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Abstract

This paper presents Key2Mesh, a model that takes a set
of 2D human pose keypoints as input and estimates the cor-
responding body mesh. Since this process does not involve
any visual (i.e. RGB image) data, the model can be trained
on large-scale motion capture (MoCap) datasets, thereby
overcoming the scarcity of image datasets with 3D labels.
To enable the model’s application on RGB images, we first
run an off-the-shelf 2D pose estimator to obtain the 2D
keypoints, and then feed these 2D keypoints to Key2Mesh.
To improve the performance of our model on RGB images,
we apply an adversarial domain adaptation (DA) method
to bridge the gap between the MoCap and visual domains.
Crucially, our DA method does not require 3D labels for
visual data, which enables adaptation to target sets with-
out the need for costly labels. We evaluate Key2Mesh for
the task of estimating 3D human meshes from 2D key-
points, in the absence of RGB and mesh label pairs. Our
results on widely used H3.6M and 3DPW datasets show
that Key2Mesh sets the new state-of-the-art by outperform-
ing other models in PA-MPJPE for both datasets, and in
MPJPE and PVE for the 3DPW dataset. Thanks to our
model’s simple architecture, it operates at least 12× faster
than the prior state-of-the-art model, LGD [44]. Additional
qualitative samples and code are available on the project
website: https://key2mesh.github.io/.

1. Introduction

Accurate estimation of 3D human pose and shape (HPS)
from a single-view image is a challenging problem in com-
puter vision with many applications in human motion un-
derstanding [56] and generation [37], AR/VR [50], human-
computer interaction [15], and medical field [3, 10, 39].
Parametric human body models like SMPL [30] have
played a pivotal role in driving recent advancements in this
domain. A typical HPS estimation method [5, 18, 22, 26,

28, 31, 46] takes an image (or video) as input and esti-
mates SMPL parameters. Mostly, such methods follow a
fully supervised approach and rely on the availability of im-
age datasets with 3D annotations. However, obtaining such
“paired” annotations is both costly and challenging, partic-
ularly in the wild. One usually needs to set up an expensive
motion capture system that is extensively tailored for the
environment. Consequently, existing datasets for direct 3D
supervision are small and do not cover the complete range
of variations in human body (shape, size, pose, appearance),
and scene (lightning, environment). In addition to techni-
cal challenges, the practical application of traditional data
collection methods faces significant challenges in acquiring
comprehensive visual data, particularly in sensitive fields
like the medical domain, where privacy concerns restrict
full-image collection.

Several prior work have addressed the shortage of 3D la-
bels by generating pseudo-labels through multiview geome-
try [21], optimization [24], and fine-tuning a model [17, 27].
Another set of approaches explores the usage of 2D labels
as auxiliary information sources. The availability of large
image and video datasets made it possible to reliably esti-
mate and train image-based HPS models with 2D cues such
as 2D keypoints [4, 7, 18, 22, 24, 27, 28, 45, 46], silhou-
ettes [36, 52], optical flow [47], and body part segmenta-
tions [53, 54]. Unlike 2D annotations, large-scale MoCap
datasets like AMASS [32] provide extensive 3D details,
spanning body pose, shape distributions, and mesh vertex
configurations. However, incorporating such a dataset in
HPS estimation is not trivial since it does not contain any
RGB data (hence, “unpaired”).

Some image-based methods leverage unpaired MoCap
data to supervise their models with adversarial losses [18,
22] or establish human body priors [25, 38]. Moreover, as
a further step, recent work employs various proxy represen-
tations such as 2D keypoints [8, 44], silhouettes [40, 42],
edge images [41] and dense correspondences [9] to train
models with unpaired MoCap data. Common to these
methods is the generation of “proxy representation (e.g.
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2D keypoints)”-“human mesh” training pairs from MoCap
samples. During inference, obtaining proxy representa-
tions is straightforward through readily available estimators
trained on the aforementioned large 2D datasets. Also, us-
ing proxy representations offers a strategic workaround for
data collection challenges in sensitive fields by avoiding the
need to store identifiable image data, thus addressing pri-
vacy concerns. However, as this process only involves Mo-
Cap data, it falls short of accurately capturing visual data
attributes, disregarding crucial factors such as estimation er-
rors, occlusions, and noise introduced by the estimators.

