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Abstract

We analyze various factors affecting the proper function-
ing of MIA and MINT, two research lines aimed at detecting
data used for training. The difference between these lines
lies in the environmental conditions, while the fundamental
bases are similar for both. As evident in the literature, this
detection task is far from straightforward and poses an on-
going challenge for the scientific community. Specifically,
in this work, we conclude that factors such as the num-
ber of times data passes through the original network, the
loss function, or dropout significantly impact detection out-
comes. Therefore, it is crucial to consider them when de-
veloping these methods and during the training of any neu-
ral network, both to avoid (MIA) and to enhance (MINT)
this detection. We evaluate the AdaFace facial recognition
model using five databases with over 22 million images,
modifying the different factors under analysis and defining
a suitable protocol for their examination. State-of-the-art
accuracy reaching up to 87% is achieved, surpassing exist-
ing methods.

1. Introduction

The detection of data used to train a model is an open
field with various applications. The traditional application,
known as Membership Inference Attacks (MIA) [31], in-
volves an attacker attempting to obtain confidential infor-
mation about the data used for training, such as medical
information about patients used to train a model. The pur-
pose of MIA is malicious, aiming to steal information. The
literature aims to demonstrate that this is possible and pro-
poses solutions to prevent such detection. A new perspec-
tive called Membership Inference Test (MINT) [4] seeks to
perform this detection on models with the goal of identi-
fying the unauthorized use of data without users’ consent
in line with new international regulations such as the EU

AI act1. MINT audits trained AI/ML models to provide
transparency and explainability to users [1, 33], by allowing
people to know if given data (e.g., their private [9] or some
other sensitive data [23]), was used in the development of
those models. Both MIA and MINT work on the same task
(membership inference) but under different environmental
conditions. MIA studies attacks on models, and thus, access
to the original model is not be assumed, although access to
information to train similar models is possible. In contrast,
MINT assumes access to the original model trained by the
developer since it is not an attack but a tool for auditing.

These two research lines pose a challenge to the scien-
tific community, not being trivial at all [28]. Despite the
distinct purposes of MIA and MINT, it is crucial for both
lines to understand the factors and parameters influencing
their outcomes. This understanding is essential, whether to
prevent considered in MIA or to enhance the membership
analysis considered in MINT.

In [4], the authors proposed a MINT model elevating the
detection of training data usage up to 90%. This prompts
us to explore the factors influencing the performance of that
result. In the present study, we utilize the experimental pro-
tocol proposed in [4] and investigate factors that may al-
ter MINT detection in facial recognition models. The main
contributions can be summarized as follows:
• We analyze in a comprehensive way the performance of

MINT models applied to face recognition systems and
propose novel architectures to identify data used during
the training process of these systems.

• We identify various factors influencing the detection of
data used for training and provide a comprehensive eval-
uation of these factors in a controlled environment.

• By making specific modifications to the facial recognition
model, we achieve a significant improvement (23% rel-
ative decrease in membership detection errors) over the
results presented in existing approaches without compro-
mising the face recognition model’s performance.

1https://artificialintelligenceact.eu/
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The is structured as follows: the Sec. 2 provides a sum-
mary of realted works. In Sec. 3, we describe our methods
and datasets, outlining the factors considered in the experi-
ments. Sec. 4 presents our experiments. Finally, Sec. 5 and
Sec. 6 present the discussion and conclusions of our study.

2. Related Works
MIA was presented in 2017 [31] that has spawned numer-
ous related works. MINT on the other hand is a recently
introduced concept with no existing literature as of now. In
this section, we will introduce the key concepts and relevant
works on MIA, along with the foundational work on MINT
that serves as the basis for our experiments.

