
V-VIPE: Variational View Invariant Pose Embedding

Mara Levy
University of Maryland, College Park

mlevy@umd.edu

Abhinav Shrivastava
University of Maryland, College Park

abhinav@cs.umd.edu

Abstract

Learning to represent three dimensional (3D) human
pose given a two dimensional (2D) image of a person, is
a challenging problem. In order to make the problem less
ambiguous it has become common practice to estimate 3D
pose in the camera coordinate space. However, this makes
the task of comparing two 3D poses difficult. In this pa-
per, we address this challenge by separating the problem
of estimating 3D pose from 2D images into two steps. We
use a variational autoencoder (VAE) to find an embedding
that represents 3D poses in canonical coordinate space. We
refer to this embedding as variational view-invariant pose
embedding (V-VIPE). Using V-VIPE we can encode 2D and
3D poses and use the embedding for downstream tasks, like
retrieval and classification. We can estimate 3D poses from
these embeddings using the decoder as well as generate un-
seen 3D poses. The variability of our encoding allows it to
generalize well to unseen camera views when mapping from
2D space. To the best of our knowledge, V-VIPE is the only
representation to offer this diversity of applications.

1. Introduction
Learning to represent three dimensional (3D) human pose
given a two dimensional (2D) image of a person, is a chal-
lenging problem with several important downstream appli-
cations such as teaching a person to mimic a video, action
recognition and imitation learning for robotics. The key
challenge arises from the fact that different camera view-
points observing the same 3D pose lead to very different
projections in a 2D image. The common practice is to cir-
cumvent this challenge by estimating 3D pose in the camera
coordinate space [7, 15, 32]. However, this leads to differ-
ences in scale and rotation between the estimated 3D rep-
resentations from images of the same 3D pose from differ-
ent camera viewpoints. Without the knowledge of camera
parameters, it is not possible to establish correspondence
between these 3D representations. This is important as we
move towards environments where we have very little con-
trol over the camera viewpoint, such as photos taken with a

V-VIPE

3D Pose Retreival

3D Pose Generation

2D to 3D Pose Estimation

Figure 1. The several functions V-VIPE is capable of. The purple
path represents 3D pose retrieval. The blue path represents genera-
tion by adding noise to the purple path. The result is a variation of
the original pose. The green path shows 2D to 3D pose estimation
from several viewpoints.

phone or AR glasses. In such scenarios, we can make very
few assumptions about the camera space.

In this paper, we address this challenge by separating
the problem of estimating 3D pose from 2D images into
two steps. First, we learn an embedding to represent 3D
poses in canonical coordinate space. Next, we learn to en-
code 2D poses, from different camera viewpoints, to the
embedding from the first step. This leads to a canonical 3D
pose embedding that is invariant to camera viewpoints. This
view-invariant pose embedding is highly flexible, allowing
us to do 3D pose retrieval, 3D pose generation, and most
importantly, estimating consistent 3D pose from different
2D viewpoints 1.

In our approach we use a variational autoencoder (VAE)
to learn an embedding for 3D human poses. This VAE is
trained to reconstruct 3D poses and has two key benefits: (a)
we can leverage loss functions to ensure similar 3D poses
are close in the embedding space, and (b) we learn embed-
dings that can generalize better to unseen 3D poses due to
the variational training paradigm. Next, we learn a map-
ping from 2D poses (either ground-truth or estimated using
off-the-shelf detectors) to this 3D pose embedding space by

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

1633

training a 2D pose encoder that estimates the 3D pose em-
bedding. This embedding is used as input to the pre-trained
decoder from the VAE to estimate the corresponding 3D
pose, thus leading to “lifting” the 2D pose from different
camera viewpoints to 3D [10, 18]. We refer to embedding
as variatonal view-invariant pose embedding (V-VIPE).

Our proposed V-VIPE is highly flexible and generaliz-
able. We can encode 3D poses and use the embedding for
downstream tasks, like retrieval and classification. We can
also map 2D poses from unseen camera viewpoints to this
embedding. We can estimate 3D poses from these embed-
dings using the decoder. Finally, we can generate unseen
3D poses. To the best of our knowledge, V-VIPE is the
only representation to offer this diversity of applications.

We perform an extensive experimental evaluation over
two datasets: Human 3.6M [8] and MPI-3DHP [16]. We
show quantitative results on 2D to 3D pose retrieval and
qualitative results on 3D pose generation and 2D to 3D pose
estimation. We show that V-VIPE performs 1% better than
other embedding methods on seen camera viewpoints and
about 2.5% better for unseen camera viewpoints. In addi-
tion, we show generalization of our approach by training on
one dataset and testing on the other.

To summarize, our main contributions are as follows:
• We learn a variational view-invariant pose embedding (V-

VIPE) by training a VAE to represent 3D poses in canoni-
cal coordinate space, which allows it to be camera invari-
ant.

