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Abstract

Deep Neural Networks are prone to learning and rely-

ing on spurious correlations in the training data, which,

for high-risk applications, can have fatal consequences.

Various approaches to suppress model reliance on harmful

features have been proposed that can be applied post-hoc

without additional training. Whereas those methods can

be applied with efficiency, they also tend to harm model

performance by globally shifting the distribution of latent

features. To mitigate unintended overcorrection of model

behavior, we propose a reactive approach conditioned on

model-derived knowledge and eXplainable Artificial Intel-

ligence (XAI) insights. While the reactive approach can be

applied to many post-hoc methods, we demonstrate the in-

corporation of reactivity in particular for P-ClArC (Pro-

jective Class Artifact Compensation), introducing a new

method called R-ClArC (Reactive Class Artifact Compensa-

tion). Through rigorous experiments in controlled settings

(FunnyBirds) and with a real-world dataset (ISIC2019), we

show that introducing reactivity can minimize the detrimen-

tal effect of the applied correction while simultaneously en-

suring low reliance on spurious features.

1. Introduction
Modern Deep Neural Network (DNN) architectures yield
remarkable results for a plethora of complex tasks, in-
cluding high-stake applications, such as medicine [7], fi-
nance [35], or criminal justice [42]. However, it has been
shown that DNNs are at risk of learning shortcuts based
on spurious correlations due to imperfections in the avail-
able training data [3, 16, 24, 29], compromising the reli-
ability of these models in high-risk scenarios. Some no-
table examples include melanoma detection models using
visible band-aids as evidence against cancerous melanoma,
as they only occurred next to benign lesions in the training
data [33], or bone age prediction models exploiting the spu-

Figure 1. Reactive Model Correction: Whereas traditional post-
hoc model correction approaches are applied to all samples uni-

formly, we propose conditional suppression of artifacts. One pos-
sible condition for triggering correction is the combination of a
specific class prediction and the presence of a spurious feature
(left). This prevents the suppression of concepts when unnecessary
or even harmful: When correcting, e.g., for a “hurdle”-artifact (re-
lated to “stripe” features), we refrain from suppression for zebra
samples, as stripe textures are now valid discriminative features
and crucial to discerning zebras from horses (right).

rious correlation between the size of lead markers and bone
age caused by the specifics of data processing [30]. Another
example is the usage of hurdles as features for horse classi-
fication [23], as illustrated, e.g., in Fig. 1 (bottom right).

To address these model weaknesses arising from com-
promised training data, a multitude of model correction ap-
proaches have been suggested in recent years to unlearn
undesired model behavior, either by model re-training on
modified data [43, 44], model fine-tuning [14, 33, 34, 38],
or by post-hoc model editing [3, 11, 27, 32, 37]. Whereas
the former two groups of approaches require access to the
training data and are expensive in terms of computational
resources, therefore often being infeasible to apply for large
models, the latter group provides a cheap solution to mod-
ify existing models before deployment, or even during in-

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3532



ference time. Commonly, post-hoc model correction ap-
proaches model the shortcut concept as a linear direction or
subspace in latent space, and modify latent representations
or model parameters such that predictions become invariant
towards the modeled artifact direction.

However, while such approaches successfully reduce the
impact of data artifacts on model predictions, they tend to
negatively impact the model performance for “clean” data
samples without artifacts, as spurious concepts are sup-
pressed globally (i.e., always) due to a constant modifica-
tion of the model parameters or the elimination of latent
subspaces. When artifact representations are modeled in-
accurately or entangled with other features, artifact sup-
pression can lead to unintended and harmful suppression
of important task-relevant features [22]. For instance, when
suppressing the direction encoding the “hurdle” concept in
horse detectors, it also affects related concepts like the di-
rection for “stripes”, potentially impacting the model’s abil-
ity to differentiate between horses and zebras.

In order to minimize “collateral damage”, we introduce a
reactive model correction paradigm, where corrective mea-
sures are applied during the inference only if certain con-
ditions are met. Such conditions can include the prediction
of a certain class and/or presence and relevance of the con-
cept to the model decision-making. To that end, we leverage
insights from local and global eXplainable Artificial Intelli-
gence (XAI) methods to understand and recognize the role
of certain concepts (e.g., data artifacts) for a single predic-
tion and reactively update the prediction if required, while
leaving other predictions unaffected, as illustrated in Fig. 1.

