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Abstract

In this work, we propose GELDA, an automatic frame-
work that leverages large language models (LLMs) and
vision-language models (VLMs) to reveal visual biases in
image generators. GELDA takes a user-defined caption de-
scribing the generated images (e.g., “a photo of a face,”
“a photo of a living room”) and uses an LLM to hierar-
chically generate domain-specific attributes. GELDA then
uses the LLM to select which VLM from a pre-defined set
is most appropriate to annotate each attribute. To demon-
strate GELDA’s capabilities, we present results revealing
biases of both text-to-image diffusion models (Stable Diffu-
sion XL) and generative adversarial networks (StyleGAN2).
While GELDA is not intended to completely replace hu-
man annotators, especially for sensitive attribute annota-
tions, it can serve as a complementary tool to help hu-
mans analyze image generation models in a cheap, low-
effort, and flexible manner. GELDA is available at ht tps :
//github.com/krishk97/gelda.

1. Introduction

Image generation models are known to learn spurious corre-
lations that exacerbate bias [2, 15, 17, 22]. Given the rapid
advancement and deployment of such models, tools to eval-
uate model bias are essential for responsible usage. Tra-
ditionally, studies assessing image generation bias exam-
ine a select number of attributes compiled by researchers,
which humans subsequently annotate for a sampled set of
generated images. While the second step (annotation) is
clearly moving rapidly towards automation with the vari-
ous advances in vision foundation models [1, 3, 7, 11, 13,
16, 21, 22, 26], the first step (attribute selection) remains
largely human-centered. This raises a subtle issue: the eval-
uation process is limited to the attributes decided upon by
researchers, which can leave unforeseen bias blind spots.
For example, while several important studies have investi-
gated biases of text-to-image models with respect to pro-
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tected attributes (e.g. age, race, gender) [2, 17, 22], we ask
what other biases exist in these models beyond demographic
attributes? Moreover, what biases exist for non-human im-
age generations, such as generations of living rooms or ani-
mals?

To overcome this issue of constrained bias analysis,
we propose a method, called GELDA (for GEnerative
Language-based Dataset Annotation), that can automati-
cally propose and annotate a diverse set of domain-specific
attributes for images sampled from a generative model,
thereby providing more general insights into their attribute
distributions and potential biases. The key insight behind
GELDA is that generative large language models (LLMs)
like GPT [5, 18] capture a significant amount of world
knowledge [19] and can serve as priors [25] for linking do-
mains to their related attributes. In addition, recent work
has demonstrated the effectiveness of using LLMs to se-
lect downstream models for given tasks [8]. Therefore, we
posit that LLMs may be used to automatically curate a rich
set of relevant, domain-specific attributes and select vision
models suited to the “type” of each attribute (for example,
attributes related to objects are suited for object detectors,
whereas holistic image attributes, like “color scheme” or
“style”, are suited for image-text matching models).

Provided a user-specified domain, GELDA queries an
LLM (GPT in our experiments) for semantic categories
(e.g., living room furniture and color scheme) and attributes
per category (e.g., couch and coffee table for the furniture
category) that can visually distinguish images from that do-
main. Second, we use vision-language models (VLMs) to
annotate the generated attributes for the images conditioned
on the attribute labels. We use a zero-shot captioning model
(BLIP [13]) to annotate attributes related to image-level
concepts (e.g., background setting, style), and a text-guided
object grounding algorithm (OWLV2 [16]) to annotate at-
tributes related to object-level concepts (e.g., object and part
detection). GELDA is automatic with the exception of a
few low-cost user inputs (e.g., domain caption, number of
desired categories/attributes).

We demonstrate GELDA’s capabilities on synthetic im-
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Figure 1. Overview of GELDA. Given a user-specified domain in the form of a caption, GELDA first queries an LLM to generate a set of
visual attributes to annotate images specific to that domain that. The querying method is hierarchical, in that GELDA prompts the LLM to
first generate N attribute categories, then generate M labels per attribute category, and finally describe whether each attribute is object-level
or image-level. In the second stage, GELDA uses pre-trained VLMs to automatically annotate the generated attributes for sampled images.
We use the LLM to assign all image-level attributes to a VLM tuned for image-text matching, and all object-level attributes to a VLM for
open-vocabulary object detection. Once GELDA has identified and annotated visual attributes, we can then analyze the visual biases of the

image generator.

age data produced by both text-to-image models (Stable
Diffusion [20]) and generative adversarial networks (Style-
GAN2 [10]). GELDA reveals that living rooms gener-
ated by Stable Diffusion almost always have neutral or
monochromatic color schemes and contain coffee tables,
sofas, area rugs, and throw pillows. Moreover, GELDA
confirms that StyleGAN2 amplifies biases from its training
set for both human faces (FFHQ [9]) and dogs (AFHQ [6]).
Finally, we present some of GELDA’s limitations and draw
conclusions regarding its safe. While there is no substi-
tute for human ground truth, an annotation method that
trades off accuracy for flexibility and automation would en-
able practitioners to quickly and effortlessly gather insights
about their generative models.