• We propose a model to map from 2D poses to V-VIPE,
which enables us to estimate 3D poses of 2D images. Ad-
ditionally, because V-VIPE is camera invariant, our map-
ping can generalize to unseen cameras.

• We also estimate and generate 3D poses using V-VIPE
via a decoder that can be used for downstream tasks.
In the rest of the paper we expand upon these ideas. We

summarize the related works in Section 2. In Section 3, we
describe our proposed method, and Section 4 provides the
experimental evaluations. Section 5 looks at ablations of
our method. Finally, Section 6 derives the conclusions.

2. Related Work
Human Pose Estimation. There are two family of ap-
proaches for human pose estimation. One is to directly es-
timate 3D poses from an 2D images [19, 24], and the other
is to lift pre-detected 2D poses to 3D poses [15, 23, 30]. In
recent years, state-of-the-art approaches have almost exclu-
sively focused on the lifting strategy.

Our goal is to specifically find correspondence between
2D poses in images from different camera viewpoints with-
out any knowledge of camera parameters or temporal con-
text. Recent works have explored how temporal informa-
tion can improve 3D pose estimation [3, 31], typically by
processing a sequence of images using a transformer [31].

However, our focus is 3D pose estimation using a single 2D
image which is similar to [26].

The key distinction between our approach and prior
works in estimating 3D poses using 2D images is view-
invariant embedding that can be estimated from a monoc-
ular viewpoint. Several works have attempted to ad-
dress view invariant estimation by leveraging many view-
points [14, 20, 25] because it is much easier to place a per-
son in canonical coordinate space when you have access
to many views. However, access to multiple viewpoints of
the same scene is an unrealistic assumption in the canoni-
cal settings. Therefore, these approaches can only be used
in environments that have multiple cameras observing the
same scene. In contrast, our approach can be applied to any
arbitrary 2D image. Some works only use a single view-
point during inference time, but still require multiple views
for each pose during training [11]. Whereas our method is
more flexible and can be trained on any dataset with both
2D and 3D information, even if there is only one camera
viewpoint available. Similar to our work, [26] performs
view-invariant pose estimation from one view, but their
method requires localized transformations that fundamen-
tally change the 3D pose and must be reversed at the end to
get the final pose. Our approach, on the other hand, requires
only one global rotation to a canonical camera viewpoint
that does not change the integrity of the pose.
3D Pose Generation. Training a model capable of generat-
ing new 3D poses is important for representing unseen data
in addition to training data. There are two main types of
generators that can be used, Generational Adversarial Net-
works (GANs) and Variational Auto Encoders (VAEs).

Several works have used GANs [26, 27, 29] to gen-
erate training data for 3D poses. However, they are not
well suited for our task which also requires encoding 3D
poses in an embedding space. VAEs, on the other hand,
are better suited for learning embedding by auto-encoding
3D poses. [17] learns a latent network, where they go di-
rectly from 2D to 3D without using the 3D data as input to
the model, whereas [22] learns a latent representation us-
ing a variant of VAE and generate 3D poses using 2D pose
as a precondition to their decoder. [10] employs a basic
autoencoder instead of a VAE, which leads to an inconsis-
tent embedding space that is harder to map to 2D inputs. [6]
also learns an autoencoder instead of a VAE, but addition-
ally, they choose to regress on the embedding and perform
little normalization prior to training which leads to a poorly
regularized output space.

3. Proposed Method
Our method consists of three main parts. In 3.1 we review
the input data pre-processing to ensure that the output is
independent of camera view. In section 3.2, we describe
how we define V-VIPE through a VAE model. In section

1634

Figure 2. On the left we can see the 3D pose in the original global coordinates with 4 different cameras. The next 4 images are the 3D
poses as seen from these 4 cameras.

3.3 we cover how we learn V-VIPE from the detected key-
points. The final model is a network that takes as input a
single frame monocular image and estimates a view invari-
ant pose, which can be used to compare any two human
poses independent of the context of the original image.

3.1. Data Processing

Before we pass any data through our model we perform two
key steps. First, we modify the global rotation of the image;
second, we scale the keypoints so that the original size does
not affect the model.
Global Rotation Realignment. Predicting 3D pose in
canonical space is extraordinarily difficult as mentioned in
[15]. We believe this is mostly due to the global rotation1

of any 3D pose. Global rotation is hard to estimate due
to its ambiguity. We can see in Figure 2 that a pose in
global space can have a very different appearance in cam-
era space. Without any information, such as a ground truth
pose, which we can align the output to or any camera pa-
rameters, it would be difficult to determine that any two of
these poses are the same.