We empirically demonstrate the benefits of our approach
compared to non-reactive post-hoc model corrections using
the ISIC2019 [8, 9, 28] and FunnyBirds [19] datasets, with
both controlled and real-world data artifacts. Our contribu-
tions include the following:
1. We introduce reactive model correction approach that

only corrects model behavior when required, e.g., for a
specific class and/or when an artifact is predicted to be
present.

2. We demonstrate the entanglement of concept represen-
tations of artifacts and non-artifacts.

3. We show the superior performance of reactive model
correction in quantitative evaluation using controlled and
real-world data artifacts.

2. Related Work
Methods for model correction either require full retraining,
fine-tuning or can be applied post-hoc. Whereas full re-
training is usually necessary for methods that change the
data distribution [41, 43, 44], fine-tuning often involves
the regularization of a model by applying dedicated loss
terms [14, 33, 34]. However, the creation of a representative
training data set often comes with its own set of challenges,

as the data cleaning process is not always straightforward
and involves significant manual labor [26], and can intro-
duce new biases [12]. (Partial) retraining may be infeasible
due to high computational costs and can exacerbate unla-
beled shortcuts [25]. In light of the challenges, post-hoc
correction methods [5, 6, 32, 37], including the Projective
ClArC (P-ClArC) [3] method, represent a preferable alter-
native. Theoretical and empirical analyses presented in [22]
demonstrate that post-hoc methods, specifically INLP [32],
have the potential to eliminate not only spurious but also
task-relevant features. In this work, we introduce a gen-
eral framework to address this issue by applying post-hoc
model correction only under specific conditions, minimiz-
ing collateral damage caused by the suppression of unin-
tended, correlated concepts.

3. Reactive Model Correction Framework
Let f : X ! RD be a neural network, mapping input sam-
ples x 2 X to an output for D labels. Given a hidden layer l
of network f with m neurons, we define the feature extrac-

tor a : X ! A ✓ Rm providing the latent activations of
layer l, and the model head f̃ : A ! RD, mapping activa-
tions to the output.

We further introduce the notion of artifacts as a set C
of concepts with a size |C| = n that are present in the
data but should not be relied upon by the network f (e.g.,
watermarks or hurdles). For each artifact ci 2 C, i 2
{1, ...., n}, we are provided with sets of samples with the
concepts present X+

1 , X+
2 , . . . , X+

n (positive examples) and
corresponding sets without the concepts X�

1 , X�
2 , . . . , X�

n

(negative examples). For each set, corresponding activa-
tion vectors A+

i = {a(x) 2 Rm|x 2 X+
i } ✓ A and

A�
i = {a(x) 2 Rm|x 2 X�

i } ✓ A are obtained. A
wide-spread assumption is that concepts learned and used
by a network are encoded as Concept Activation Vectors
(CAVs), i.e. characteristic directions or subspaces in the la-
tent space A [20]. Let vi denote a CAV for concept ci 2 C
pointing from A�

i to A+
i .

3.1. Reactive Model Correction

The overall objective of model correction is to suppress the
influence of artifacts on the model decision-making. Post-
hoc model correction methods commonly aim to globally

and simultaneously address the set of all known artifacts,
leading to a two-fold problem: Firstly, a concept might be
considered spurious for one class, but encodes a valid strat-
egy for another, as, e.g., the “stripes” concept in Fig. 1
(right) represents a valid feature for zebras but a shortcut
artifact for horses. Secondly, the artifact concept might be
entangled with other useful features in latent space. Conse-
quently, artifact suppression also leads to a distorted repre-
sentation of valid features. Both problems potentially harm
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Table 1. Examples of reactive conditions suitable for reactive model correction and their respective informing XAI methods.

Reactive Condition Description Informing XAI Methods

le
ss

gr
an

ul
ar

m
or

e
gr

an
ul

ar

Predicted class Correction is only applied when a class that is asso-
ciated with an artifact is predicted.

none needed coveredArtifact presence Correction is only initiated if the presence of the ar-
tifact has been detected in the sample.

