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Abstract

Egocentric human pose estimation aims to estimate hu-
man body poses and develop body representations from a
first-person camera perspective. It has gained vast popu-
larity in recent years because of its wide range of applica-
tions in sectors like XR-technologies, human-computer in-
teraction, and fitness tracking. However, to the best of our
knowledge, there is no systematic literature review based
on the proposed solutions regarding egocentric 3D human
pose estimation. To that end, the aim of this survey pa-
per is to provide an extensive overview of the current state
of egocentric pose estimation research. In this paper, we
categorize and discuss the popular datasets and the differ-
ent pose estimation models, highlighting the strengths and
weaknesses of different methods by comparative analysis.
This survey can be a valuable resource for both researchers
and practitioners in the field, offering insights into key con-
cepts and cutting-edge solutions in egocentric pose esti-
mation, its wide-ranging applications, as well as the open
problems with future scope.

1. Introduction
Human pose estimation [10, 19, 55, 62] has gained promi-
nence due to its relevance in numerous applications, ranging
from animation and gaming to surveillance, healthcare, and
human-computer interaction. The rise of wearable technol-
ogy, including smart glasses, body-mounted cameras, and
head-mounted displays has significantly fueled interest in
egocentric pose estimation, where the focus is on estimating
the pose of the person from the point of view of a wearable
camera or device worn by the person (first person perspec-
tive). Egocentric pose estimation plays a crucial role across
various domains, such as in human computer interaction for
gesture recognition, augmented and virtual reality experi-
ences by tracking body movements, healthcare for precise
therapy monitoring, biomechanical analysis in sports train-
ing, hand-object interaction for contextual understanding,
and enhancing realism in professional simulations through
accurate movement replication. Unlike traditional pose es-

timation, which relies on external cameras or sensors, ego-
centric pose estimation offers a unique and immersive per-
spective on human body representation. Real-time process-
ing, adaptability to different environments, user interaction
mechanisms, including gestures, and semantic scene under-
standing contribute to the effectiveness of egocentric pose
estimation systems. Figure 1 shows the difference between
traditional and egocentric 3D human pose estimation.

Challenges for Egocentric 3D Human Pose Estimation
stem from the complexity of accurately capturing and in-
terpreting human movements from the first-person perspec-
tive. Some of the key challenges include:
• Viewpoint Variations: The use of egocentric cameras, at-

tached to the body, introduces challenges in pose estima-
tion as body parts may be occluded, particularly when
hidden from view. The wide range of possible viewpoints
in egocentric settings, involving varying camera angles,
heights, and orientations, demands robust models to en-
sure accurate pose estimation across diverse scenarios.

• Limited Depth Information: Egocentric cameras, com-
monly mounted on wearable devices, capture scenes in
2D, lacking explicit depth details. This absence compli-
cates the accurate determination of the distance of body
parts from the camera, as 2D images may project objects
at different distances onto the same plane.

• Dataset Constraints: In-the-wild datasets are essential
for capturing real-world complexity, including variations
in lighting, backgrounds, activities, and environments.
However, their scarcity hinders model generalization, es-
pecially in dynamic environments with unpredictable sit-
uations. Limited availability of diverse samples, often
from motion capture systems, poses challenges for mod-
els aiming at real-world outdoor applications.
Scope of the Survey: Currently, there are numerous sys-

tematic surveys related to 2D and 3D human pose esti-
mation on traditional and deep learning based approaches
[16, 45, 65, 78] as well shape recovery based approaches
[40, 59]. While comprehensive reviews on hand pose
[7] and action recognition [47] from egocentric vision are
present, it is noteworthy that, to the best of our knowledge,
no comprehensive survey on full body egocentric 3D pose
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(a)

(b)

Figure 1. Difference between (a) traditional human pose estima-
tion [27] and (b) egocentric human pose estimation [61]

estimation methods has been published to date. This ab-
sence underscores a notable gap in existing research, despite
the increasing interest and advancement in this domain.

In this survey, we aim to explore the multifaceted as-
pects of 3D egocentric human pose estimation, by first de-
scribing the widely used datasets in Section 2. Next, in
Section 3, we explore the different egocentric estimation
methods by dividing them into two categories on the ba-
sis of output generation: skeletal based methods and hu-
man body shape based methods. Skeletal methods explore
different methods which are mostly regression based (esti-
mation of 3D joint co-ordinates) and heatmap based (esti-
mation of 2D heatmaps). On the other hand, body shape
based methods mainly generate human models using dif-
ferent shape recovery methods. Additionally, we present
a comprehensive evaluation of egocentric pose estimation
models, showcasing various evaluation metrics in Section 4
and a detailed performance analysis of state-of-the-art ap-
proaches on prominent datasets in Section 5. Lastly, we
conclude the survey in Section 6 with some future research
scopes for egocentric 3D human pose estimation.

2. Datasets

Large scale dataset is one of the key factors in visualizing
and analysing a computer vision problem. While bench-
mark datasets like MPII [6] and Human3.6M [26] exist for
traditional human pose estimation, there’s a notable gap for
egocentric pose estimation benchmark datasets. Figure 2
showcases sample images from 4 different datasets. Table 1
summarizes the key features of 9 egocentric pose estimation
datasets, with more details provided in the text below.