We argue that global rotation is irrelevant for human pose
comparison. Specifically, when we are trying to determine
if two poses are the same we do not need to understand how
those are oriented in relation to the world they are in. If one
pose is facing the x-axis and the other is facing the y-axis, it
is still possible that their overall pose is the same. We thus
remove rotation dependence by aligning the coordinates of
the left hip, right hip and the spine to the same points in
every pose of the dataset. This can be visualized in Figure 3.
In order to achieve such alignment we find the rotation that
minimizes the equation:

L(C) =
1

2

n∑
i=1

||ai − Cbi||2 (1)

where a1, a2, a3 equal the 3D points representing the
left hip, right hip and spine respectively and b1, b2, b3
equal [[0,−1, 0], [0, 1, 0], [0, 0, 1]]. Aligning to these points

1By global rotation we mean how a human is rotated in relation to the
canonical space.

causes the hips to align to the y axis and the spine to the
z axis. We specifically align the hips because they are in a
straight line so it is easy to align to one axis and the spine
because it is directly above the root and therefore can be
easily aligned to a perpendicular axis. In order to minimize
Equation 1, we use the Kabsch algorithm [9].
Scaling and Pose Normalization. In this work, we are
only concerned with estimating pose such that it is easy to
compare how similar two poses are. This is because pose
comparison is what is needed for downstream tasks such as
action recognition. To account for this, we scale and nor-
malize the input, such that it becomes independent from
factors2 that should not affect the pose similarity estima-
tion.

We use the universal skeleton provided by the dataset
to remove the size factor. In this representation all joints
are scaled to the same proportions. This makes the size of
the 3D output independent of the inputted 2D image or the
original 3D pose.

Moreover, to complete the normalization of the data we
use a process similar to [1] where we center the root joint
and scale all of the other joints, accordingly.

3.2. 3D Pose VAE

The proposed model consists of two parts, a 3D Pose VAE
Network and a 2D Mapping Network. The 3D Pose VAE
Network, Figure 4.a, consists of an encoder network and a
decoder network, which make up the VAE model. To stay
consistent with other papers we choose [15] as the back-
bone for both our encoder and our decoder.

The benefit of using a VAE for the 3D Pose VAE Net-
work is its ability to generalize to new poses. This is be-
cause the goal of a VAE is to synthesize unseen poses. Al-
though this is not our main goal, we do want our network
to potentially be able to represent unseen poses, which is a
realistic setting in real world applications.

Normalizing the rotation, as defined in the step above,
helps the VAE by reducing the range of values that the out-
put can be. We want the VAE to learn all possible human

2Intuitively, two people are capable of being in the same pose no matter
their height or weight.

1635

Original Pose Rotated Pose

Figure 3. How poses change when we align the points and modify
the rotation. On the left is the original pose and on the right is the
pose after we have rotated it.

poses within the range and by making that range smaller we
make it easier to learn an embedding that spans the whole
space. If we omit the rotation realignment then our embed-
ding space would have to learn not only joint location in
relation to all other joints, but also joint location in relation
to the global space. This is in general unnecessary as loca-
tion in global space is not relevant when comparing if two
poses are equal. Additionally, learning a normalized rota-
tion means that the output is all in one space and can be
compared easily without additional alignments.

The 3D Pose VAE Network has two parts: (i) an encoder,
which takes as input a 3D pose, S3D = {si ∈ R3|i =
1 . . . N}, where N is the number of keypoints, and out-
puts a mean for possible embeddings, µe ∈ Rn, and a
variance for the embedding, σe ∈ Rn. Using these val-
ues and a Gaussian distribution prior we take a sample, e.
We denote the distribution of the latent space modeled by
the encoder with q(e|S3D); (ii) a decoder, which takes in in-
put an embedding, e, and outputs an estimation of 3D pose
Ŝ3D = {ŝi ∈ R3|i = 1 . . . N}. The distribution of the
decoder is represented as p(S3D|e).

The goal of the 3D Pose VAE Network is to find a V-
VIPE space that is representative of the entire range of 3D
human poses for a specific scale and normalization. A fea-
ture of the 3D Pose VAE Network should be that poses that
are close together in the original 3D space are close together
in the embedding space. An important part of learning an
accurate mapping from 2D space is that even if there is a
slight error in the V-VIPE estimation the output will still be
a pose that is similar to the original 3D pose. Additionally,
defining a smooth space for V-VIPE enables us to interpret
if two poses are close together in 3D space by observing if
they are close together in the embedding space.

We define a distance function, D, which represents the

Mean Per Joint Position Error (MPJPE). MPJPE measures
the distance between two 3D points by taking the L2 dis-
tance between each joint location and then computing the
mean of those distances for all joints.

During training we thus optimize for three factors:

• A reconstruction loss, which is equivalent to the Mean
Squared Error (MSE) loss between S3D and Ŝ3D. Lmse =
1
N

∑
(S3D − Ŝ3D)

2

• The KL Divergence loss LKL = KL[q(z|S3D)|p(z)]. This
loss represents the distance between the distribution of the
encoder and the prior distribution, p(z). In this work we
use a Gaussian distribution as the prior.