Concept Activation Vec-
tor (CAV) [20]

Artifact relevance Correction is only initiated if the artifact has been
identified as relevant for the prediction.

attributions for input [4]
or latent [1, 15] features

Prediction strategy A sample is categorized into one of the known pre-
diction sub-strategies (clusters), e.g. based on activa-
tions and attributions of hidden units. The reactive
condition is triggered, if the cluster has been previ-
ously identified as undesirable.

PCX[13], strategic
clusters[15]

Domain-expert-in-
the-loop

Triggered manually by a domain expert upon inspec-
tion of the information provided by XAI methods,
including heatmap visualizations, active and identi-
fied prediction strategies, etc.

All of the above

model performance (as measured in Sec. 4.3), and motivate
a conditional, more targeted application of bias suppression.

To address these challenges, we propose reactive (post-
hoc) model correction. Essentially, this paradigm aims to
initiate model correction only under specific conditions. In
Tab. 1 we present an overview of potential reactive condi-
tions, including, e.g., the prediction of a specific class, the
actual presence of an artifact, or a decision by an expert, as
well as XAI methods that can be used to measure whether
the pre-defined conditions are met.

Let us formalize a condition (as, e.g., given in Tab. 1) as
a condition-generating function:

Definition 3.1 (Condition-generating function) Given a

network f and the set C of known artifact concepts, we de-

fine a condition-generating function r : X ! C⇤ ✓ C as a

function, that, for any given input, produces a (reduced) set

C⇤
of artifacts to be removed.

The core principle of the reactive model correction
framework involves the identification of the artifacts to
be corrected for a given sample, based on the condition-
generating function. This typically involves a forward pass
followed by the computation of the condition-generating
function, potentially complemented by expert evaluation.
Once the artifacts are determined, if any, a subsequent (par-
tial) forward pass is performed with model correction ap-
plied specifically to address these identified artifacts.

While many post-hoc methods, including classifier edit-
ing [37], LEACE [5], INLP [32], and P-ClArC [3], can be
employed for model correction in the final step, in this work

we demonstrate and evaluate our reactive approach within
the P-ClArC framework.

3.2. Reactive ClArC

In the subsequent section, we introduce a reactive variant of
P-ClArC, an inference-time model correction method sup-
pressing artifact signals modeled as linear direction in la-
tent space. Two core assumptions constitute the foundation
of the P-ClArC method. Firstly, it is assumed that intro-
ducing an artifact to a sample in the input domain leads to
an increase in the activations along the corresponding CAV
direction in the latent space [20]. Originally, linear clas-

sifiers, such as Support Vector Machines (SVMs) [10], are
trained on latent features to estimate CAVs. Recently, Pahde
et al. [31] have demonstrated that pattern-based CAVs yield
more precise concept representations and therefore, when
incorporated into the ClArC framework, superior perfor-
mance compared to linear classifiers. The second assump-
tion posits that all other concepts are encoded in directions
orthogonal to the artifact direction. Consequently, this fur-
ther implies that there is no variance in the artifact direction
for all non-artifact samples.

These two assumptions lead to the P-ClArC backward

artifact model which suppresses the artifact features in the
latent activations.

Definition 3.2 (P-ClArC) Let ci 2 C be an artifact, vi its

respective CAV, and z�i = 1
|X�

i |

P
z2X�

i
a(z) the mean ac-

tivation over non-artifact samples. Then, the P-ClArC arti-

fact backward model h : A ! A for an activation vector
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ax = a(x) is defined as follows:

h(ax, ci) = ax � viv
T
i (ax � z�i ). (1)

The backward artifact model h effectively corrects the
output of the feature extractor a during the inference pro-
cess, before the model head f̃ is applied. We can extend
this formulation to accommodate the correction of multiple
artifacts simultaneously by defining an artifact subspace as
the space spanned by all artifact CAVs. We then project
onto the subspace orthogonal to this artifact subspace:

Definition 3.3 (Multi-Artifact P-ClArC) Let C0 ✓ C rep-

resent a subset of artifacts with a size |C0| = k, 1 
k  n. Let VC0 = [vi]ci2C0 be the matrix comprised

of the respective CAVs as column vectors. Let Z�
C0 =T

ci2C0 X�
i be the intersection of negative examples, and

z�C0 = 1
|Z�

C0 |

P
z2Z�

C0
a(z). Then, the multi-artifact P-ClArC

artifact backward model h̃ : A ⇥ C ! A for an activation

vector ax = a(x) is defined as follows:

h̃(ax, C0) = ax � VC0(V T
C0VC0)�1V T

C0 (ax � z�C0). (2)

with the derivation given in Appendix A.1.
While the P-ClArC method performs effectively under

the given assumptions, these conditions are rarely encoun-
tered in practice, as motivated in Fig. 1. This is confirmed
by experiments in Sec. 4.3, illustrating that artifact CAVs
exhibit strong correlations with other concept directions.
Consequently, suppressing an artifact can inadvertently al-
ter the representations of other potentially valid and impor-
tant concepts, whether they are present or absent from a
sample, thus impacting decision-making processes. There-
fore, we suggest integrating reactivity into the P-ClArC
framework. In particular, we apply a condition-generating
function to identify the set of artifacts to be suppressed prior
to applying the P-ClArC correction:

Definition 3.4 (R-ClArC) For a condition-generating

function r and an activation vector ax = a(x), we define

the Reactive ClArC (R-ClArC) model hr : A ! A as

follows:

hr(ax) =

(
h̃(ax, r(x)), r(x) 6= ?
ax, otherwise

. (3)

In the following, we discuss and evaluate the detailed im-
plementation of R-ClArC for two reactive conditions out-
lined in Tab. 1: class-conditional R-ClArC based on la-

bel prediction condition-generating functions, and artifact-

conditional R-ClArC given by artifact presence condition-
generating functions.

Definition 3.5 (Class-condition-generating function)
Assume that for every artifact c 2 C, we are provided

with a set of output labels Rc ✓ [D] = {1, 2, . . . , D}. A

class-condition-generating function is then as follows:

r(x) = {c 2 C | arg max
d2[D]

f (d)(x) 2 Rc}, (4)

where argmaxd2[D] f
(d)(x) corresponds to the predicted

output class of sample x.

Definition 3.6 (Artifact-condition-generating function)
Assume that for every artifact c 2 C, we are provided with

a binary classifier tc : X ! {0, 1} that outputs 1 if the

artifact c is present in a sample x 2 X , and 0 otherwise. An

artifact-condition-generating function is then as follows:

r(x) = {c 2 C | tc(x) = 1}. (5)

In Appendix A.2, we present pseudocode outlining the
algorithms for P-ClArC and R-ClArC, and in Appendix A.3
we provide a 3D toy example to illustrate these methods.

4. Experiments
We address the following research questions:
1. (Q1) What is the degree of dependence between rep-

resentations of artifact and non-artifact concepts within
models? (Sec. 4.3)

2. (Q2) How do the effectiveness and the degree of collat-

eral damage caused by the reactive approach compare to
the traditional model correction approach? (Sec. 4.4)

4.1. Experimental Details
We conduct experiments in two controlled settings using toy
datasets and in one setting utilizing real-world artifacts in a
benchmark dataset. In the first controlled setup, we generate
a synthetic FunnyBirds dataset [19], consisting of two bird
classes. We insert a backdoor [17] artifact (“green box”, see
Fig. 2) into 33% of the training samples originating from
class 0 and flip their labels to class 1. This training con-
figuration forces the model always to predict class 1 in the
presence of the inserted “green box” object.

In the second setup, we create a FunnyBirds dataset com-
prising ten classes. We randomly select ten different back-
ground object artifacts and insert a random number of these
artifacts into 50% of training samples belonging to class 0.
Since the artifacts are exclusively present in class 0, we ex-
pect a model trained on this dataset to utilize them as short-

cuts [16] for class 0.
For the real-world dataset, we utilize ISIC2019 [8, 9, 28],

a dermatologic dataset designed for skin cancer detection,
featuring images of both benign and malignant lesions. Us-
ing the Reveal2Revise framework [30], we identify three
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artifacts naturally occurring in the dataset, strongly correlat-
ing with class labels: “band-aid” (correlating with “NV”),
“skin marker” (“NV”, “BKL”), and “reflection” (“BKL”) ar-
tifacts. To evaluate our approach, we additionally create
a poisoned test set for ISIC2019, where all samples have
a “reflection” artifact superimposed on them. Visually the
“reflection” artifact simulates the spot-wise reflection of a
bright illumination source. Additional details for all the
datasets are available in Appendix B.1.