In this paper, we introduce Key2Mesh, a model esti-
mating a human body mesh from 2D keypoints, applied
to RGB images after extracting keypoints via an off-the-
shelf 2D human pose estimator (Fig. 1 inference). We pre-
train Key2Mesh on the body mesh instances obtained from
a large-scale unpaired MoCap dataset. Specifically, we ex-
tract 2D keypoints from a body mesh in the dataset using a
random virtual camera, which serves as input for our model.
Then, Key2Mesh is pre-trained on such 2D keypoint - body
mesh pairs (Fig. 1 training).

To bridge the gap between the source (MoCap) and target
(Visual) domains, we introduce a domain adaptation pro-
cess that utilizes detected 2D keypoints from the target do-
main and further train our Key2Mesh model. We employ a
domain critic and train the Key2Mesh model in an adversar-
ial manner similar to ADDA [48], along with a re-projection
loss and a feature regularization to support HPS estimation
task on the target domain (Fig. 1 training). Notably, our
method does not require 3D labels from the target domain,
making it easy to adapt the pre-trained Key2Mesh model
from the source domain to different target domains.

We evaluate our approach on two widely-used indoor
and outdoor 3D human pose and shape estimation datasets,
H3.6M [16] and 3DPW [49]. In the task of reconstruct-
ing human meshes using 2D detections without depending
on paired 3D labels, Key2Mesh outperforms prior mod-
els [8, 9, 44] in terms of PA-MPJPE performance on both
datasets. as well as in MPJPE and PVE on the 3DPW
dataset. In addition, thanks to Key2Mesh’s simple archi-
tecture, which implements a single forward pass, our model
is up to 33× faster compared to LGD [44] – the only model
that (i) solves exactly the same task as Key2Mesh, (ii) is
trained on an unpaired dataset, and (iii) has a public imple-
mentation.

2. Related Work

2.1. Human Pose and Shape Estimation

Considering the existing work on HPS estimation, our
model Key2Mesh has four critical properties: (i) For infer-
ence, 2D keypoints are used as input, and no RGB data is
required. (ii) During training, it does not need a “paired”
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Figure 1. An overview of Key2Mesh’s inference and training
process. (Top) Inference: For a given input image, we run an
off-the-shelf 2D pose estimator to obtain 2D keypoints, which are
input to our Key2Mesh model to estimate a body mesh. (Bottom)
Training: Source domain consists of 3D body meshes obtained
from MoCap data. We generate 2D keypoints from these body
meshes using virtual cameras and a range of augmentations. We
then pre-train our model using these generated 2D keypoints and
corresponding meshes, without incorporating any RGB images.
Finally, we adapt our model to target RGB images by using an off-
the-shelf 2D pose estimator and bridging the gap between the “2D
keypoints obtained from MoCap” domain and the “2D keypoints
obtained from the target RGB images” domain.

dataset, i.e., {image, 3D label} pairs. It only requires a
dataset with 3D body meshes without any corresponding
visual data. MoCap datasets provide such data. (iii) Dur-
ing inference, the model runs only a single forward pass,
without needing any recurrent or iterative operations. (iv) It
uses an adversarial domain adaptation method to adapt the
model to visual data. Still, no 3D labels (i.e. paired data)
are required.

Existing methods that have the first two properties above
are all iterative: SMPLify [1], LGD [44] and NeuralFitter
[8], while Key2Mesh runs in a single-forward pass. Due
to this difference, Key2Mesh is up to 33x faster than LGD,
which is reported to be faster than SMPLify. We cannot do
any inference time comparison with NeuralFitter as they do
not provide code. Another key difference is domain adap-
tation, which shows its effect in the end result: Key2Mesh
outperforms SMPLify, LGD and NeuralFitter in terms of
PA-MPJPE on both H3.6M and 3DPW, as well as in MPJPE
and PVE on 3DPW.

Several studies utilize unpaired 3D data for training or
none, aligning with property (ii). Among these, some re-
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quire supplementary 2D observations, such as 2D keypoint
sequences (PoseNet3D [45]), dense correspondences (CRA
[9]), silhouettes (STRAPS [40], Skeleton2Mesh [52]), and
edge images (STRAPS V3 [41]). In contrast, Key2Mesh
only requires 2D keypoints as input, making it easy to use
and more flexible by eliminating the need for additional 2D
estimation. Alternatively, some studies rely on RGB images
as inputs such as HMR [18] and SPIN [24] and report results
both using paired and unpaired data. They exhibit a signifi-
cant performance degradation in unpaired settings, whereas
Key2Mesh outperforms them under such conditions.