• The third is a triplet loss. To compute the triplet loss we
first find the 3D distances, Di,j within a batch between
all elements. For each pose we then set the closest pose
in the batch to be the positive example (j) and the second
closest pose to be the negative example(k). We make sure
the positive and negative poses are at least .1 apart from
each other and if they aren’t we select the next closest
pose as the negative example. We do this because we
want the examples to be hard, but not too hard that they
introduce noise. We compute triplet loss between i, j and
k by doing Ltriplet = max[0, Di,k −Di,j +m], where m
is our margin. This loss is useful because it causes similar
poses to move closer together in the embedding space.

This makes the overall loss function to train the 3D Pose
VAE:

LV-VIPE = Lmse + Ltriplet + LKL (2)

3.3. 2D Mapping Network

Once we have trained the 3D Pose VAE Network we uti-
lize its embedding space to learn a 2D Mapping Network
(see Figure 4.b). In particular, we take the 3D Pose VAE
Network decoder model and we freeze it so that it trans-
lates from the pre-defined V-VIPE space to 3D coordinates.
Next, we train a new encoder Enc2D for 2D coordinates. The
new encoder takes in input S2D = {pi ∈ R2|i = 1...N}
and outputs a V-VIPE, e ∈ Rn. We pass e through the
frozen decoder to get what the embedding represents in 3D
space according to the model trained in the previous phase,
Ŝ3D = {pi ∈ R3|i = 1...N}.

To train the 2D Mapping Network we use two losses.
Given the input, S2D, the output Ŝ3D and the ground truth
3D keypoints, S3D, we compute MSE(S3D, Ŝ3D). We
combine this loss with a triplet loss, which we compute sim-
ilarly as in Section 3.2. The main difference is that we use
the output from the 2D encoder and the ground truth 3D
keypoints. We then back-propagate this loss through the
whole network, but do not apply the gradient losses to the
decoder network. This is because we do not want to change
the embedding space, but we just want to train the 2D en-
coder to make it compliant with the latent space.

1636

Data
Processing

(a) 3D Pose VAE

2D Pose
Encoder

(b) 2D Mapping Network

μe
Cloned 3D

Pose Decoder
2D Keypoint

Detector

3D Pose
Encoder

μe 3D Pose
Decoderσe

Figure 4. The network on top is our ”3D Pose VAE Network.” First we pass the 3D input through our data processing phase. Once we
have the output we can pass that as input to our VAE network, which generates V-VIPE and then attempts to reconstruct the pose. On the
bottom is our ”2D Mapping Network.” 2D keypoints are extracted using a detector. We then pass these through our 2D encoder and then a
locked clone of the decoder network from the 3D Pose VAE Network. This reconstructs the original 3D pose.

We find that it is beneficial to pre-train the decoder as
described in 3.2 because we want to construct a space for
V-VIPE that is smooth, without also needing to learn a 2D
to 3D mapping. Because we train our 3D Pose VAE on
normalized 3D poses it will only learn how to map to a nor-
malized pose. Therefore the output of the 2D Mapping Net-
work is also normalized. This means the output is rotation
and scale invariant, making it easy to compare 2D poses
from different camera viewpoints.

4. Experiments and Results
4.1. Experimental Setup

The model uses a backbone network described described
in [15]. We stack 2 blocks of this network together for both
the encoder and the decoder network of both the 3D Pose
VAE Network and the 2D Mapping Network. We set the
linear size to 1024, and we use a 0.1 dropout. The dimen-
sion of a V-VIPE is 32 and the margin for the triplet loss
is 1.0. Any 2D keypoint detector could be used, but we
chose AlphaPose [5, 12, 13, 28]. We use COCO keypoints
because they are widely used for 2D detectors. We imple-
mented the model in PyTorch and we trained it on 1 GPU.

4.2. Metrics

We evaluate the model using two metrics. The first is a hit
metric, inspired from [26], which we use to measure how
often we are able to retrieve a pose that is similar to a query
pose. Given two normalized keypoints Si

3D and Sj
3D we first

apply a Procrustes alignment [21] between the two to get
A(Si

3D) and A(Sj
3D). Given a dataset with many views we

select two camera views. We find all embeddings for the
2D poses from the selected cameras. Then, we query each
embedding from camera 1 and find the k nearest neighbors
from the set of embeddings for camera 2. We consider a
pair of embeddings a hit if their original 3D pose satis-
fies MPJPE(A(Si

3D), A(S
j
3D)) < .1. We report Hit@k for

k=1,10,20 and average over all pairs of cameras. This met-
ric represents view invariance because it shows how well we
can match poses from one viewpoint to similar poses from
another viewpoint.

The second is the Mean Per Joint Position Error
(MPJPE), which we define in Section 3.2. This error is used
to determine the distance between two sets of 3D keypoints.