EgoCap [51] proposed a method for creating large train-
ing datasets using a marker-less motion capture system.

They leveraged eight fixed cameras to estimate 3D skeleton
motion. They projected it onto fisheye images from a head-
mounted camera setup, enhancing the dataset with back-
ground replacement, clothing color variations, and simu-
lated lighting changes. The training set includes 75,000 an-
notated fisheye images from six subjects and 25,000 images
from two additional subjects for validation.

The Mo2Cap2 dataset [68] tackles the challenge of ob-
taining annotated 3D pose data and introduces a marker-less
multi-view motion capture. To address the time-consuming
nature of obtaining diverse egocentric training examples,
the dataset includes a synthetic training corpus generated
from egocentric fisheye views. Built upon the SURREAL
dataset [63], it offers 530,000 realistic training images with
ground truth annotations of 2D and 3D joint positions.

xr-EgoPose [60] provides an extensive collection of
383,000 frames featuring individuals showcasing a rich di-
versity of skin tones, body shapes, clothing styles, set with
various backgrounds and lighting scenarios. Scenes are ran-
domly generated from mocap data, featuring realistic body
types like skinny short to full tall versions and skin tones
from white to black. Prioritizing photorealism, the synthetic
dataset is created through Maya animation with mocap data
and V-Ray’s physically based rendering setup.

(a) Dataset setup for UnrealEgo [3]: Left image shows a glass equipped
with two fisheye cameras. The middle image provides a third-person

perspective of the person, offering context to the scene. The right image
depicts the egocentric view of the person.

(b) Sample image from EgoPW [66] dataset visualizing egocentric view
on the left image and exocentric view on the right image.

(c) Sample image from EgoGTA
[67] dataset.

(d) Sample image from Wang et al.’s
[64] dataset.

Figure 2. Sample images from different datasets used for egocen-
tric human pose estimation.
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Dataset Year No. of Images No. of Subjects / Actions Characteristics Dataset Website
EgoCap [51] 2016 100,000 8 subjects marker-less motion capture system; annotated. Link
Mo2Cap2[68] 2019 530,000 3000 actions annotated; 700 different body textures. Link

xr-EgoPose [60] 2019 383,000 23 male and 23 female
subjects; 9 actions

synthetic; scene is generated from randomized characters,
environments, lighting rigs and animation.

Link

EgoBody [74] 2022 219,731 15 indoor scenes; 36
subjects

two subjects (camera wearer and interactee) involved in
different interaction scenarios.

Link

EgoPW [66] 2022 318,000 10 subjects; 20 actions in-the-wild real data; 20 different clothing styles. Link
UnrealEgo [3] 2022 900,000 17 subjects; 30 actions 450k in-the-wild stereo views; Motions, 3D environments,

spawning human characters.
Link

EgoGTA [67] 2023 320,000 101 different actions synthetic; based on GTA-IM containing different daily
motions and scene geometry.

Link

ECHP [39] 2023 30 video sequences;
75,000 frames

9 subjects; 10 daily actions indoor and outdoor; real-world data. Link

Ego-Exo4D [18] 2023 5625 video sequences;
1422 hours

839 subjects; 43 actions 131 different scenes in 13 different cities; comprises skilled
human activities (e.g., sports, music, dance, bike repair).

Link

Table 1. Popular datasets for egocentric 3D human pose estimation.

EgoBody [74] captures 2-person interactions using a Mi-
crosoft HoloLens2 headset. It provides synchronized multi-
modal data, including RGB, depth, head, hand, and eye
gaze tracking. With 125 sequences from 36 subjects in 15
scenes, it offers accurate 3D human shape, pose, and mo-
tion ground-truth. The dataset aims to explore the relation-
ships between human attention, interactions, and motions,
overcoming limitations of prior datasets, and advancing so-
ciological and human-computer interaction research.

The EgoPW [66] dataset is the first in-the-wild human
performance dataset captured by synchronized egocentric
and external cameras. It features 10 actors, 20 clothing
styles, and 20 actions from 318,000 frames organized into
97 sequences, along with the 3D poses as pseudo labels.

The UnrealEgo dataset [3] introduces robust egocentric
3D human motion capture with 17 diverse 3D models and
over 45,000 motions in 14 environments. It has stereo fish-
eye images and depth maps capturing complex activities
like breakdance and backflips. With metadata including 3D
joint positions and camera details, it comprises 450,000 in-
the-wild stereo views, showcasing wider joint position dis-
tributions compared to xR-EgoPose [60]. They followed
up with the UnrealEgo2 and UnrealEgo-RW datasets [4],
which provide more views with diverse human motions.

The EgoGTA [67] dataset comprises of 320,000 frames
across 101 sequences with distinct human body textures, by
leveraging the diverse daily motions and ground truth scene
geometry of GTA-IM [9]. The methodology involves fitting
the SMPL-X [50] model to 3D joint trajectories from GTA-
IM [9], followed by attaching a virtual fisheye camera to the
forehead for generating synthetic images, semantic labels,
and depth maps with and without the human body.