A related line of research employs paired data for
training, utilizing an RGB image-based pipeline to esti-
mate human pose and shape [18, 23, 25, 27, 31, 33, 55].
However, obtaining these paired datasets poses challenges.
Pose2Mesh [6], and MPT [29] adopts a hybrid approach,
aiming to estimate pose and shape from 2D keypoints sim-
ilar to (i), combining paired datasets with 2D ground truth
and unpaired datasets. Also, MPT utilizes a pre-training
strategy with MoCap data similar to ours, but implements
an end-to-end fine-tuning pipeline using image-3D ground
truth pairs through a 2D pose estimation backbone. In con-
trast, Key2Mesh leverages only unpaired datasets, imple-
menting domain adaptation to mitigate the discrepancies be-
tween 2D ground truths and detections.

2.2. Unsupervised Domain Adaptation in HPS

In the realm of HPS estimation, the integration of domain
adaptation techniques has recently commenced to address
domain gaps. Mugaludi et al. [34] proposed a silhouette
based technique to alleviate domain shifts. BOA [11], along
with its extension DynaBOA [12], introduced an online
domain adaptation method for deploying HPS estimation
models in out-of-domain scenarios. They employ a bi-level
video-based update rule to adapt the initial model trained
on paired 3D datasets. In a different approach, CycleAdapt
[34] presented a test-time adaptation framework that does
not rely on 2D observations, in contrast to the BOA fam-
ily. Unlike all these methods, Key2Mesh utilizes 2D key-
points as a proxy representation, relies solely on MoCap
data for training the initial model, and implements an ef-
ficient single-forward pass estimation pipeline without the
need for updating model parameters during inference.

3. Method

This section describes how we train our Key2Mesh model.
The training is divided into two phases: “Pre-Training” and
“Domain Adaptation”, as illustrated in Fig. 2. In the first
phase, we train Key2Mesh using a large MoCap dataset.
Then, we introduce a domain adaptation pipeline to adapt
our trained model to the testing domain (target).

3.1. Problem Setting

Following previous work [8, 44], we define our objective
as the estimation of the full 3D mesh of human bodies ex-
clusively from 2D keypoint observations, without reliance
on any paired datasets. The 3D mesh of a human body
is encoded by Skinned Multi-Person Linear(SMPL) [30]
model, which is a parametric body model that generates a
mesh denoted as M ∈ R6890×3 based on the provided pose
parameters θ ∈ R24×3 that include global rotation param-
eters, and shape parameters β ∈ R10. The 3D keypoints
X ∈ Rk×3, where k is the number keypoints, are defined as
a linear combination of the mesh vertices and can be com-
puted as X = WM where W is a learned weight matrix
W ∈ Rk×6890. Our goal can be summarized as estimating
full 3D human body meshes encoded with SMPL parame-
ters from the 2D keypoint detections obtained by an off-the-
shelf 2D pose estimator, e.g. OpenPose [2].

3.2. Training Data Generation from Unpaired 3D
Human Body Data

Here we describe the data generation process employed
in our first, pre-training, phase. We only utilize publicly
available ground truth 3D human body data, obtained by
commercial MoCap systems and specialized algorithms like
Mosh++ [32], without requiring any corresponding images.
We generate pairs of 2D keypoints x ∈ Rk×2 and SMPL
parameters (θ, β) on the fly by projecting 3D SMPL key-
points to 2D using a fixed camera c which has a fixed focal
length f , identity global rotation matrix R = I3×3 looking
towards to origin, and fixed translation.

Since the 2D keypoints are generated from the ground
truth 3D human body, they are free from any defects. How-
ever, in the RGB domain, 2D keypoint estimators suffer
from problems such as occlusions, noise, image quality,
small size of body in pixel space, etc. This leads to sig-
nificant differences between 2D keypoints obtained from
MoCap (training) and those obtained from RGB (test) im-
ages. To mitigate this disparity, we use a range of augmenta-
tion techniques during the training pair generation process.
These techniques simulate real-world scenarios observed in
RGB data, incorporating random camera rotations, keypoint
occlusions, and the addition of random noise to emulate jit-
ter effects caused by the 2D pose estimators.

3.3. Pre-Training

In the pre-training phase, we train Key2Mesh to regress hu-
man pose and shape from 2D keypoints generated from the
unpaired dataset, which we refer to as the source dataset.
The model consists of a feature extractor and an SMPL
head.