For all settings, we train VGG16 [39], ResNet18 [18],
and EfficientNet-B0 [40] models, with detailed training in-
formation provided in Appendix B.2.

4.2. CAV Calculation
For each experimental setting, we generate datasets of the
same images with and without artifacts. For both Funny-
Birds datasets and each artifact, we generate pairs of images
with and without the artifact. For the ISIC dataset and the
“reflection” artifact, we superimpose examples of the arti-
fact onto clean images from the associated class (refer to
Appendix B.1 for details). Fig. 2 displays some examples
from the generated sets.

This process allows us to compute precise CAVs using
sets of positive and negative samples. We refer to CAVs
obtained through this method as “generated”. As compared
to the conventional method of calculating CAVs using the
subsets from the dataset, we expect that the generated CAVs
will provide more precise descriptions of the concept direc-
tion. Furthermore, the generated sets allow us to calculate
pairwise concept directions. By comparing concept direc-
tions with CAVs, we assess the faithfulness of these concept
representations in Sec. 4.3.

While each pair of images only differs in the presence or
absence of an artifact, the difference between the activation
vectors of the two samples may still not accurately represent
the true concept direction. For instance, as depicted in the
first example in Fig. 2, adding a “green box” artifact signifi-
cantly obscures the beak concept. Therefore, we can expect
that the activation vectors of the two samples also differ in
their expression of the beak concept. However, for CAV
calculation, we use large sets of pairs, which helps mitigate
this effect. Further details about the CAV computation pro-
cedure can be found in Appendix B.3.

4.3. Orthogonality of Concept Representations
In Sec. 3.1, we introduced the reactive framework for model
correction. Regardless of how precise and disentangled a
concept representation used by a model correction method
may be, the reactive approach can prove beneficial, e.g. in
cases when an artifact irrelevant for a certain class repre-
sents a useful feature for another (e.g., “stripes”). However,
many model correction methods may also face challenges
related to the entanglement of concept representations. In

Figure 2. Examples of adding artifact concepts in a controlled
manner: (Left): For FunnyBirds, we insert a “green box” into im-
ages. (Right): For ISIC, we insert “reflections” on the side.

CAV Dataset
FunnyBirds

(“green box”)
ISIC2019

(“reflection”)
Pattern Filter Pattern Filter

Generated 0.824 0.101 0.617 0.343
Data Subset 0.563 0.042 0.469 0.328

Table 2. Evaluating the alignment of computed artifact CAVs in
terms of cosine similarity with the actual change in activations
when the concept is added in controlled fashion in ResNet18 mod-
els. We compare CAVs computed on original data subsets, and
pairs of clean and (generated) poisoned samples.

this context, the reactive approach also enables us to “mini-
mize the damage” on non-artifact samples.

In the following experiments, we evaluate the assump-
tion of concept orthogonality in two controlled settings.
Firstly, we investigate the concept representation of the
“green box” artifact in the ResNet18 model trained on the
backdoored FunnyBirds dataset. Secondly, we analyze the
concept representation of the “reflection” artifact in the
ResNet18 model trained on ISIC2019. Specifically, we use
CAVs as concept representations since they are utilized in
both P-ClArC and our proposed approach R-ClArC.

Initially, we assess the faithfulness of the CAV concept
representation by comparing them to the pairwise concept
directions. For both settings, we compute filter- and pattern-
based CAVs using both the generated sets and sampled
dataset examples. Then, we determine the alignment score
by averaging the cosine similarity of each concept direc-
tion and CAV, following the approach in [31]. The results
are presented in Tab. 2. Confirming the findings of [31],
pattern-based CAV performed better in both settings. Addi-
tionally, as anticipated, the generated CAVs offer a more ac-
curate concept representation. We utilize the pattern-based
CAV calculated on the generated sets for our subsequent
experiments. Additional details regarding the evaluation of
CAVs can be found in Appendix B.4.