The ECHP [39] dataset consists of 65,000 training im-
ages, 10,000 validation images, and a test set with egocen-
tric images and 3D ground truth from VICON Mocap. Ego-
centric poses are extracted using OpenPose [10] and human
segmentation. Calibration and Aruco markers [17] aid in
obtaining egocentric camera pose. The dataset has 30 se-
quences with 9 subjects, 20 textures, and 10 actions in vari-
ous indoor/outdoor scenes. The test set provides generaliza-

tion with 4 unseen subjects and 17,000 ground truth frames.
Ego-Exo4D [18] is a groundbreaking multimodal

dataset and benchmark suite, offering the largest public col-
lection of time-synchronized first and third-person videos
captured by 839 individuals across 131 scenes in 13 cities.
It is comprised of 1,422 hours of video, featuring both ego-
centric and multiple synchronized exocentric views. The
EgoPose benchmark focuses on recovering 3D body and
hand movements from egocentric videos. The task is to es-
timate 17 3D body joint positions and 21 3D joint positions
per hand, following the MS COCO convention.

3. 3D Egocentric Pose Estimation Methods
After performing an extensive literature search for ego-
centric pose estimation, in this section, we discuss around
35 popular techniques by classifying them into two cate-
gories, namely skeletal and body shape based approaches.
Skeletal-based 3D pose estimation methods [49, 56, 57]
leverage the human skeleton representation to accurately
track and infer 3D joint position and body movements. Hu-
man body shape based human body pose estimation meth-
ods [8, 23, 73] utilize a parametric model, such as SMPL
[41] and SMPL-X [50], to accurately estimate 3D joint loca-
tions and body shapes. The retrieval of human body meshes
is pivotal in supporting subsequent tasks like reconstruct-
ing clothed humans [70, 79], rendering [22], and model-
ing avatars [24, 80]. The sub-sections below expand on the
different methods in each category. We have further sub-
categorized the methods based on some significant features,
as highlighted in bold.

3.1. Skeletal Based Methods

In this section, we have provided details on the skeletal
based egocentric pose estimation methods. Table 2 provides
a brief overview of 17 such skeletal based methods.

Rhodin et al. [51] introduced a marker-less egocentric
motion capture system using fisheye cameras embedded in
a helmet or VR headset. The method employs a generative
pose estimation framework with a ConvNet-based body part
detector, ideal for VR applications needing natural move-
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Skeletal based
Methods

Year Highlighted Characteristics Dataset Limitations Code/Project
Website Link

Egocap [51] 2016 First marker-less motion capture system; utilized pose
estimation framework for fisheye views with a ConvNet based

body-part detector.

EgoCap No real-time prototype. Project

Jiang et al. [28] 2017 Leveraged dynamic motion signatures and static scene
structures to infer the invisible pose efficiently.

custom Kinect
V2 dataset

Ambiguity in egocentric inputs
due to unpredictable arm poses.

–

Mo2Cap2 [68] 2019 Real-time; disentangled 3D pose estimation, addressed 2D joint
detection, camera-to-joint distances, and joint position recovery

for accurate results and a precise 2D overlay.

Mo2Cap2 Scenes with severe occlusions. Project

xr-EgoPose [60] 2019 Encoder-decoder model for VR headset images, addressing
resolution differences in upper and lower body poses, with a

dual-branch decoder preserving uncertainty information.

xR-EgoPose Scenes with extreme occlusions
and out-of-field view.

Code

You2Me [46] 2020 Inferred robust poses by incorporating static scene features,
explicit second-person body interactions and utilizing dyadic

interactions and dynamic first-person motion features.

You2Me Scenerios where camera wearer
is crouched and camera points

towards the floor.

Code

EgoGlass [77] 2021 Utilized body part information for low-visible joints and
tackling self-occlusion by preserving uncertainty information.

EgoGlass Lower body estimation produces
larger errors.

–

Zhang et al. [76] 2021 Implemented auto-calibration module with self-correction for
fisheye cameras to rectify image distortions, ensuring alignment

between 3D predictions and distorted 2D poses.

xR-EgoPose Not evaluated in real-world
setting.

–

Wang et al. [64] 2021 Spatio-temporal optimization framework that combines 2D and
3D keypoints, VAE-based motion priors and SLAM-based

camera pose estimation for stable global body pose estimation.

Mo2Cap2,
AMASS

Not evaluated in real-world
setting.

Project

Wang et al. [66] 2022 Implemented weak supervision with spatio-temporal
optimization and synthetic data with domain adaptation for

better egocentric pose estimation.

EgoPW Accuracy of pseudo labels
constrained by in-the-wild

capture system.

–

Akada et al. [3] 2022 Enhances 3D pose estimation by integrating a stereo-based 2D
joint location estimation module with weight-sharing encoders

and a multi-branch autoencoder for uncertainty capture.

UnrealEgo Occlusions and complex motions
scenerios.