4.3. Datasets

In all the experiments we train on the standard training set
of the Human3.6M dataset (H3.6M) [8]. For our hit metric
we use the test set of H3.6M as the validation set and show
results on the MPI-INF-3DHP dataset [16] (3DHP).
Human3.6M. The H3.6M dataset [8] contains 3.6 million
human poses taken from 4 different cameras. All of these
cameras are at chest level. The standard training set for this
dataset is made up of subjects 1,5,6,7 and 8. The standard
test set contains poses from subjects 9 and 11. For the eval-
uation of the hit metric, we follow the method described
in [23], where they remove poses that are similar.
MPI-INF-3DHP. 3DHP [16] contains 14 different camera
angles. For our tasks we remove the overhead cameras,
which leaves us with 11 cameras. Of these cameras, 5 are
at chest height and the others have a slight vertical angle.
This dataset is used to show whether or not our method will
generalize to data that is different from the training data.

4.4. Augmentation

In order to improve the model’s ability to generalize we
introduce camera augmentation similar to the work done
in [23]. To calculate this augmentation we take the ground
truth 3D pose and randomly rotate it. We then project
this pose into 2D. We add augmented poses to each of our
batches during training time. We found that it was best to
add augmented poses for half of the poses in each batch.

1637

Table 1. Hit metric results for different values of k. The upper part of the table shows the Hit metrics when using ground truth (GT)
keypoints. The bottom part of the table shows the metrics when using keypoint detection(D) and augmentation(A). For Pr-VIPE and our
method AlphaPose is the keypoint detector. Epipolar Pose uses its own detector. The ∗ version of Epipolar Pose is trained on the Human3.6
dataset and the # version is trained on the 3DHP Dataset. Epipolar pose does not generalize to unseen datasets.

Dataset → H3.6M 3DHP (All) 3DHP (Unseen)
k → 1 10 20 1 10 20 1 10 20

PR-VIPE (GT) 97.6 99.9 100.0 42.6 72.8 79.1 43.7 73.2 82.0
Ours (GT) 89.7 98.8 99.4 45.3 76.2 83.1 47.9 77.9 84.5

2D keypoints 28.7 47.1 50.9 9.80 21.6 25.5 - - -
Epipolar Pose∗ 69.0 89.7 92.7 - - - - - -
Epipolar Pose# - - - 24.6 53.2 61.3 - - -
PR-VIPE (D) 72.1 94.3 96.8 17.9 44.7 64.1 19.2 46.6 55.6
PR-VIPE (D + A) 70.9 93.1 96.0 25.4 55.6 64.1 27.8 57.7 65.8
Ours (D) 70.0 92.7 95.6 23.5 54.3 64.0 26.2 57.0 66.4
Ours (D + A) 69.0 93.5 96.3 26.9 59.0 68.2 30.1 61.6 70.3

4.5. Quantitative Results

Similar Pose Retrieval Experiments. We compare our
model for hit metrics against 3 baselines. The first base-
line is the PR-VIPE model, which attempts to define an
embedding space without reconstructing the 3D pose; we
adopted their open source code and re-trained their model
so we would have results on the same 2D pose detector, i.e.,
AlphaPose. The second baseline is simply finding the near-
est neighbor of the detected 2D keypoints. The third base-
line uses Epipolar Pose [11] to detect 3D keypoints. In this
case, Procrustes alignment is performed between all poses
and the closest aligned pose is selected as the match.

We show the hit metrics for the different k values in
Table 1. The top section of the table shows the results of
our method and of PR-VIPE when trained and tested with
ground truth (GT) 3D keypoints. The left part of the table
reports the results on the test set of H3.6M. We can see that
our approach is slightly worse than the PR-VIPE approach.
This is because we are testing on very similar data to the
original training set. Our model, however, is designed to
generalize. The generalization of the model is demonstrated
in the middle part of the table, where we report the perfor-
mance on the 3DHP dataset when considering all available
cameras. In this case, our model gets higher values for all
values of k. Moreover, when we pair one chest camera with
a camera that is not at chest height, i.e., unseen cameras
with respect to the training data(right part of the table), we
can see that the gap is even larger. For example, when con-
sidering k = 1, the gap between the two models is about
4.2 percent for unseen cameras and 2.7 percent for all cam-
eras. This demonstrates that the latent space we acquired
during the VAE training is able to generalize to unseen cam-
era viewpoints better than existing models.

In the bottom section of the table, we show results when
the keypoints are automatically detected(D). For PR-VIPE
and our model we use AlphaPose. Epipolar Pose detects
its own keypoints. Again our method outperforms the PR-
VIPE model when generalizing to data different from the

training set, 3DHP, as well as to unseen cameras. For ex-
ample, when k = 10 our method outperforms PR-VIPE by
about 5.6 percent for all 3DHP cameras, and by about 7
percent for the unseen category.

In this section we also show results for detected key-
points plus additional training data generated by augment-
ing the 3D poses. We see an increase from just our detection
model for 3DHP because we have introduced new camera
viewpoints to the training data. We see an improvement
over PR-VIPE when they use augmented data, although we
do not get as much of a boost from augmentation because
our model already generalizes better than theirs. For k = 1
our model outperforms theirs by 1.5 percent.