Given 2D keypoints x, the feature extractor learns a func-
tion Fpt : Rk×2 → Rd that maps the keypoints to a d-
dimensional representation ϕ. Then, SMPL head takes ϕ
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Figure 2. Overview of our pre-training and domain adaptation phases. First, we begin with “Pre-Training” phase where we train a
feature extractor and an SMPL head using only an unpaired MoCap dataset. Second, we introduce a “Domain Adaptation” phase to close
the gap between the source domain (MoCap) and the target domain (Visual) by using 2D detections obtained by an off-the-shelf 2D pose
estimator in the target domain.

as input and learns a function Hpt : Rd → R|Θ| where Θ
is [θ, β]. Following [24], we use a 6D continuous rotation
representation [57] in the estimation of SMPL pose param-
eters θ, instead of axis-angle representation. Finally, for a
given x, we end up with estimated SMPL parameters θ̂ that
includes global rotation parameters, and β̂.

We compute the estimated 3D keypoints X̂ by using the
estimated SMPL vertices with learned weight matrix W
based on θ̂ and β̂. The estimated 3D keypoints are then
projected onto 2D using the fixed camera c from the train-
ing data generation process, yielding the 2D keypoints x̂.
We further compute losses for SMPL parameters (θ, β), 2D
re-projection (x), and 3D (X) keypoints and train our over-
all pre-trained (Fpt, Hpt) model. Specifically, the overall
loss function for this phase can be written as follows:

LPT = w1Lθ + w2Lβ + w3L2D + w4L3D (1)

where each term is calculated as:

Lθ = ∥θ̂ − θ∥1,Lβ = ∥β̂ − β∥1,
L2D = ∥x̂− x∥1,L3D = ∥X̂ −X∥1.

3.4. Domain Adaptation

The pre-trained model, trained solely on ground-truth 2D
keypoints-SMPL pairs, struggles with domain changes
when tested on real indoor and outdoor RGB datasets. Even
though we employed a range of augmentation techniques in
the pair generation process to mimic the RGB 2D pose esti-
mator, we observe that the pose variances, cameras, occlu-
sion scenarios, and jitter introduced by the 2D pose estima-
tor are not fully covered by our augmented source domain.

Taking inspiration from previous domain adaptation work,
ADDA [48] and WDGRL [43], we propose an adversar-
ial domain adaptation technique that builds upon our pre-
trained model. This technique aims to mitigate the discrep-
ancies between data domains without relying on any labeled
data from the target domain. We apply an off-the-shelf pose
estimator to the target domain images that are available for
use in the training to obtain 2D keypoints which are referred
to as the target dataset and use this dataset to adapt our pre-
trained model to the target domain.

In this phase, we freeze the parameters of the feature
extractor Fpt and SMPL head Hpt trained in the previ-
ous phase. Next, we introduce a new feature extractor F
which has the same configuration with Fpt and is initial-
ized with the weights of Fpt. Additionally, we introduce
a domain critic that learns a mapping D : Rd → R that
takes feature vectors from the source and target domain
as input and outputs a real number. The domain critic as-
sists us in training F to generate target domain features ϕt

that are indistinguishable from the features ϕs generated by
the frozen Fpt in the source domain, as proposed in WD-
GRL [43]. The final Key2Mesh model closely resembles
the pre-trained model, with one key distinction. While the
SMPL head remains unchanged, we replace Fpt with F that
has undergone an adaptation process to the target domain.
This adaptation process involves utilizing domain adapta-
tion losses, described in detail in Sec. 3.6. By incorporating
the adapted feature extractor F , we enhance the pipeline’s
ability to generate accurate SMPL predictions for the given
2D keypoints in the target domain, as the SMPL Head en-
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counters features in the target domain that resemble those
from its training set, i.e., the source domain.

3.5. Domain Critic

Instead of ADDA’s domain discriminator, we follow WD-
GRL [43] and employ a domain critic and calculate Wasser-
stein distance between the source features ϕs generated by
Fpt taken from the pre-trained model and target features ϕt

generated by F introduced in the adaptation process. The
special case of Wasserstein distance between two represen-
tation distributions Pϕs and Pϕt proposed in [43] can be for-
mulated here as:

W (Pϕs ,Pϕt) = sup
∥D∥L≤1

EPϕs [D(ϕ)]− EPϕt [D(ϕ)], (2)

where ∥.∥L denotes the Lipschitz constant. When the
learned critic function D is enforced to be 1-Lipschitz via
the gradient penalty [14], we can approximate Eq. (2) with
features generated from source samples xs and target sam-
ples xt as:

Lwd(Φ
s,Φt) =

1

|xs|
∑

ϕs∈Φs

D(ϕs)− 1

|xt|
∑

ϕt∈Φt

D(ϕt), (3)

where Φs = {Fpt(x) | x ∈ xs} and Φt = {F (x) | x ∈ xt}.
The gradient penalty we use is defined as

Lgrad(ϕ̂) = (∥∇ϕ̂D(ϕ̂)∥2 − 1)2, (4)

where ϕ̂ is sampled uniformly along straight lines between
source and target feature pairs, similar to [14]. While train-
ing the domain critic, we solve the problem

max{Lwd − γLgrad} (5)

where γ represents the balancing coefficient. Following
WDGRL [43], we first train D to optimality with k steps
for each domain adaptation training step. Then, by fixing
the parameters of optimal D, we calculate the domain adap-
tation losses and update the F .

3.6. Domain Adaptation Losses

We apply 2D re-projection loss Lt
2D, domain loss Lwd and

regularization on domain-adapted features Lreg in the adap-
tation process. Below, we describe these loss and regular-
ization terms.
2D re-projection loss on the target domain. F takes 2D
keypoint detections xt from the target dataset as inputs,
which allows us to calculate a 2D re-projection loss between
the final SMPL predictions and xt. This 2D re-projection
loss serves as a supervision signal during the adaptation
without requiring human-labeled or 3D ground truth data.

Similar to L2D, we use the fixed camera c to project pre-
dicted 3D SMPL keypoints and obtain 2D keypoints (x̂t).
The calculation of Lt

2D is as follows:

Lt
2D = ∥x̂t − xt∥1. (6)

Domain loss. By utilizing D, we enforce ϕt to be insepara-
ble from ϕs. To do this, we solve the problem min{Lwd}.
Practically, we re-calculate the Lwd after fixing the optimal
parameters of the domain critic.
Regularization on domain-adapted features. We apply a
regularization term on ϕt. We compute the corresponding
feature vector ϕ̄t = Fpt(x

t) and apply the following loss:

Lreg = ∥ϕt − ϕ̄t∥. (7)

We combine the loss functions mentioned in this section
using specific weights to obtain an overall loss function to
train F :

LDA = w5Lt
2D + w6Lwd + w7Lreg. (8)

4. Experiments
4.1. Implementation Details

We employ standard MLP architectures: 5 blocks for fea-
ture extractors, 2 for the SMPL head. Each block includes a
linear layer (1024 hidden dimensions), batch normalization,
parametric ReLU, and 0.2 dropout. The Domain Critic uses
2 blocks without normalization layers. For pre-training, we
set hyperparameters (w1 = w2 = 100, w3 = w4 = 50)
for LPT, optimizing it via Adam optimizer [20] (lr: 1e-3)
over ten epochs, batch size 256. During domain adaptation,
both the domain critic and feature extractor are trained for
five epochs, using lr 1e-4, batch size 256 per domain (512
for critic). The domain critic trains k = 3 times per adap-
tation step. For LDA, we set hyperparameters (w5 = 10,
w6 = 0.1, w7 = 20). Experiments are conducted using
PyTorch [35] on one RTX3080ti GPU for all experiments.

4.2. Datasets and Evaluation Metrics

4.2.1 Training Data

During the pre-training of Key2Mesh (Fig. 2), we solely
utilize the AMASS dataset [32]. This extensive 3D MoCap
dataset consists of a wide range of human poses and shapes
(and motions), with SMPL parameters. However, it does
not include RGB images corresponding to the 3D data.

In the domain adaptation phase, we leverage the InstaVa-
riety dataset [19], which offers a large set of in-the-wild 2D
keypoint detections. Moreover, our domain adaptation pro-
cess incorporates the Human3.6M dataset [16] (H3.6M) and
the 3DPW dataset [49]. We do not use any ground-truth
labels available in these datasets. Instead, we employ
OpenPose [2] to obtain detected 2D keypoints for H3.6M
[16] and the detections available in 3DPW [49]. We use
these 2D detections in the adaptation phase.
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Method Input PA-MPJPE↓ MPJPE↓ Time↓
SMPLify [1] K 82.3 - -
HMR (u) [18] I 66.5 - -
SPIN (u) [24] I 62.0 - -
STRAPS [40] K,S 55.4 - -