Project

Ego+X [38] 2022 Dual-camera framework for 3D global pose estimation and
social interaction characterization, leveraging visual SLAM and
a Pose Refine Module (PRM) for spatial and temporal accuracy
and characterizes social interactions based on global 3D poses.

ECHA Camera localization robustness
limited; temporal smoothing

effectiveness not fully evaluated.

–

Wang et al. [67] 2023 First egocentric pose estimation framework, integrating depth
estimation for occlusion handling in close interactions.

EgoGTA,
EgoPW-Scene

Accuracy is constrained by depth
estimation where scene is

occluded by body.

Project

EgoFish3D [39] 2023 A self-supervised framework for egocentric 3D pose estimation,
utilizing real-world data with three key modules: third person
view, egocentric, and interactive modules, achieving accurate

results without the need for ground truth annotations.

ECHP Overlooked the significance of
the perspective factor, which can

convey valuable information
about the 3D effect intensity.

–

Ego3DPose [33] 2023 A stereo matcher network and perspective embedding heatmap
representation, independent learning of stereo correspondences

and leveraging 3D perspective information.

UnrealEgo Scenes with occlusions,
distortions and real-world

setting.

Code

Ego-STAN [48] 2023 Tackles fisheye distortion and self-occlusions in egocentric
human pose estimation through a domain-guided

spatio-temporal transformer, using 2D image representations,
feature map tokens, and 3D pose estimation for accurate joint

localization and uncertainty management.

xr-EgoPose Scenes in real-world setting. –

Dhamanaskar et
al. [13]

2023 Utilized third-person view information, creating a
self-supervised neural network that establishes a shared space

for consistent 3D body pose detection across diverse video
settings, ensuring adaptability to real-world scenarios with

unknown camera configurations.

First2Third-
Pose

Evaluation limited to two
datasets; broader assessment

needed for generalization.

Code

EgoFormer [36] 2023 Leveraged video context and establishing long-term temporal
relationships. It addresses ambiguity in first-person videos,
surpassing dynamic features, and introduces a novel motion

clue representation for enhanced accuracy.

CMU Mocap
[1]

Lack of real-world testing and
limited model comparisons.

–

Table 2. Popular skeletal based egocentric 3D pose estimation methods.

ment and interaction. However, it was not able to attain
real-time performance. To solve which, Mo2Cap2 [68] uses
a two-scale location invariant convolutional network to de-
tect 2D joints, accommodating perspective and radial dis-
tortions. It uses a location-sensitive distance module for es-
timating absolute camera-to-joint distances, and then recov-
ers actual joint positions by back-projecting 2D detections.
However, it struggles in scenes with severe occlusions.

EgoGlass [77] solves the occlusion problem by leverag-
ing body part information for improved pose detection. The
2D module incorporates branches for heatmap and body
part prediction, while the 3D module employs a pseudo-

limb mask approach to handle occlusion in real-world im-
ages. This module also functions as an autoencoder for joint
heatmaps, enhancing 3D body pose estimation and captur-
ing uncertainty in 2D predictions across multiple views.
[67] introduces an egocentric depth estimation network for
predicting scene depth maps behind the human body using a
wide-view egocentric fisheye camera, addressing occlusion
caused by the human body through a depth-inpainting net-
work. Additionally, a scene-aware pose estimation network
was presented for 3D pose regression. [25] used a Vector
Quantized-Variational AutoEncoder (VQ-VAE) to predict
and optimize human pose, addressing the challenge of ob-
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scured lower body appearance. xR-EgoPose [60] and Self-
Pose [61] uses an encoder-decoder architecture designed to
improve accuracy in capturing upper and lower body poses
from monocular images obtained via VR headset cameras.
[60] employs a dual-branch decoder to address resolution
discrepancies between the upper and lower body. It han-
dles uncertainties in 2D joint locations by initially gener-
ating 2D heatmaps and subsequently using an autoencoder
for 3D pose regression.

To solve the problem of out-of-field-view, [28] devel-
oped a method aiming to infer the invisible pose of a per-
son in egocentric videos using dynamic motion signatures
and static scene structures. By combining short-term and
longer-term pose dynamics, the method utilizes classifiers
to estimate pose probabilities and performs joint inference
for a longer sequence. They extended the idea [29] by us-
ing both dynamic motion information from camera SLAM
and occasionally visible body parts for robust ego pose es-
timation ensuring geometrical consistency. EgoTAP [32]
addresses out-of-view limbs and self-occlusion issues in
stereo egocentric 3D pose estimation by introducing a Grid
ViT Heatmap Encoder and Propagation Network. The Grid
ViT efficiently summarizes joint heatmaps, preserving spa-
tial relationships. The Propagation Network utilizes skele-
tal information to predict 3D poses, improving accuracy for
both visible and less visible joints.