In our experiment investigating the orthogonality hy-
pothesis, we analyze the distribution of the CAV activa-
tions of 500 randomly selected clean samples and all sam-
ples containing the artifact. Based on an assumption of the
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Figure 3. Histogram of CAV activations for the FunnyBirds back-
door (“green box”) artifact in ResNet18: the backdoor CAV aligns
with features specific for class 1.

P-ClArC framework, there should be no variance along the
artifact direction for all clean samples.

From Fig. 3, we can observe the distribution of pattern-
based CAV activations for the backdoor FunnyBirds model.
Clean samples exhibit considerable variance along the CAV
direction. Specifically, samples belonging to class 1 no-
tably activate the backdoor CAV, indicating entanglement
between the backdoor concept and the concept of the class
label which is predicted in the backdoor presence. Conse-
quently, suppressing the artifact direction in this scenario
coincidentally shifts the clean samples of class 1 towards or
across the decision boundary towards class 0.

Fig. 4 illustrates the distribution of clean and
“reflection”-artifact ISIC samples along the CAV di-
rection. Firstly, clean samples exhibit variance along the
artifact CAV, indicating that the direction encodes informa-
tion unrelated to the artifact. Secondly, we observe a high
level of activation of the concept in samples displaying
features related to the “reflection” artifact, such as pale skin
or white skin patches. These features could be important
for prediction, suggesting that suppressing this information
may not be desirable. Fig. 5 further illustrates the cosine
similarities between the CAV directions of the three ISIC
artifacts and the class directions of clean samples. The
non-orthogonality between the CAV and the class direc-
tions suggests that suppressing the artifact directions could
impact the predictions of clean samples.

4.4. Model Correction with R-ClArC
In the following analysis, we examine the impact of in-
corporating reactivity into the P-ClArC model correction
method, based on three metrics: accuracy, F1 score, and
artifact relevance, as measured by the share of Layer-
wise Relevance Propagation (LRP) [4] attribution in the

Figure 4. Histogram of CAV activations for the ISIC “reflection”
artifact in ResNet18: outlier clean samples with white spots lead
to high concept activation.

Figure 5. Cosine similarity between artifact CAV and mean feature
direction of each class for the ISIC dataset and ResNet-18: the
artifact concept representations are entangled with clean features.

artifact region. Our evaluation includes R-ClArC with
class- and artifact-condition-generating functions, as well
as their combination. In all settings except for the poisoned
ISIC2019, our primary focus is on evaluating the perfor-
mance on clean samples. We expect the reactive approach
to improve the preservation of performance on clean sam-
ples while still reducing artifact relevance. In the poisoned
ISIC2019 setting, where clean samples are not present, we
are mainly interested in recovering performance compared
to the original Vanilla model. Additionally, we provide ac-
curacy and F1 scores for artifact samples. Additional details
regarding the ClArC parameters and the evaluation proce-
dure are outlined in Appendix B.5.

The outcomes of model correction for VGG16,
ResNet18, and EfficientNet-B0 on the FunnyBirds datasets
are presented in Tab. 3. In the backdoor setting, the
R-ClArC class condition is met for the prediction of class
1 and in the shortcut setting for the prediction of class 0. As
expected, the backdoor Vanilla models exhibit low perfor-
mance on the backdoor samples. As mentioned in Sec. 4.3,
in ResNet18, the artifact and class 1 concepts are correlated.
Suppressing the artifact often leads to predictions of class
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Model Method Condition Accuracy
(clean)

Accuracy
(artifact)

F1
(clean)

F1
(artifact)

Artifact
relevance

R
es

ne
t1

8

Vanilla - 98.8 | 93.3 12.1 | 100.0 98.7 | 92.4 10.8 | 100.0 28.6 | 5.2

P-ClArC - 40.1 | 3.6 100.0 | 100.0 28.6 | 0.7 100.0 | 100.0 17.9 | 3.8
R-ClArC Class 40.1 | 93.3 100.0 | 100.0 28.6 | 92.4 100.0 | 100.0 18.4 | 3.8