LGD [44] K 55.0 102.4 42.4
CRA [9] K,D 53.9 81.0 (D: 110.0)+

Key2Mesh† K 51.4 108.1 3.4
Key2Mesh‡ K 51.0 107.1 3.4

Table 1. Comparison of models trained on unpaired data
similar to ours, assessed on H3.6M [16] for PA-MPJPE and
MPJPE (both in mm) under P2, and processing time (ms) with
a single batch size. Inputs include (D)ense Correspondences,
(I)mage, 2D (K)eypoints, or (S)ilhouette. As CRA does not
have a publicly available code, our time evaluation focused on
measuring the time needed to acquire dense correspondences (D)
(DensePose [13]), an input used alongside keypoints (K) unlike
Key2Mesh and LGD. (u) denotes unpaired. Our models marked
with (†) and (‡) were obtained by adapting our PT model to train-
ing subjects and evaluation subjects of the H3.6M dataset, respec-
tively, without employing any ground truth labels. Our Key2Mesh
obtains the best PA-MPJPE result and is 12× faster than LGD and
at least 32× faster than CRA.

4.2.2 Evaluation Data

We quantitatively and qualitatively evaluate our approach
on widely used indoor and in-the-wild datasets, H3.6M [16]
(subjects S9, S11) and 3DPW [49] datasets.

We use OpenPose [2] on the H3.6M test subjects to ob-
tain 2D keypoint detections, and following the evaluation
protocol P2, we only used a frontal camera (camera 3).
Following the approach of prior works [8, 44], we discard
frames in which fewer than 6 keypoints were detected. For
the 3DPW evaluation, we use the detections available in the
dataset. We report PA-MPJPE and MPJPE for the H3.6M
dataset and PA-MPJPE, MPJPE and PVE for the 3DPW
dataset, all measured in mm.

4.3. Quantitative Results

We first pre-train Key2Mesh by following the data gener-
ation process detailed in Sec. 3.2. Then, we apply our
domain adaptation method by using OpenPose detections
from H3.6M subjects, 3DPW, and InstaVariety. For H3.6M,
we report the performance of the domain-adapted model, in
which we used the detections from all H3.6M training sub-
jects to adapt our pre-trained model. For the 3DPW dataset,
we report our InstaVariety adapted model since adaptation
to InstaVariety leads to better results compared to the 3DPW
train split. Our adaptation process doesn’t require target
labels, allowing direct adaptation of the pre-trained model
to the test sets using the respective OpenPose detections.
Consequently, we present evaluations for models adapted
to both H3.6M evaluation subjects and the 3DPW test split.

Method Input PA-MPJPE↓ MPJPE↓ PVE↓
SMPLify [1] K 106.1 - -

PoseNet3D* [45] K 73.6 - -
STRAPS V3 [41] K,E 59.2 - -

CRA [9] K,D 55.9 89.1 115.3
LGD [44] K 54.2 91.3 104.8

NeuralFitter [8] K 52.2 - -
Key2Mesh† K 50.1 89.0 101.7
Key2Mesh‡ K 49.8 86.7 99.5

Table 2. Comparison of our models with others that utilize
2D proxy representations and trained on unpaired data simi-
lar to our model like ours, assessed on the 3DPW [49] dataset
for PA-MPJPE, MPJPE and PVE (all in mm). The input for
the presented methods includes (D)ense Correspondences, (E)dge
Images, and 2D (K)eypoints. (*) denotes methods that take tem-
poral data as input. (†) and (‡) were achieved through domain
adaptation of the PT model to the InstaVariety dataset and the test
split of the 3DPW dataset, respectively, without utilizing ground-
truth labels.

We present detailed evaluations on the target dataset in
Sec. 4.4.2.
Evaluation on H3.6M. We compare our models with oth-
ers on H3.6M benchmark under Protocol 2 (P2). Since we
only use 2D keypoint observations without relying on im-
ages and utilize unpaired 3D training data, it is only pos-
sible to compare Key2Mesh with other models following
a similar approach. As presented in Tab. 1, our model
outperforms existing state-of-the-art methods in terms of
PA-MPJPE without relying on additional 2D observations
like dense correspondences or silhouettes used in CRA [9]
and STRAPS [40]. However, our method falls short in
MPJPE compared to CRA, largely because CRA leverages
dense correspondences for estimation. This advantage is
more pronounced in controlled environments like H3.6M,
where obtaining high-quality dense correspondences is less
challenging. For a fair comparison, we evaluate an itera-
tive baseline LGD [44] on our 2D detections, as the origi-
nal study did not utilize OpenPose [2] keypoint detections
(Tab. 1 row 5). Note that we achieve improved PA-MPJPE
for LGD using our 2D detections compared to what its
authors report. While our model improves upon iterative
methods such as LGD and SMPLify [1] in PA-MPJPE, it
demonstrates relatively lower performance in MPJPE when
compared to LGD. Our model is 12× faster than LGD and
at least 32× faster than CRA. In addition, we compared
our model with some image-based baselines, HMR [18] and
SPIN [24], under the unpaired training setting. our model
outperforms these baselines.
Evaluation on 3DPW. In Tab. 2, we report PA-MPJPE,
MPJPE and PVE on 3DPW test set. We compare our model
with others that utilize 2D proxy representations such as
dense correspondences, 2D keypoints, and edge images to
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Losses PA-MPJPE↓ MPJPE↓
Pre-Trained 53.9 114.7