2. Methods

Our goal is to take a user-specified domain along with a
set of images S from that domain, and automatically pro-
duce attribute annotations for each image in .S from a vari-
ety of in-domain categories. Using these attributes, we can
then perform bias analyses of S. There are two key chal-
lenges to this task: (1) automatically obtaining a list of rele-
vant categories and attributes for the specified domain, and
(2) automatically choosing the appropriate model for eval-
uating each image-attribute pair. We propose a framework
(see Fig. 1) that addresses both of these challenges.

Our insight for the first challenge is that large language
models (LLMs) are adept at linking concepts to one an-
other [19, 25]. We therefore query an LLM for a list of do-

main categories along with their associated attributes with
careful prompting. To address the second challenge, we ob-
serve that vision-language models (VLMs) offer a powerful
means of performing such evaluations like zero-shot image
classification [21] and object grounding [16] from text in-
put alone. The key challenge is determining which VLM to
use for a given attribute. Certain image-level attributes like
style or color scheme are better suited for image-text match-
ing (ITM) models, whereas determining the presence of an
object like a couch is better suited for open-vocabulary ob-
ject detectors (OVODs). We again use the LLM, this time to
provide a decision into the attribute type, and automatically
choose the appropriate VLM based on a pre-specified list
of VLMs for each attribute type. We describe our method
further in the following sections.

2.1. Attribute generation with an LLM

We use an LLM to generate attributes in a hierarchical fash-
ion by querying the LLM for categories, followed by query-
ing attribute examples per category. We use this hierarchi-
cal form for several reasons. First, we empirically find that
querying the LLM directly for attributes results in poor cov-
erage of visual concepts. Second, breaking up the predic-
tion as a ‘“chain” is known to be a successful strategy for
controlling LLMs towards more human-like reasoning [24].
Third, this approach allows the user control over the num-
ber of categories and attributes per category that they desire.
First, the user provides a prompt query Q1 of the form:

Q1 : “What are N attribute categories that can be

used to visually distinguish images described by
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the caption caption?”,

where NN is a number chosen by the user and caption is
a word or phrase describing the data domain (e.g., “birds”
or “a headshot photo of a person”). Second, for each of
the categories {categoryl, ., categoryN} re-
turned by (@1, we obtain attribute labels with query Q2:

@2 : “What are M different examples of the cat-
egory category that can be used to distinguish
images described by the caption caption?”,

where M is again chosen by the user. Lastly, we determine
whether each of the N attribute categories relates to image-
level or object-level concepts with query Q3:

Q3: “Are {attl, ., attM} examples of
objects or items? Answer with a yes or no. Ex-
plain your answer.”,

where {attl, att2, ...attM} is the list of M gen-
erated attributes for a category. We require a binary yes or
no answer in order to automatically filter the response into
one of the two appropriate downstream models. Requiring
an explanation pushes the model to provide more accurate
answers, as demonstrated in prior work [24].

Dealing with stochasticity: Auto-regressive LLMs are
stochastic in that they can produce different outputs given
the same prompt. While stochasticity helps capture the full
output distribution, determinism is helpful for reproducibil-
ity. To obtain high-quality attribute labels that are mostly
consistent across experiments, we perform the queries in
the previous section several times per prompt, and pick the
N and M most frequently labeled categories and attributes.

2.2. Zero-shot annotation with VLMs

We assume access to pretrained VLMs that take input im-
ages and text captions and can perform annotation. In our
experiments, we use two VLMs — one for image-text match-
ing (ITM) and one for open-vocabulary object detection
(OVOD). To convert LLM-generated attributes into input
captions for the VLMs, we prompt the LLM to modify the
initial user caption by incorporating the specified attributes.
OVOD models output bounding boxes and detection
scores, allowing us to label an attribute if its detection score
is simply above a threshold .. Output values of current ITM
models are less predictable because they are trained with a
hard negative mining strategy [12], making it difficult to set
a constant threshold. Instead, we compute ITM scores for
the M attribute text captions and a generic “base” refer-
ence caption describing the domain (same as the one used
in query 1, see Sec. 2.1). Finally, we select the highest-
scoring caption among the M attributes, and label that at-
tribute as present if it is greater than the base caption score.
This process essentially performs multiclass classification.

Figure 2. Distribution of annotated attributes returned by
GELDA for the SD living rooms. Bars are grouped by attribute
categories in different colors, and attribute names have been short-
ened for brevity. Category corresponds with attributes determined
to be object-level. Certain attributes are prominent in the gener-
ated images, such as coffee tables and sofas for furniture, throw
pillows and area rugs for accessories, neutral and monochromatic
hues for color schemes, and Bohemian and Scandinavian styles.

3. Experiments and Results

We demonstrate using GELDA to evaluate biases in two
popular image generation models. We use the public Stable
Diffusion (SD) XL model [20] to generate 1,024 synthetic
images using the caption “a photo of a living room”, and we
use the public StyleGAN2 (SG2) models [10] trained on the
FFHQ [9] and AFHQ [6] datasets to generate 10,000 images
each of human faces and dogs (with truncation 1 = 0.7 [4]).
To enable GELDA, we use the following publicly avail-
able models: GPT-3.5 for chat completion', BLIP (ViT-
L/14) [13] for ITM, and OWLv2 (ViT-L/14) [16] for OVOD
using a threshold of o = 0.3. We heuristically find N = 10
categories and M = 5 attributes to provide good concept
coverage, and, therefore, use these values for attribute gen-
eration.

