image) as one distribution (set A), and apply Gaussian
blur to these images only in that region using segmentation
masks obtained from a public face segmentation model1 (set
B). We considered 9 regions in our experiments, as shown
in Fig. 1b. For our analysis, we simply report FD with re-
spect to distorting each semantic region (see Fig. 4).

3. Experiments
We conduct our analyses using six deep feature spaces
with publicly available parameters: (1) Inception V3 model
trained on the ILSVRC-2012 (ImageNet) dataset for clas-
sification [31], (2) CLIP (ViT-B/32) model trained on
large-scale dataset of image-text pairs using a contrastive
loss [26], (3) SwAV (ResNet-50) model trained on the Ima-
geNet in self-supervised scheme [7], (4) FairFace (ResNet-
34) model trained on FairFace for race, age, and gender
classification [19], (5) SwAV-FFHQ (ResNet-50) model
trained on FFHQ in self-supervised scheme [4, 7], and (6)
Identity ArcFace (ResNet-34) model trained on Glint360k

1https://github.com/zllrunning/face-parsing.PyTorch

Figure 3. Results for causal sensitivity analysis of Fréchet dis-
tances (FD) in different feature spaces with respect to semantic
attributes. For each percentage difference in attribute proportion
(i.e. point along the x-axis), we sample 10 random draws of 1000
counterfactual face pairs to construct face sets, from which the
FD in a feature space is computed, shown by the y-axis in log
scale. Each feature space under- or over-emphasizes certain at-
tributes based on its training dataset and objective functions.

for facial recognition [11].
We present sensitivity analyses of FD with respect to fa-

cial attribute proportions in Fig. 3. Our total dataset used for
this analysis contains 1427 counterfactual face pairs. For
each percentage difference in attribute proportion (i.e. point
along the x-axis), we sample 10 random draws of 1000 pairs
to construct face sets, from which the FD in a feature space
is computed. The points and error bars shown in the plots
correspond to the mean and standard deviation respectively.
A direct comparison of FD values across feature spaces is
not meaningful, as the scale of distances vary across fea-
tures. However, the difference in trends between the at-
tribute curves may be compared across plots. For example,
Inception and SwAV clearly emphasize hats with respect to
other feature spaces, while FairFace and SwAV-FFHQ em-
phasize skin tone.

We present sensitivity analyses of FD with respect to lo-
calized distortions in Fig. 4. To compare FD across different
feature spaces, we normalize distances by dividing them by
the distance between the original and entirely blurry images
(“all” category in Fig. 1) in that feature space.

4. Discussion
Feature spaces learned using ImageNet under-
emphasize important facial semantics regardless of
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Figure 4. Results for semantic region distortion (blur) analysis.
(Top) Bar plot comparing the normalized FD per semantic region
blur. We normalize distances in each feature space by dividing
by the distance between the original and fully blurred image set
(“All” in Fig. 1) in that space. (Bottom) Zoomed-in plot to clearly
visualize results for semantic regions that occupy less than 25% of
the face image on average.

the training objective. Fig. 3 illustrates that FD in feature
spaces learned using ImageNet (Inception and SwAV) are
most sensitive to differences in the proportion of hats,
consistent with findings from Kynkäänniemi et al. [22].
However, interestingly, the FD computed using SwAV
features is also sensitive to hats, even though that model
is not explicitly trained to classify ImageNet classes. This
is reasonable since self-supervised learning is known to
be an effective pretraining strategy for ImageNet clas-
sification. The plots also illustrate that FD computed
using ImageNet-learned spaces are highly insensitive to
distributional differences in skin texture (“wrinkly” and
“smooth”), geometry (“chubby”), and expression (“frown-
ing”). A deeper investigation (see Supplementary) reveals
a subtle interplay between the mean and trace terms of
the FD in Eq. (1). As the two distributions become more
skewed in our sensitivity analyses (towards 0 or 100 % in
Fig. 3), the distribution means become more dissimilar,
but their variances also decrease and reduce the trace term.
This suggests another challenge in using FD alone: they
can obfuscate differences in distribution modes versus
distribution shapes.

Fig. 4 shows that FD computed using Inception and
SwAV spaces are insensitive to the blurring of the eyes, and
SwAV is insensitive to the blurring of the nose and mouth.
This shows that systematic degradations to the eyes, nose,
or mouth, will not impact the FD in ImageNet-based fea-
ture spaces. Generative model designers should pay extra
attention to these semantic “blind spots.”

The training objective influences which facial seman-
tics are emphasized by a deep feature space. Fig. 3 shows
that while in-domain feature spaces (FairFace, SwAV-
FFHQ, Identity) are all highly sensitive to differences in

skin tone, skin texture, and facial accessories, there do exist
several notable dissimilarities. For example, FairFace is far
more sensitive to hair length, compared to SwAV-FFHQ and
Identity. This is further supported by the relatively small
effect that blurring the hair has on SwAV-FFHQ and Iden-
tity compared to FairFace. Another notable distinction is
that both FairFace and SwAV-FFHQ fail to capture distor-
tions localized to the eyes, nose, mouth, and lips, whereas
Identity does. We speculate that these differences are a
consequence of the feature spaces capturing semantic char-
acteristics that pertain most to the objective function used
during training. FairFace is trained to classify perceived
gender, which is correlated with hair length. On the other
hand, Identity is trained to match faces corresponding to
the same person, which should be invariant to hairstyle and
hair length. SwAV is trained to match cropped views of
an image, for which hair length is likely not a robust fea-
ture. Therefore, we suggest that generative model design-
ers should not naı̈vely expect in-domain feature spaces to
be sensitive to all domain-specific semantics. Rather, we
advocate carefully considering how the training objective
may influence features, and empirically investigating these
sensitivities.

Image-language models trained on massive general
datasets capture many important semantic characteris-
tics of faces. The sensitivity analyses for both semantic at-
tributes and distortions show the CLIP features are sensitive
to all studied characteristics. In particular, CLIP provides
a significant FD for all distorted facial region irrespective
of the size of the region in pixels. This is likely because
of two reasons: (1) CLIP is trained on a massive dataset,
and (2) text provides a rich source of information on per-
ceptual features to the image encoder that cannot have oth-
erwise been learned using classical supervision. Based on
these results, we encourage generative model designers to
move away from perceptual features extracted from models
trained on ImageNet (Inception, VGG [29], SwAV) and use
large image-language models like CLIP.

4.1. Limitations

Our causal analysis of semantic attributes assumes perfectly
counterfactual face pairs. However, it is difficult to iso-
late one attribute from others when working with deep gen-
erators due to the correlations the generator learns from
its training distribution. Nevertheless, in general, such
correlations are known to be even more dramatic in real
datasets [3], which makes synthetic generation a more at-
tractive option for such analysis. Another limitation in-
cludes the sample size of 1000 images per set used in our
semantic attribute analysis, which results in biased FD es-
timates [5, 9, 18]. However, given that sample size was
consistent throughout the experiment, the trend and shapes
of curves shown in Fig. 3 are accurate.
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