Additionally, in the table we report the 2D keypoints and
Epipolar Pose results. We can observe that using the 2D
keypoints is not effective, as demonstrated by the low hit
metric for all k values. The Epipolar Pose# method per-
forms better than both our method and the PR-VIPE method
before any augmentation is applied to the data because it
is trained on the 3DHP dataset and does not need to gen-
eralize. When you try to run the Epipolar Pose∗ model
on 3DHP data the output does not resemble human pose.
We do not report generalized results for Epipolar pose be-
cause of this. Despite the fact that Epipolar Pose# is trained
specifically for detection on the 3DHP dataset when we add
augmentation of the data to our model we are able to beat
their results by about 2 percent.

3D Pose Estimation Experiments. In addition to calculat-
ing the hit metric described above our model also outputs
the predicted 3D pose. We find that the average error of this
model is 62.1 millimeters. We calculated this number us-
ing a model trained on keypoints detected by the Cascaded
Pyramid Network [2] as this is commonly [4, 19, 26] used
for 3D Pose Estimation. We find that while this number is
not competitive with current methods for pose estimation
that use more complex models or take in more information,
such as sequences, it is similar to the error found in [15],
which we use as the backbone for our network.

1638

Figure 5. Pose Estimation from 2D images of our model applied to different camera viewpoints. We show 4 sets of results. The ground
truth is on the left hand side of each example, while on the right we provide the 4 original views as well as our model 3D output for each
view.

0.0 0.1 0.11 0.26 MPJPE

Figure 6. This figure demonstrates what a query and retrieval look like. On the left of each pair of images is the query pose and the image
on the right is the image that is considered the closest match by our model. Each pair of images is labeled with the MPJPE between the
two poses. Its easy to see that some poses, such as the one on the far left, are easy to retrieve because they are so distinct. And others, such
as the one on the far right, have occluded points as well as other factors that make the nearest neighbor hard to find.

4.6. Qualitative Results

2D to 3D Pose Estimation. Figure 5 shows examples of
our 3D estimations given a 2D image as input. We show
examples of 4 different poses each with 4 different camera
angles. In the two examples on the left we have very ac-
curate retrievals. All of the cameras have similar retrievals
that allow us to determine that the person is in the same pose
despite the very different original camera angles. The exam-
ples on the right are the ones where our model struggles to
find the whole pose. In the example on the top we are able
to find the hand position because the hands are visible in
every image, however our model struggles to detect that the
body is slightly angled. This is likely because the difference
in 2D keypoints between an angled and not angled body
are very small and our 2D keypoint detector is not accurate
enough. In the example on the bottom our model succeeds
with the arms, except for one camera viewpoint where the
arm is not visible in the image at all. The other way our
model struggles is with the head tilt. This is likely because
this is difficult to visualize from most camera angles.

3D Pose Retrieval. We show how our model is able to
retrieve similar poses from different view points. In Figure
6 you can see the query pose as well as the pose that is
retrieved from a different view point. Ideally, the two poses

will be identical. This is the visualization of what the Hit
metric represents. If the queried pose is sufficiently close to
the retrieved pose then we have a hit.
Visualizing V-VIPE. Figure 8 shows a t-SNE visualiza-
tion, which we use to show the smoothness of the learned
V-VIPE space, where each dot represents a V-VIPE. In
order to properly show the clustering we select 10 visually
different 3D poses and color our visualization based on
which of the 10 poses is the most similar to the pose
that each point represents. It is easy to see from this
graph that similar colors are typically found in clusters.
This means that the space well represents the notion of
similarity between poses. We can see this even clearer in
the expansion of the visualization where we show three
poses and their locations in the cluster. The two poses on
the right are colored the same and are very close together.
These are slightly different, but the overall pose is very
similar. We then select a point that is very far away and
here we can see that the pose is quite different.
3D Pose Generation. Our model is able to generate new
poses by adding noise to the embedding space of an existing
pose. In Figure 7 we define a noise array z and add it to an
embedding with increasing magnitudes. The pose continues
to move in one direction as we increase magnitude showing
that our embedding space is smooth.

1639

Figure 7. Pose generation, starting from a 3D pose we select two random noise directions zi and generate poses using increasing magnitudes
of noise αzi, where α ∈ {0.2, 0.3, 0.4, 0.5}. V-VIPE leads to smooth pose variations and can be used to generate unseen 3D poses.

Figure 8. t-SNE visualization of the V-VIPE space of our model
for poses in the H3.6M dataset. Each color represents similarity
to one of 10 “key” poses that we selected. In the expansion, three
different poses and their place in the visualization are shown.