2.1. Membership Inference Attacks (MIA)

Membership Inference Attacks, initially conceptualized in
[31], involve attempts to extract information used in the
training of a model. This information, encompassing ar-
eas such as health and shopping preferences, can be sen-
sitive if disclosed. In MIA, the objective is to obtain this
information through adversarial approaches without access
to the original model, assuming developers won’t will-
ingly provide sensitive information [23]. Shokri et al. em-
ployed “shadow model” in their approach [31], mimicking
the functionality of the original model. Constructing these
models relies on having information about the architecture
to replicate the original model and a portion of the train-
ing database, along with some statistics. In this manner,
attackers have complete control over these shadow models
and are well-informed about the data used in their training.
They forward images through the shadow models, obtain
embeddings, and train a binary classifier on whether they
were used in training or not.

Following the work of Shokri et al., numerous studies
have been published. Initially, some works attempted to en-
hance these results by utilizing metric values and thresholds
to differentiate between embeddings of data used in train-
ing or not. Yeom et al. in [36] sets a threshold in the loss
function, while authors in [29, 32] use the prediction value
instead of the loss value for this differentiation.

Additionally, Nasr et al. [25] endeavored to leverage
more information from the model beyond the output em-
beddings. They introduced the terminology of black-box
and white-box, where black-box assumes access only to the
output embeddings, as proposed by Shokri et al. and contin-
ued by [2, 32, 36] among others, and white-box assumes ac-
cess to activations, losses, and gradients. However, in their
work, they did not achieve promising results with white-box
access. Activations and losses did not improve black-box
results significantly, and the limited improvement in black-
box outcomes from gradients, coupled with the challenges
in accessing this information by an attacker, rendered it of
limited utility. Subsequent studies [3, 28] also demonstrated

that the use of activations was not beneficial in this detec-
tion.

The challenges in this line of research are highlighted in
these mentioned studies and reinforced in [28], where the
authors focus on the inherent difficulty of the task. They
emphasize that the results that can be expected in the prac-
tice are worse than the ones indicated in the literature due
to questionable evaluation approaches. In that work [28],
the authors once again demonstrated that the white-box sce-
nario did not yield significant benefits over black-box.

Numerous studies have sought to elucidate the mech-
anisms behind MIA, primarily attributing its operation to
model memorization [15, 34], a phenomenon linked to over-
fitting. Consequently, several works propose counteracting
overfitting as a potential solution [12–14, 17, 18]. Tonni et
al. [34] scrutinize database and model factors pertinent to
MIA detection. In their case, databases with vector infor-
mation and fully connected models are employed. Show-
casing the impact of factors such as the quantity of data used
to train shadow models or the class distribution on perfor-
mance. Although this related work bears similarity to ours,
the analyzed factors differ significantly, with our empha-
sis on the original model—within the developer’s purview.
Moreover, our experiments are conducted in a real and chal-
lenging context, specifically facial recognition.

2.2. Membership Inference Test (MINT)

Membership Inference Test (MINT), as presented in [4],
serves as an auditing tool designed to detect if given data
was used to train a model. This distinctive approach holds
significant promise for providing transparency to users and
aligns with new European legislation [19], imposing obli-
gations to safeguard citizens’ rights. Unlike Membership
Inference Attacks (MIA), MINT does not require the train-
ing of shadow models, it directly infers information from
the original model. The authors in [4] conduct experi-
ments in both white-box and black-box scenarios, reveal-
ing that various factors significantly impact the performance
of the “MINT Mode” in detecting training data, e.g., the
amount of available training data notably influences de-
tection. Moreover, they demonstrate that a white-box ap-
proach yields superior results compared to black-box meth-
ods, contrary to the results in the MIA literature. Lastly,
the paper proposes several new architectures for the MINT
Model, optimizing information utilization and enhancing
overall performance.