To reduce the scarcity of real-world datasets from ego-
centric view, [66] proposed the use of weak supervision
from an external viewpoint. The approach utilizes spatio-
temporal optimization to generate accurate 3D poses for
frames in the EgoPW dataset, using them as labels for train-
ing an egocentric pose estimation network. It also incor-
porates a synthetic dataset and employs domain adaptation
to bridge the gap between synthetic and real data. [3] pro-
posed a solution for egocentric pose estimation in an uncon-
strained environment. It uses a 2D joint location estima-
tion module for stereo inputs by utilizing weight-sharing en-
coders and a decoder leveraging stereo information to boost
performance. The 3D module comprises a multi-branch au-
toencoder, predicting 2D heatmaps to generate 3D pose and
reconstructing heatmaps to capture uncertainty.

Perspective distortion can cause issues like scale vari-
ation, depth ambiguity and limited field of view. To tackle
this problem, Ego3DPose [33] introduces a Stereo Matcher
network that independently learns stereo correspondences
and predicts explicit 3D orientation for each limb, avoiding
dependence on full-body information. Additionally, a Per-
spective Embedding Heatmap representation is introduced,
allowing the 2D module to extract and utilize 3D perspec-
tive information. [48] addressed the challenges of fish-
eye distortion and self-occlusions by leveraging a domain-
guided spatio-temporal transformer model, Ego-STAN. It
utilizes 2D image representations and spatiotemporal atten-

tion to mitigate distortions and accurately estimate the lo-
cation of heavily occluded joints. [76] employed an auto-
matic calibration module with self-correction to mitigate
the impact of image distortions on 3D pose estimation. Un-
like traditional post-processing steps, this module ensures
consistency between 3D predictions and distorted 2D poses.

When the predicted poses are in the fisheye camera’s lo-
cal coordinate system instead of the global coordinate sys-
tem, it can cause issues like temporal instability. To solve
this issue, [64] proposed a method for precise and stable
global body pose estimation in egocentric videos. It uti-
lizes CNN-detected 2D and 3D keypoints, VAE-based mo-
tion priors, and SLAM-based camera pose estimation. This
approach effectively tackles challenges like temporal jitters
and tracking failures, significantly enhancing accuracy and
stability in obtaining coherent body poses. Ego+X [38] pro-
posed a framework with two cameras for 3D global pose
estimation and social interaction characterization. The
Ego-Glo module solves spatial and temporal errors using a
dual-branch network and visual SLAM. Whereas, the Ego-
Soc module performs egocentric social interaction charac-
terization, including object detection and human-human in-
teraction, based on the global 3D human poses.

Generating 3D ground truth data using motion cap-
ture system is a cumbersome task. To alleviate this prob-
lem, EgoFish3D [39] proposed three modules: a third-
person view module generating accurate 3D poses from
external camera images, an egocentric module predicting
3D poses from a single fisheye image via self-supervised
learning, and an interactive module estimating rotation dif-
ferences between third-person and egocentric views. This
method achieves self-supervised egocentric 3D pose esti-
mation without ground truth annotations, leveraging a real-
world dataset (ECHP) with synchronized third-person and
egocentric images. Linking first-person and third-person
view [37, 53, 69] plays a crucial role for better understand-
ing wearer’s action and poses. [12] used visual informa-
tion from paired third-person videos to create a shared space
where different views of the same pose are close together.
They trained a special neural network to learn this shared
space in a self-supervised manner, teaching it to distinguish
if two views show the same 3D skeleton.

EgoFormer [36], a tansformer-based model for ego-pose
estimation in AR and VR applications, addresses the am-
biguity in first-person videos by leveraging video context
and establishing long-term temporal relationships. It ex-
tracts effective temporal features, dynamic features, and in-
troduces a novel representation for motion clues. You2Me
[46] addresses the challenge of estimating the 3D body pose
of the camera wearer by leveraging interactions with a vis-
ible second person. The key insight is that dyadic inter-
actions between individuals help to learn temporal models
for interlinked poses even when one person is largely out
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Body Shape
based Methods

Year Highlighted Characteristics Dataset Limitations Code/Project
Website Link

Yuan et al. [71] 2018 Integrates control-based modeling, physics simulation, and
imitation learning for ego-pose estimation, enabling domain

adaptation by considering underlying physics dynamics.

CMU
Mocap [1]

Indirect 2D evaluation may not
capture full 3D accuracy; limited
behaviors may hinder complex

motion generalization.

–

Dittadi et al. [14] 2021 Variational autoencoders for generating human body poses from
limited head and hand pose data; addressing challenges through

specialized inference models.

AMASS
[44]

Incomplete utilization of temporal
history, constraints on body shape
variation and reliance on assumed

availability of hand signals.

–

CoolMoves [2] 2021 Achieves real-time, expressive full-body motion synthesis for
avatars using limited input cues, dynamically fusing stylized
examples from skilled performers, excelling in activities like

dancing and fighting.

CMU
MoCap

Limited sensing of legs and feet,
resulting in lower body

reconstruction jitters and reduced
accuracy in foot-driven motions.

–

EgoRenderer [21] 2021 Renders full-body neural avatars from egocentric fisheye images -
texture synthesis, pose construction, and neural image translation;

addresses challenges of top-down view and distortions.