5. Ablation Study

We performed an ablative analysis in order to understand
which of our design choices best contributed to our results.
Triplet Loss. First we examine how important it is that we
include the triplet loss term in our method. We remove it
from the loss term and find that the new Hit@1 value is
17.41 with no augmented data. This is a drop of 6.1 from
the Hit@1 value when triplet loss is included. Therefore the
triplet loss value is important to the overall loss term.
Data Processing. We examine how important it is for us to
rotate the 3D pose before training on our model. This step is
important because it enables us to compare the similarity of
poses with two different global rotations without needing to
do a time consuming Procrustes Alignment between every
pair of poses. We find that the Hit@1 value on 3DHP with
no augmentation obtained when using non rotated points is

18.0 percent, a 5.5 percent decline from our approach.

Pretraining the Decoder. Finally, we studied whether or
not pretraining a VAE and using a defined embedding space
contributed to our final hit metric. We found that the Hit@1
value for the model with no pretraining is 23.4 versus the
23.5 we obtained by completing the pretraining step. How-
ever, this step is important anyways because it enables the
model to do 3D Pose Retrieval. Without it we would not be
able to map our 3D poses to our embedding space. There-
fore we would not be able to generate similar poses to a
given 3D pose or query a 3D pose to find a similar 2D pose
from a set of images.

6. Conclusion

In this work we showed that by using only 3D poses to de-
fine a V-VIPE space we can define a better camera invariant
space than if we were to only use 2D poses. We defined a
procedure made of two steps: first we train a VAE model to
learn a latent space of 3D poses; then, we train a 2D key-
points encoder that is linked to the VAE decoder to allow 3D
reconstructions of 2D images. We adopted a VAE model as
it creates a smooth latent space that can generalize better to-
wards unseen poses during training. In order to achieve this
goal, we train a VAE with a three component loss function.
We performed an extensive experimental evaluation, by us-
ing two datasets, i.e., Human3.6M and MPI-INF-3DHP. We
demonstrated that the latent space is modeling a meaningful
notion of similarity of the embeddings. This is reflected in
the Pose Retrieval experiments where we improve about 2.5
percent in the Hit@1 metric when considering unseen cam-
eras. We also showed qualitative examples demonstrating
the capability of our embedding space to capture the no-
tion of similarity of poses. This is important in downstream
tasks. In the future we believe that this approach has a lot of
promise for application to downstream tasks such as action
segmentation and detection.
Acknowledgements: This work was partially sup-
ported by NSF CAREER Award (#2238769) to AS
and the DARPA SAIL-ON (W911NF2020009) pro-
gram.

1640

References
[1] Ching-Hang Chen, Ambrish Tyagi, Amit Agrawal, Dy-

lan Drover, M. V. Rohith, Stefan Stojanov, and James M.
Rehg. Unsupervised 3d pose estimation with geometric self-
supervision. CoRR, abs/1904.04812, 2019. 3

[2] Yilun Chen, Zhicheng Wang, Yuxiang Peng, Zhiqiang
Zhang, Gang Yu, and Jian Sun. Cascaded pyramid network
for multi-person pose estimation. CoRR, abs/1711.07319,
2017. 6

[3] Yu Cheng, Bo Yang, Bo Wang, and Robby T. Tan. 3d human
pose estimation using spatio-temporal networks with explicit
occlusion training. CoRR, abs/2004.11822, 2020. 2

[4] Haoshu Fang, Yuanlu Xu, Wenguan Wang, Xiaobai Liu,
and Song-Chun Zhu. Learning knowledge-guided pose
grammar machine for 3d human pose estimation. CoRR,
abs/1710.06513, 2017. 6

[5] Hao-Shu Fang, Shuqin Xie, Yu-Wing Tai, and Cewu Lu.
RMPE: Regional multi-person pose estimation. In ICCV,
2017. 5

[6] Rohit Girdhar, David F. Fouhey, Mikel Rodriguez, and Ab-
hinav Gupta. Learning a predictable and generative vector
representation for objects. CoRR, abs/1603.08637, 2016. 2

[7] Mir Rayat Imtiaz Hossain and James J. Little. Exploit-
ing temporal information for 3d pose estimation. CoRR,
abs/1711.08585, 2017. 1

[8] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian
Sminchisescu. Human3.6m: Large scale datasets and predic-
tive methods for 3d human sensing in natural environments.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2014. 2, 5

[9] W. Kabsch. A discussion of the solution for the best rotation
to relate two sets of vectors. Acta Crystallographica Section
A, 34(5):827–828, 1978. 3

[10] Isinsu Katircioglu, Bugra Tekin, Mathieu Salzmann, Vincent
Lepetit, and Pascal V. Fua. Learning latent representations
of 3d human pose with deep neural networks. International
Journal of Computer Vision, 126:1326–1341, 2018. 2

[11] Muhammed Kocabas, Salih Karagoz, and Emre Akbas. Self-
supervised learning of 3d human pose using multi-view ge-
ometry. CoRR, abs/1903.02330, 2019. 2, 6

[12] Jiefeng Li, Can Wang, Hao Zhu, Yihuan Mao, Hao-Shu
Fang, and Cewu Lu. Crowdpose: Efficient crowded scenes
pose estimation and a new benchmark. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10863–10872, 2019. 5