Artifact 97.6 | 92.6 97.0 | 100.0 97.5 | 91.6 49.2 | 100.0 18.0 | 3.8
Both 97.6 | 93.3 97.0 | 100.0 97.5 | 92.4 49.2 | 100.0 18.4 | 3.8

V
G

G
16

Vanilla - 98.8 | 91.8 27.3 | 97.0 98.7 | 91.4 21.4 | 32.8 22.7 | 5.2

P-ClArC - 59.9 | 4.6 0.0 | 100.0 37.5 | 2.4 0.0 | 100.0 11.8 | 4.5
R-ClArC Class 98.8 | 91.8 27.3 | 97.0 98.7 | 91.4 21.4 | 32.8 11.3 | 4.4

Artifact 95.2 | 87.6 3.0 | 100.0 94.9 | 85.9 2.9 | 100.0 9.9 | 4.4
Both 98.8 | 91.8 27.3 | 97.0 98.7 | 91.4 21.4 | 32.8 11.3 | 4.4

Ef
fic

ie
nt

N
et

-B
0 Vanilla - 99.4 | 86.6 6.1 | 97.0 99.4 | 83.1 5.7 | 32.8 37.0 | 4.0

P-ClArC - 91.6 | 10.7 3.0 | 0.0 90.9 | 1.9 2.9 | 0.0 24.8 | 3.5
R-ClArC Class 99.4 | 83.4 6.1 | 0.0 99.4 | 74.3 5.7 | 0.0 24.9 | 3.5

Artifact 99.4 | 82.9 3.0 | 1.5 99.4 | 73.9 2.9 | 1.5 24.8 | 3.5
Both 99.4 | 83.4 6.1 | 1.5 99.4 | 74.3 5.7 | 1.0 24.9 | 3.5

Table 3. Model correction results for the background object artifacts inserted in FunnyBirds datasets. We report scores on the (backdoor |
shortcuts) version. The best scores are highlighted in bold.

Model Method Condition Accuracy
(clean)

Accuracy
(artifact)

F1
(clean)

F1
(artifact)

Artifact
relevance

R
es

ne
t1

8

Vanilla - � | 83.3 50.1 | 80.4 � | 79.4 50.2 | 33.4 23.9 | 9.1

P-ClArC - � | 61.0 45.1 | 80.4 � | 21.5 14.4 | 40.2 19.0 | 8.2
R-ClArC Class � | 83.3 59.5 | 80.4 � | 79.1 52.4 | 32.9 19.1 | 8.3

Artifact � | 83.0 46.2 | 82.1 � | 79.0 43.8 | 41.1 22.1 | 8.6
Both � | 83.0 50.3 | 80.4 � | 79.0 50.2 | 32.9 21.9 | 8.6

V
G

G
16

Vanilla - � | 79.5 20.1 | 78.6 � | 73.2 17.7 | 32.4 46.3 | 18.3

P-ClArC - � | 63.8 56.8 | 76.8 � | 30.9 24.3 | 39.3 21.1 | 15.1
R-ClArC Class � | 78.2 47.7 | 78.6 � | 72.4 32.1 | 32.4 27.2 | 14.5

Artifact � | 79.2 27.6 | 82.1 � | 72.4 15.4 | 41.6 38.6 | 17.0
Both � | 79.2 27.4 | 83.9 � | 73.0 20.8 | 34.4 38.7 | 17.2

Ef
fic

ie
nt

N
et

-B
0 Vanilla - � | 85.3 57.9 | 83.9 � | 82.0 57.1 | 35.0 22.2 | 11.2

P-ClArC - � | 51.5 51.7 | 60.7 � | 8.5 8.5 | 18.9 19.4 | 9.9
R-ClArC Class � | 78.6 65.7 | 58.9 � | 71.6 53.0 | 15.0 18.5 | 9.5

Artifact � | 83.5 59.8 | 60.7 � | 79.8 45.1 | 18.9 18.4 | 9.7
Both � | 84.4 63.0 | 58.9 � | 81.2 56.3 | 15.0 17.7 | 9.5

Table 4. Model correction results for the “reflection”, “band aid” and “skin marker” artifacts found in ISIC. We report scores on the
(poisoned | original) version. The best scores are highlighted in bold.