EgoRenderer Incomplete joint estimation;
unnatural motions in SMPL

model animations and temporal
instability in frame predictions.

Project

HPS [20] 2021 Integrates wearable sensors, IMUs and a head-mounted camera
for precise 3D pose tracking in pre-scanned environments,
eliminating drift with localization and scene constraints.

HPS Lack of features and scene
changes between static 3D scans

and real images.

Project

Avatarposer [30] 2022 First learning-based method predicting full-body poses in world
coordinates, leveraging transformer encoder and motion input

from head and hands

CMU
Mocap,
AMASS

Sensitivity to inaccuracies and
occlusions in hand tracking data.

Code

FLAG [5] 2022 Flow-based model for realistic 3D human body pose prediction
with uncertainty estimates, enhancing prior work through

high-quality pose generation and efficient latent variable sampling
for optimization.

AMASS Difficulty in generating complex
lower-body poses due to sparse

training data and lack of temporal
data integration.

Project

Su et al. [54] 2022 A data framework transforms raw video into 3D pose, enriched
by a lightweight Self-Perception Excitation (SPE) module for

egocentric self-awareness.

Mocap
dataset [72]

Dependency on MoCap data and
synchronized third-person view
videos may limit the method’s

real-world applicability.

–

EgoEgo [35] 2023 Ego body pose estimation using ego head pose estimation
leveraging SLAM, and conditional diffusion for disentangled

head and body pose estimation.

ARES Evaluation on synthetic and
relatively small real-world

datasets.

Code

EgoHMR [75] 2023 Scene-conditioned diffusion approach using a physics-based
collision score, realistic human-scene interaction, accurate
estimation for visible body parts while enhancing diversity.

EgoBody Limited temporal context for
reconstructing egocentric human

motions.

Code

EgoPoser [31] 2023 Used sparse motion sensor; mitigates overfitting with
position-invariant prediction, adaptable to diverse body sizes,
robust with hands out of view and reduces motion artifacts.

AMASS Limited evaluation on diverse
real-world scenarios.

–

SimpleEgo [11] 2024 Directly predicts joint rotations as matrix Fisher distributions,
providing robust uncertainty estimation and realistic deployment

prospects.

SynthEgo Accuracy could be limited when
large portions of the body are

occluded in the image.

Project

Table 3. Popular body shape based egocentric 3D pose estimation models.

of the field view. The method incorporates dynamic first-
person motion features, static first-person scene features,
and second-person’s body pose interaction features to ex-
plicitly account for the body pose of the camera wearer.

3.2. Body Shape Based Methods

In this section, we expand on the different human body
shape-based egocentric pose estimation methods found in
the literature. Out of them, 12 are highlighted in Table 3.

Dittadi et al. [14] used variational autoencoders to gen-
erate human body poses from noisy head and hand pose
data. It addresses the challenge of predicting full body
poses with limited information by training specialized in-
ference models. Yuan et al. [71] employed control-based
modeling with physics simulation and used imitation learn-
ing to acquire a video-conditioned control policy for ego-
pose estimation. Traditional computer vision methods fo-
cus solely on motion kinematics [42] neglecting the under-
lying physics of dynamics [43]. Taking this into account,
this framework allows domain adaptation, transferring the
policy from simulation to real-world data. CoolMoves [2]
is a VR system that has achieved real-time, expressive full-

body motion synthesis for a user’s avatar using limited input
cues from VR systems. It delineates the prominent move-
ments through dynamic fusion with stylized examples from
skilled performers. The system excels in synthesizing up-
per and lower-body motions without explicit tracking cues,
addressing challenges in activities like dancing and fighting.

To solve the problem of top-down view distortions,
EgoRenderer [21] renderes full-body avatars from egocen-
tric images by decomposing the process into texture synthe-
sis, pose construction, and neural image translation [52, 58].
The Human POSEitioning System (HPS) [20] combines
wearable sensors, IMUs, and a head-mounted camera to
accurately track and integrate 3D human poses within pre-
scanned environments. By fusing camera-based localiza-
tion with IMU-based tracking and scene constraints, HPS
achieves physically plausible motion estimation.

To address challenges like body truncation and pose
ambiguities, [75] introduced a scene-conditioned diffusion
model guided by a physics-based collision score, facilitat-
ing the generation of realistic human-scene interactions. It
uses classifier-free training for flexibility in sampling, pro-
viding accurate estimations for visible body parts and di-
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verse plausible results for unseen parts. [30] predicted full-
body poses in world coordinates solely from motion input
derived from the user’s head and hands. Leveraging a trans-
former encoder, the method extracts deep features, distin-
guishing global motion from local joint orientations to fa-
cilitate pose estimation. FLAG [5] uses sparse input sig-
nals from head mounted devices and a flow-based gener-
ative model to predict full-body poses and provide uncer-
tainty estimates for joints. [54] estimated 3D wearer poses
from egocentric video, overcoming challenges of body in-
visibility and complex motion. They convert raw video to
3D pose, incorporating Self-Perception Excitation module
for self understanding from egocentric view.