3. Methods and datasets
3.1. Key terms and architecture

MINT is a tool designed to detect the data used in training
a neural network. In MINT, we assume the role of an audi-
tor, which involves having access to either: 1) the original
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Figure 1. The Membership Inference Test (MINT) Model (T ) is trained to predict if a specific data (d) was used during the training process
of an Audited AI/ML Model (M ), which was previously trained with a database (D). The input of the MINT Model is Auxiliary Auditable
Data (e.g., activations maps for data samples d) and/or the model outcome obtained from M [4].

model, 2) a portion of it, or 3) inside information as cer-
tain data pass through the network. Therefore, the use of
‘shadow models’ is not necessary in this technology. In the
original work, the authors consider different scenarios for
training what they call MINT Models, which are models for
detecting data used in training. Specifically, they take into
account both black-box and white-box scenarios, as well
as the use of varying amounts of data to train these MINT
Models. All of this is done, without loss of generality, in a
realistic setting based on Face Recognition (FR). Note that
the same methods and methodology can be applied to any
other AI/ML problem involving learned models. Next, we
mention the key terms in MINT approaches (see Fig. 1):

• Audited Model (M ): This is the Facial Recognition (FR)
model being audited. The model is defined by its archi-
tecture and the set of parameters w. The model has been
trained by the developer and cannot be modified by the
auditor.

• Training Dataset (D): This is the dataset used (by the de-
veloper) to train the Audited Model (M ).

• External Dataset (E): External data (face images in our
case study) not used in the training of the Audited Model.
It is crucial that this data is entirely independent of D,
ensuring proper training of the MINT Model.

• Collection of Samples (d): These are the samples used to
train the MINT Model. They come from both D and E
(d ∈ D ∪ E)

• Model Outcome (y = M(d|w)): The Model Outcome y
is the output of the model M for a sample d. This is the
final output of the model and, therefore, is the information
available in a black-box context.

• Auxiliary Auditable Data (AAD = N(d|w′)): AAD
consists of intermediate outputs from the model M for
a sample d. N represents the model formed by a part of
M corresponding to w′, which is a subset of w. N = M
in the case where w′ = w. This intermediate information
is available in a white-box scenario.

• MINT Model (T ): This is the model that detects whether
specific data was used or not in training the Audited

Model M . This model is defined by an architecture and
parameters θ that are adjusted by the auditors. It takes as
input the model outcome y and/or the Auxiliary Auditable
Data AAD from samples d in sets D and E .

3.2. MINT Performance: Impact Factors

The aim of the present paper is to study the main factors that
influence the detection performance of the MINT Model T .
The authors of the original work [4] present several find-
ings in this regard that merit discussion. In their research,
they assume possession of an Audited Model M , trained
by the developer, from which they can extract information
for MINT detection purposes. By acquiring insights from
the model, they proceed to train the MINT Model T . The
outcome varies depending on the nature of the information
used from the Audited Model. Three pivotal factors influ-
encing the outcomes can be identified:
• Number of data. The quantity of data available for train-

ing the MINT Model significantly influences the out-
come; more data leads to better results. However, the
availability of data is constrained by the information pro-
vided by the developer to the auditors.

• Available environment. Results exhibit substantial varia-
tions between a black-box and a white-box environment.
White-box depends heavily on the depth at which Auxil-
iary Auditable Data (AAD) is obtained.

• Architecture type. Lastly, the results are tied to the ar-
chitecture of the MINT Model. Certain architectures can
more effectively leverage information, yielding superior
outcomes.
In their work, DeAlcala et al. assumed the role of an

auditor who is provided with a pre-trained model, denoted
as the audited Model M , without the ability to modify it,
aiming to achieve the best possible results within these con-
straints. We refer to this perspective as the ‘auditor-centric
perspective’. Under this perspective, modifications could be
made to everything corresponding to the audit stage (black
dashed lines in Figure 1), which is the focus of the authors
in their work. In contrast to the auditor-centric perspective,
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our study aims to explore the actions that developers can
undertake to influence this detection process. This involves
modifying aspects related to the model trained by the de-
veloper, including all components concerning the data uti-
lized for training, their incorporation into the model, and
the model itself (development stage depicted in orange in
Figure 1). This analysis is presented in Sec. 4

3.3. Datasets and Models

For this work, Facial Recognition (FR) models play a cru-
cial role, and it is essential to have complete control over
them. This enables us to modify specific parameters of
these models and observe their impact on detection. In this
study, we will utilize AdaFace’s code [22] to train FR mod-
els, adjusting as needed to meet our goals. The original
AdaFace model we will use possesses the following char-
acteristics: a ResNet50 network trained on the MS1MV3
database with AdaFace Loss function. Subsequently, we
will adjust the parameters, as explained in Sec. 4.