[13] Jiefeng Li, Chao Xu, Zhicun Chen, Siyuan Bian, Lixin Yang,
and Cewu Lu. Hybrik: A hybrid analytical-neural inverse
kinematics solution for 3d human pose and shape estimation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3383–3393, 2021. 5

[14] Haoyu Ma, Liangjian Chen, Deying Kong, Zhe Wang, Xing-
wei Liu, Hao Tang, Xiangyi Yan, Yusheng Xie, Shih-Yao
Lin, and Xiaohui Xie. Transfusion: Cross-view fusion
with transformer for 3d human pose estimation. CoRR,
abs/2110.09554, 2021. 2

[15] Julieta Martinez, Rayat Hossain, Javier Romero, and
James J. Little. A simple yet effective baseline for 3d hu-

man pose estimation. CoRR, abs/1705.03098, 2017. 1, 2, 3,
5, 6

[16] Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal
Fua, Oleksandr Sotnychenko, Weipeng Xu, and Christian
Theobalt. Monocular 3d human pose estimation in the wild
using improved cnn supervision. In 3D Vision (3DV), 2017
Fifth International Conference on. IEEE, 2017. 2, 5

[17] Aditya Panda and Dipti Prasad Mukherjee. Monocular 3d
human pose estimation by multiple hypothesis prediction
and joint angle supervision. In 2021 IEEE International
Conference on Image Processing (ICIP), pages 3243–3247,
2021. 2

[18] Sungheon Park, Jihye Hwang, and Nojun Kwak. 3d human
pose estimation using convolutional neural networks with 2d
pose information. CoRR, abs/1608.03075, 2016. 2

[19] Georgios Pavlakos, Xiaowei Zhou, Konstantinos G. Der-
panis, and Kostas Daniilidis. Coarse-to-fine volumet-
ric prediction for single-image 3d human pose. CoRR,
abs/1611.07828, 2016. 2, 6

[20] Edoardo Remelli, Shangchen Han, Sina Honari, Pascal Fua,
and Robert Wang. Lightweight multi-view 3d pose esti-
mation through camera-disentangled representation. CoRR,
abs/2004.02186, 2020. 2

[21] Peter Schönemann. A generalized solution of the orthogonal
procrustes problem. Psychometrika, 31(1):1–10, 1966. 5

[22] Saurabh Sharma, Pavan Teja Varigonda, Prashast Bindal,
Abhishek Sharma, and Arjun Jain. Monocular 3d human
pose estimation by generation and ordinal ranking. CoRR,
abs/1904.01324, 2019. 2

[23] Jennifer J. Sun, Jiaping Zhao, Liang-Chieh Chen, Florian
Schroff, Hartwig Adam, and Ting Liu. View-invariant prob-
abilistic embedding for human pose. CoRR, abs/1912.01001,
2019. 2, 5

[24] Xiao Sun, Bin Xiao, Shuang Liang, and Yichen Wei. Integral
human pose regression. CoRR, abs/1711.08229, 2017. 2

[25] Tao Wang, Jianfeng Zhang, Yujun Cai, Shuicheng Yan, and
Jiashi Feng. Direct multi-view multi-person 3d pose estima-
tion. CoRR, abs/2111.04076, 2021. 2

[26] Guoqiang Wei, Cuiling Lan, Wenjun Zeng, and Zhibo
Chen. View invariant 3d human pose estimation. CoRR,
abs/1901.10841, 2019. 2, 5, 6

[27] Hailun Xia and Meng Xiao. 3d human pose estimation with
generative adversarial networks. IEEE Access, 8:206198–
206206, 2020. 2

[28] Yuliang Xiu, Jiefeng Li, Haoyu Wang, Yinghong Fang, and
Cewu Lu. Pose Flow: Efficient online pose tracking. In
BMVC, 2018. 5

[29] Wei Yang, Wanli Ouyang, Xiaolong Wang, Jimmy S. J.
Ren, Hongsheng Li, and Xiaogang Wang. 3d human pose
estimation in the wild by adversarial learning. CoRR,
abs/1803.09722, 2018. 2

[30] Ailing Zeng, Xiao Sun, Fuyang Huang, Minhao Liu, Qiang
Xu, and Stephen Lin. Srnet: Improving generalization in 3d
human pose estimation with a split-and-recombine approach.
CoRR, abs/2007.09389, 2020. 2

[31] Ce Zheng, Sijie Zhu, Matı́as Mendieta, Taojiannan Yang,
Chen Chen, and Zhengming Ding. 3d human pose es-

1641

timation with spatial and temporal transformers. CoRR,
abs/2103.10455, 2021. 2

[32] Xingyi Zhou, Qixing Huang, Xiao Sun, Xiangyang Xue, and
Yichen Wei. Weakly-supervised transfer for 3d human pose
estimation in the wild. CoRR, abs/1704.02447, 2017. 1

1642