EgoEgo [35] uses monocular egocentric videos to esti-
mate ego-head pose and generate ego-body pose, allowing
independent learning without paired datasets. It com-
bines monocular SLAM and transformer-based models for
accurate ego-head pose estimation, employing a conditional
diffusion model for full-body pose generation based on the
predicted head pose. SimpleEgo [11] performs regression of
probabilistic full-body pose parameters from head-mounted
camera images. It directly predicts joint rotations, elim-
inating the need for iterative fitting processes or manual
tuning. By representing joint rotations as matrix Fisher
distributions, the model predicts confidence scores, allow-
ing for robust uncertainty estimation. AGRoL [15] pro-
poses a lightweight MLP-based diffusion model for real-
istic full-body motion synthesis from sparse tracking sig-
nals. [34] introduces affordable motion capture using smart-
watches and head-mounted camera, integrating head poses
for sparsity, tracking floor levels for outdoor settings, and
optimizing motion with visual cues. EgoPoser [31] gen-
erates full-body pose estimation using sparse motion sen-
sors, focusing on HMD-based ego-body pose estimation in
large scenes. It addresses overfitting issues by emphasizing
position-invariant prediction with a Global-in-Local motion

decomposition strategy. Notably, it adapts to diverse body
sizes and remains robust when hands are out of view.

4. Evaluation Metrics

In this section, we briefly describe the different metrics used
to assess 3D egocentric human pose estimation methods.

MPJPE (Mean Per Joint Position Error) is a widely uti-
lized metric which measures the mean error between all the
predicted 3D joint positions and the ground truth positions,
by calculating the Euclidean distance between them.

PA-MPJPE focuses on the individual pose accuracy by
checking the alignment between the estimated pose and the
ground truth pose of each frame using Procrustes analysis.

BA-MPJPE first resizes the bone lengths to a standard
skeleton and then calculates the PA-MPJPE, providing a
comprehensive evaluation by considering structural consis-
tency in bone lengths and eliminating body scale influence.

Global MPJPE evaluates global joint position accuracy
by aligning all poses within a batch to the ground truth, con-
sidering translation and rotation.

MPJRE (Mean Per Joint Rotation Error) and MPJVE
(Mean Per Joint Velocity Error) compares the predicted
and ground truth joints by calculating the average rotational
and velocity disparity respectively.

Percentage of Correct Key-points (PCK) is a measure of
accuracy that checks if the predicted keypoint and the actual
joint are close within a specific distance limit. Typically,
this distance threshold is set based on the size of the subject.

Head Translation & Orientation Error focuses on
translation and rotational accuracy in head pose estima-
tion respectively. The translation error is quantified using
the mean Euclidean distance between predicted and ground
truth head trajectories. Whereas, the orientation error is cal-
culated using the Frobenius norm of the difference between
the predicted and ground truth head rotation matrices.

Methods Walking Sitting Crawling Crouching Boxing Dancing Stretching Waving Average
EgoFish3D [39] 60.9 42.1 65.0 82.7 79.0 55.5 59.1 94.5 66.8
Zhang et al. [76] 41.16 76.58 73.04 89.67 52.96 58.90 92.21 71.55 62.13

Mo2Cap2 [68] 38.41 70.94 94.31 81.90 48.55 55.19 99.34 60.92 61.40
xR-EgoPose [60] 38.39 61.59 69.53 51.14 37.67 42.10 58.32 44.77 48.16

SelfPose-UNet [61] 45.83 47.24 47.35 45.15 48.72 47.00 46.15 46.45 46.61
Table 4. Comparison of different skeletal based 3D egocentric pose estimation methods on Mo2Cap2 dataset using MPJPE (mm).

Methods Game Gest. Greeting Lower
Stretch

Pat React Talk Upper
Stretch

Walk All

xR-EgoPose [60] 56.0 50.2 44.6 51.5 59.4 60.8 43.9 53.9 57.7 58.2
SelfPose [61] 60.4 54.6 44.7 56.5 57.7 52.7 56.4 53.6 55.4 54.7

Zhang et al. [76] 36.8 34.1 36.7 50.1 57.2 34.4 32.8 54.3 52.6 50.0
EgoFish3D [39] 48.0 48.2 42.5 47.3 48.8 53.6 47.2 36.2 48.9 46.1
Ego-STAN [48] 33.1 31.6 36.9 38.9 29.2 29.6 29.7 44.3 40.9 40.4
EgoGlass [77] 32.8 30.5 33.7 35.5 45.7 33.2 27.0 40.1 37.4 37.7

Table 5. Comparison of different skeletal based 3D egocentric pose estimation methods on xR-EgoPose dataset using MPJPE (mm).

1649



Input Image Mo2Cap2 [68] xR-EgoPose [60] Hwang et al. [25]

Figure 3. Qualitative comparison between three different state-
of-the-art skeletal-based egocentric 3D pose estimation models on
the xR-EgoPose dataset [60]. The predicted 3D poses (red) are
superimposed onto the ground truth poses (blue).

5. Performance Analysis

In this section, we compare the performance of different
state-of-the-art methods for the 3D egocentric human pose
estimation on some of the popular egocentric datasets.