DA
Lt
2D 53.8 109.0

Lt
2D + Lwd 52.2 109.0

Lt
2D + Lwd + Lreg 51.4 108.1

Table 3. Ablation on domain adaptation losses. We conduct
experiments to assess the impact of loss terms during the domain
adaptation phase using the H3.6M [16] dataset. We start with a
pre-trained model and add (D)omain (A)daptation losses.

recover SMPL meshes. Also, similar to ours, these models
only rely on unpaired data during training. Noticeably, prior
works such as CRA [9], STRAPSV3 [41] and Posenet3D
[45], as depicted in the Tab. 2, require additional inputs or
temporal keypoint detections to regress SMPL meshes. Our
model achieves better performance without such dependen-
cies for in-the-wild scenarios. We also compare our model
with iterative ones such as SMPLify [1], LGD [44], and
NeuralFitter [8], by evaluating LGD in MPJPE and PVE
(metrics initially unreported), we test LGD on the 3DPW
dataset. This evaluation yields a slight improvement in
LGD’s PA-MPJPE compared to its original reported values,
and we obtain MPJPE and PVE metrics for comparison.
Across all metrics, our model outperforms these iterative
methods.
Processing time comparison. We also compared our
model’s processing time with LGD and CRA in Tab. 1.
As CRA lacks available code, our time evaluation focused
on measuring the time needed to acquire dense correspon-
dences (DensePose [13] with ResNet-101 backbone), an ex-
tra input used alongside keypoints, unlike Key2Mesh and
LGD. Our inference pipeline is highly efficient, operating at
3.4 ms with a batch size of 1, compared to LGD’s 42.4 ms
where DensePose requires 110.0 ms for Dense Correspon-
dences on the same hardware. With a larger batch size of
512, our method achieves 3.6 ms, a speed advantage of 33×
faster than LGD, which slows down to 120 ms due to its it-
erative nature. These comparisons highlight our method’s
crucial rapid processing for speed-focused applications.

4.4. Ablation Studies

4.4.1 Ablation on Domain Adaptation Loss Terms

We conduct experiments to measure the effects of the loss
terms during the domain adaptation phase. As shown in
Tab. 3, starting from a pre-trained model on the AMASS
dataset, we employ our domain adaptation method using
varying combinations of loss terms such as Lt

2D, Lwd, Lreg.
Applying domain adaptation with only 2D re-projection
loss on the target (Lt

2D) helps the model to better align
its predictions on the target domain. This approach leads
to a slight enhancement in the PA-MPJPE metric and a
noticeable improvement in MPJPE. We obtain further im-

Method Target Dataset Size PA-MPJPE↓ MPJPE↓
Ours - PT - - 53.9 114.7
Ours - DA InstaVariety 2.19M 52.0 111.3
Ours - DA H3.6M - S1 23.5K 52.8 108.9
Ours - DA H3.6M - Train* 160K 51.4 108.1
Ours - DA H3.6M - Val.† 12.4K 51.0 107.1

Table 4. Ablation on target dataset and size using H3.6M [16].
PT and DA denote the pre-trained model and the domain-adapted
model, respectively. (*) represents training subjects (S1, S5-S8)
and (†) indicates validation subjects (S9, S11).

Method Target Dataset Size PA↓ MPJPE↓ PVE↓
Ours - PT - - 57.5 93.6 109.8
Ours - DA 3DPW-Train 22.8K 57.4 91.7 107.3
Ours - DA InstaVariety 2.19M 57.1 91.7 107.1
Ours - DA 3DPW-Val. 33.5K 56.4 88.6 104.4

Table 5. Ablation on target dataset and size using 3DPW [49]
validation set. PT and DA represent the pre-trained model and
the domain-adapted model, respectively, with PA referring to PA-
MPJPE.

provement in PA-MPJPE when we use a combination of
Lt
2D and domain critic loss (Lwd). This observation sup-

ports our intuition that adapting the features computed on
the target dataset helps in reducing pose estimation errors.
Also, by introducing a regularization term on the domain-
adapted features (Lreg), we achieved the best PA-MPJPE
and MPJPE. This indicates that applying regularization to
the domain-adapted features leads to a more effective fea-
ture extraction for the target dataset.