We plot a histogram of generated attributes for SD living
rooms in Fig. 2. Several categories have uneven attribute
distributions. For example, over 90% of generated living
rooms contain a coffee table, sofa, area rug, or throw pil-
lows. Furthermore, less than 10% contain wall sconces,
bookshelves, blinds, shutters, or shades. The majority of
living rooms also have an “eclectic” layout, a “neutral”
color scheme,” a “Bohemian” or “Scandinavian” style, and
a “cozy and rustic” ambiance. We observe that BLIP strug-
gles to annotate generated flooring attributes, with the ma-
jority of images receiving a higher score for the base cap-
tion.

Next, we analyze differences in attribute distributions
between StyleGAN2 generators and their training distribu-
tions (FFHQ and AFHQ-Dogs datasets). We show the dif-
ferences in attribute frequencies computed by GELDA in
Fig. 3. The analysis demonstrates SG2 amplifies bias —for
both SG2 Faces and SG2 Dogs, the majority attribute per
category in the training dataset almost always has an ex-
acerbated majority in the generated dataset. This is shown
in the plot as a negative difference (i.e. higher frequency

"Model version: gpt—3.5-turbo-1106
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Figure 3. Comparisons of attribute bias of synthetic Style-
GAN2 (SG2) image generators with respect to their training
distributions. (a.) SG2 Faces vs. FFHQ. (b.) SG2 Dogs vs.
AFHQ. The attributes are ordered from top to bottom in each cat-
egory by descending frequency in the training dataset. SG2 am-
plifies bias — the most popular attributes in the training dataset
for each category have an even greater majority in the generated
dataset, as seen by large negative differences. Category corre-
sponds with attributes determined to be object-level.

in the generated dataset) for several of the first attributes
in each category (the attributes are sorted in order of de-
scending frequency in the training dataset). For example,
in SG2 Faces, over 10% more images contain a smiling fa-
cial expression, fair skin tone, brunette hair color, middle-
aged appearance, hazel eye color, and stubble facial hair in
comparison to its corresponding training dataset. For SG2
Dogs, over 20% more images contain a dog with an “alert”
posture and over 10% more contain a medium-sized dog in
comparison to its training dataset.

4. Discussion

We propose GELDA, the first automated framework lever-
aging the power of large language and vision-language
models to suggest and annotate attributes for bias evalu-
ation of image generation models. The evaluation of im-
age generation algorithms, particularly large text-to-image
models, is of great interest to the vision community. Given
that a model like Stable Diffusion can generate any image

distribution describable by text, it is desirable to also de-
velop analysis algorithms like GELDA that are equally flex-
ible. Results demonstrate that Stable Diffusion can skew
color schemes, accessories, and furniture when generating
“a photo of a living room.” Such insight can help practition-
ers engineer their prompts to steer away from unwanted bi-
ased attributes. Results also demonstrate that GELDA can
measure bias amplifications of a generator with respect to
its training distribution, such as with StyleGAN2-produced
faces and dogs.

GELDA has several limitations. First, it is only as good
as its constituent LLM and VLMs, which have their own
systematic errors and biases. While VLMs have improved
tremendously in the past several years, they are still far
from perfect on high-level semantics beyond object recog-
nition [23, 27]. In addition, GPT can fail to recall a num-
ber of important attributes. The combination of these er-
rors indicates that a method like GELDA cannot simply
replace humans in an annotation pipeline in terms of at-
tribute coverage or annotation accuracy. Instead, GELDA
will be most useful as a fast, flexible, and automated tool
to perform coarse dataset analysis, complementing existing
annotations. Second, our current implementation selects
one image-level attribute per category for an image (mul-
ticlass classification), though an image can contain mul-
tiple attributes together (e.g. living rooms can have both
monochromatic and neutral color schemes). Third, we eval-
uated GELDA on image generations with “contained” do-
mains focusing on one type of scene/object. Image gen-
erations of complex natural scenes like MS-COCO [14]
would pose challenges in attribute generation (a compact
prompt cannot describe arbitrary natural scenes) and image-
level attribute annotations, although object-level annota-
tions should be relatively unharmed.

4.1. Ethics and responsible use

GELDA inherits the biases of its LLM/VLM models. Bi-
ases of the LLM will mainly result in missed attribute cat-
egories which, while undesirable, are not as problematic
as VLM biases. VLM biases can result in incorrect an-
notations, thereby skewing bias analyses. These inaccura-
cies may be particularly harmful when dealing with human-
centered datasets like faces for which these models are not
tuned for. A user should therefore always exercise caution
and visually inspect image annotation results to confirm rea-
sonable labels and understand the limitations of the VLMs.
We recommend using GELDA not as a replacement to hu-
man perceptual ground truth, but as an efficient, flexible,
and low-cost method to complement human annotation in
bias benchmarking.
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