Performance of Skeletal-based Methods: Table 4
shows the performance of five different skeletal-based ego-
centric pose estimation methods across the different ac-
tions on the widely used Mo2Cap2 [68] dataset. The av-
erage MPJPE across all actions reduces from 66.8 mm in
EgoFish3D [39] method to 46.61 mm in SelfPose-UNet
[61] method. We see that 2D-3D lifting models [60, 61]
achieved better results than direct 3D pose estimation meth-
ods, which may be due to the preserved uncertainty infor-
mation of the joints. Figure 3 shows the qualitative evalu-
ation of the 3D poses generated by three different skeletal-
based methods on the xR-EgoPose [60] dataset. Table 5
compares six different skeletal based methods on the xR-
EgoPose [60] dataset. Overall, the MPJPE of the methods
is lower here than those tested in Mo2Cap2 [68] dataset, es-
pecially for actions with less visible joints. This could be
because in this dataset most of the actions used for evalua-
tion are relatively simpler.

Performance of body shape based Methods: Table 6
shows the performance of six different body shape based
egocentric pose estimation methods on the AMASS [44]
dataset. We can see that, AGRoL [15] outperforms other

Methods MPJPE MPJVE
CoolMoves [2] 7.83 100.54
Lee et al. [34] 5.87 19.11

AvatarPoser [30] 4.18 29.40
EgoPoser [31] 4.14 25.95
AGRoL [15] 3.86 50.94

AGRoL-Offline [15] 3.71 18.59

Table 6. Comparison of different body shape based 3D Egocentric
Pose Estimation methods on AMASS [44] dataset using MPJPE
(cm) and MPJVE (cm/s).

Groundtruth Image AvatarPoser [30] AgRoL [15] EgoPoser [31]

Figure 4. Qualitative comparison of three different state-of-the-art
body shape based egocentric 3D pose estimation models on the
HPS dataset. [20].

methods with its smooth motion generation, but it’s lim-
ited to offline use. For real-time applications, EgoPoser [31]
is more suitable as it provides more adaptability to diverse
body sizes as well as robustness with hands out of view.
Figure 4 qualitatively compares the 3D human pose and
shape on three different body shape based methods using
HPS [20] dataset.

6. Conclusion and Future Directions
In this survey paper, we provide an overview of 3D ego-
centric human pose estimation using RGB images or video
sequences, encompassing diverse datasets and estimation
methodologies. Researchers have proposed diverse datasets
with lightweight setups. However, the lack of standardized
benchmark datasets, except for the recent Ego-Exo4D
[18] dataset, poses a challenge for evaluating the robustness
of different egocentric pose estimation models. While dis-
cussing the individual strengths and weaknesses of different
skeletal and body shape based methods for egocentric pose
estimation, we realize that most of the existing methods en-
counter difficulties with in-the-wild scenarios mainly due
to insufficient training data. Notably, similar to traditional
pose estimation, the biggest challenges of egocentric pose
estimation models are strong occlusions and limited field
of view, especially for the lower body joints. Multi view
consistency may help to to solve this using additional 3D
information. Moreover, temporal and contextual infor-
mation can be utilized further to improve the robustness of
the models considering these issues. Consequently, there
exists ample scope for refining egocentric pose estimation
approaches to better suit real-time technologies.

In conclusion, this survey paper serves as a comprehen-
sive resource for researchers seeking to explore the existing
egocentric pose estimation methods, understand prevalent
challenges, and make further advancements.
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cisco José Madrid-Cuevas, and Manuel Jesús Marı́n-
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zstein. Scene representation networks: Continuous 3d-
structure-aware neural scene representations. Advances in
Neural Information Processing Systems, 32, 2019. 6

[53] Bilge Soran, Ali Farhadi, and Linda Shapiro. Action recog-
nition in the presence of one egocentric and multiple static
cameras. In Computer Vision–ACCV 2014: 12th Asian Con-
ference on Computer Vision, Singapore, Singapore, Novem-
ber 1-5, 2014, Revised Selected Papers, Part V 12, pages
178–193. Springer, 2015. 5

[54] Wei Su, Yuehu Liu, Shasha Li, and Zerun Cai.
Proprioception-driven wearer pose estimation for egocentric
video. In 2022 26th International Conference on Pattern
Recognition (ICPR), pages 3728–3735. IEEE, 2022. 6, 7

[55] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep
high-resolution representation learning for human pose es-
timation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2019. 1

[56] Xiao Sun, Jiaxiang Shang, Shuang Liang, and Yichen Wei.
Compositional human pose regression. In Proceedings of
the IEEE international conference on computer vision, pages
2602–2611, 2017. 3

[57] Bugra Tekin, Isinsu Katircioglu, Mathieu Salzmann, Vin-
cent Lepetit, and Pascal Fua. Structured prediction of 3d
human pose with deep neural networks. arXiv preprint
arXiv:1605.05180, 2016. 3

[58] Justus Thies, Michael Zollhöfer, and Matthias Nießner. De-
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