0 for class 1 samples, resulting in less than 50% accuracy
for P-ClArC and class-conditional R-ClArC. However, us-
ing artifact-conditional and combined approaches helps to
reduce the backdoor effect while maintaining good perfor-
mance on clean samples. Although P-ClArC fails to re-
duce the backdoor effect for VGG16 and EfficientNet-B0,
all variants of R-ClArC allow us to recover accuracy and
F1 scores for clean samples. In the shortcut setting, sup-

pressing 10 artifacts with P-ClArC notably decreases per-
formance. Fig. 6 further illustrates the dynamics of clean
sample accuracy as the number of corrected artifacts in-
creases for the VGG16 model. All reactive ClArCs im-
prove clean sample performance, with the combined ap-
proach yielding the best results across all architectures.

Tab. 4 showcases the results for the same architectures,
the ISIC2019 dataset and the artifacts “band-aid,” “skin
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Figure 6. Clean samples test accuracy by the number of artifacts
suppressed with FunnyBirds shortcut dataset and VGG16: with re-

active model correction (R-ClArC), we can retain accuracy signif-
icantly better than when with the traditional approach (P-ClArC).

marker,” and “reflection” for both the poisoned (left) and
real (right) evaluation settings. In both configurations, the
R-ClArC class conditions link the class “NV” with artifacts
“band-aid” and “skin marker”, and the class “BKL” with
“skin marker” and “reflection”. In the poisoned setting,
we observe that R-ClArC consistently outperforms Vanilla
models across all architectures, which is not the case with
P-ClArC for ResNet18 and EfficientNet-B0. As all test
samples are poisoned in this setting, global suppression of
the artifact with P-ClArC may prove beneficial, as indi-
cated by the superior performance of P-ClArC compared
to R-ClArC in the VGG16 case. In the real setting, while
P-ClArC significantly harms the performance on clean sam-
ples, R-ClArC recovers it to a level close to that of the
Vanilla models for all architectures. Fig. 7 additionally de-
picts LRP heatmaps for the Vanilla models, as well as mod-
els corrected with P-ClArC and R-ClArC.

The condition-generating functions may not always be
accurate (as demonstrated in Appendix B.5), causing the
correction not to get activated when needed. This explains
why in some cases P-ClArC demonstrates slightly lower ar-
tifact relevance compared to R-ClArC, and in the case of
poisoned ISIC2019 and VGG16 better model performance.

5. Limitations
While our results show that R-ClArC outperforms P-ClArC
in various scenarios, the choice of reactive heuristics is not
always straightforward. Furthermore, condition-generating
functions may not always be accurate, resulting in the cor-
rection not being activated when required.

Additionally, while reactive bias suppression reduces po-
tentially negative (harmful) impact for clean samples (with-
out present artifacts), it does not fully address all the flaws

Figure 7. LRP heatmaps for clean images strongly activat-
ing artifact concepts “reflection”, “band-aid,” and “skin marker”:
P-ClArC strongly suppresses all artifacts, while R-ClArC (com-
bined approach) correctly refrains from suppression.

of P-ClArC. Applying P-ClArC transformations only on
artifact samples may still inadvertently alter valid concepts
crucial for prediction. Furthermore, merely suppressing a
single direction in the latent space may not always suffice
to eliminate artifact relevance, as evidenced in Sec. 4.4.

6. Conclusion

In this work, we introduced a general framework for re-
active model correction, aimed at mitigating the issue of
“collateral damage” to task-relevant features. Specifically,
we applied the reactive principle to the P-ClArC post-hoc
model correction framework, resulting in its reactive vari-
ant, R-ClArC. Our empirical findings demonstrate the detri-
mental impact of P-ClArC on clean samples while showcas-
ing the superior performance of R-ClArC in this aspect.

Future directions include application of the reactive prin-
ciple to other post-hoc correction methods, such as classifier
editing [37], LEACE[5], and INLP [32]. We also aim to ex-
plore more granular reactive conditions, such as those based
on prediction strategy or artifact relevance.
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