4.4.2 Ablation on the Target Dataset and Size

We conduct measurements to assess the impact of the tar-
get dataset and size during our domain adaptation phase,
using H3.6M and 3DPW validation sets. By adapting our
pre-trained model to different target datasets, including val-
idation sets, we calculate the evaluation metrics for each
adapted model.
Results on H3.6M. For H3.6M, we adapt our pre-trained
model to four different datasets separately: InstaVariety, a
small dataset that includes only a single subject (S1) from
the H3.6M training subjects, the entire H3.6M training sub-
jects, and validation subjects. Tab. 4 row 2 shows that de-
spite InstaVariety being an in-the-wild 2D dataset, different
from H3.6M, our domain adaptation process reduces pose
alignment errors. In row 3, even using a single subject
shows a reduction in error metrics thanks to our domain
adaptation process. Row 4 shows the model adapted us-
ing the entire H3.6M training subjects, demonstrating bet-
ter performance than the model adapted using only a sin-
gle subject. Lastly, by employing our label-independent do-
main adaptation framework, we adapt our pre-trained model
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Figure 3. Qualitative comparison of our pre-trained and
domain-adapted model on H3.6M dataset [16]. The first column
shows the input image and keypoint detections. The second and
third columns display outputs from the pre-trained model, while
the last two columns present results from the domain-adapted
model, which outperforms our pre-trained model, especially on
complex poses.

to the validation subjects, resulting in the best PA-MPJPE
and MPJPE compared to all other adaptation strategies. In-
terestingly, the model adapted using the H3.6M training
subjects performs comparably to the one adapted specifi-
cally to validation subjects. This underlines the potential of
using pre-collected data for controlled datasets like H3.6M.
Results on 3DPW. We leverage InstaVariety, 3DPW-Train,
and 3DPW-Validation datasets in the adaptation process for
the 3DPW dataset. In Tab. 5, row 2 demonstrates that incor-
porating the 3DPW-train dataset, which is relatively small,
leads to improvements in the evaluation metrics. In addi-
tion, Tab. 5 row 3 shows that using the InstaVariety dataset,
which is also an in-the-wild dataset, further reduces PA-
MPJPE. Finally, we employed the 3DPW-validation dataset
to enhance our model, leveraging our label-independent
adaptation framework, resulting in the best metrics (Tab. 5
row 4). This implies that in a challenging in-the-wild
dataset like 3DPW, direct adaptation to the test data results
in more accurate pose alignment.

4.5. Qualitative Results

Our method does not involve estimating camera translation.
To produce qualitative results, we compute the best cam-
era translation using a least squares optimization to over-
lay meshes onto images. This optimization minimizes the
difference between the 3D keypoints of the SMPL meshes,
projected onto the image plane, and their corresponding 2D
keypoint inputs.

Figure 4. Qualitative results on the 3DPW dataset [49]. Each
sample displays the input image and its corresponding 2D key-
point detections in the first column, the SMPL mesh overlaid on
the image in the second column, and the side view of the SMPL
mesh in the third column, all generated using a domain-adapted
model.

In Fig. 3, we qualitatively compare our pre-trained and
adapted models. The results show that domain adaptation
helps our model to produce more aligned results. Further
qualitative results showcasing our domain-adapted models
for the 3DPW dataset are presented in Fig. 4.

5. Conclusion

In this study, we present Key2Mesh for recovering 3D
human mesh parameters from 2D keypoints. We address
the lack of image-to-3D, “paired” training data and utilize
an “unpaired” training setting. We introduce an adver-
sarial domain adaptation method to adapt models trained
on unpaired data to visual data. We comprehensively
evaluate our Key2Mesh model on widely used indoor and
in-the-wild benchmarks, H3.6M and 3DPW datasets. Our
model outperforms similar methods, showcasing superior
PA-MPJPE performance on both datasets, along with
superior MPJPE and PVE performance on the 3DPW
dataset. Comparatively, our model is significantly faster
(up to 33×) than the previous state-of-the-art model LGD
[44], emphasizing its efficiency for applications where
processing time is critical.
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