The MINT Model will be based on an MLP architec-
ture, consistently employing the same architecture to en-
sure accurate comparisons of results when varying parame-
ters of the facial recognition model. The architecture of the
MINT Model depends on the data used for training. In this
study, we will consider two types of scenarios: a black-box
scenario where the available data includes only the model
outcome y and a white-box scenario where access is also
granted to the Auxiliary Auditable Data AAD. In the case
of the basic AdaFace model [22], the Model Outcome is a
vector of size N = 512. For the AAD, we will adopt an
approach similar to the original work [4]: extracting activa-
tion maps from four points in the Audited Model (AdaFace
in our case study) and selecting the maximum value from
each map, thus obtaining a vector for each selected model
point. We can concatenate the four vectors from the four se-
lected points (note that this number of points P = 4 where
the Audited Model is inspected is in general tunable), re-
sulting in a vector of size L = 960. This MINT Model is
called the Vanilla MINT Model, and the details are elabo-
rated in Figure 2.

The Vanilla MINT Model is based on two fully con-
nected layers with ReLU activation, followed by a batch
normalization layer and a dropout layer at the end with a
rate of 0.3. It is trained for 20 epochs using the Adam op-
timizer with a learning rate of 0.001, and the remaining pa-
rameters follow the default optimizer settings.

Regarding the databases, we have the MS1Mv3 [11]
database, consisting of 5.2 million images from 91K iden-
tities. This will serve as the Training Dataset D. As for
External Datasets E , we include IJB C [20] (3.5K identi-
ties and 31K face images), FDDB [16] (5.2K face images),
GANDiffFace [21] (10K identities and 500K face images),
and Adience [8] (2.2K identities and 26.5K face images).

4. Experiments
As mentioned earlier, we will modify the facial recognition
model (development stage Fig. 1) to compare the results for
key parameters in the developer’s hands. In each subsec-
tion, we will detail the changes made to the original audited
model. Changes to the audited model may result in a signif-
icant loss of performance, which is essential to note. In
each subsection, we analyze the performance differences
between the Audited Model M and the MINT Model T
compared to the original performance.

4.1. Evaluation Protocols and Metrics

The evaluation of the Audited Models aligns with the
methodology outlined in the original AdaFace GitHub
[22]. Specifically, the evaluation is performed on the
High-Quality [30] Image Validation Set, yielding verifica-
tion accuracy across five distinct databases (LFW, CFPFP,
CPLFW, AGEDB). We will present the mean evaluation
value across these databases.

The evaluation of the MINT Models is structured as fol-
lows. We have five databases, one used for training, rep-
resenting the positive class, and four others that were not
used for training, representing the negative class in MINT
Model training. We utilize three of the four negative class
databases (IJB C, GANDiffFace, FDDB) for MINT Model
training, reserving the fourth (Adience) for evaluation. The
positive class database is divided into 66% for training and
33% for evaluation. For more detailed information on this
evaluation, please refer to the original paper [4].

As explained in Sec. 3.3, the results are presented for
the Vanilla MINT Model, trained using different informa-
tion sources. Specifically, this model is trained using data
from intermediate layer outputs (as detailed in Fig. 2) as
well as the model outcome. The tables in this section in-
clude results for ‘Conv Layer X’, where lower values of
X indicate AAD obtained from an activation layer closer
to the model’s input (only that layer indicated by X). ‘All
Conv Layers’ denotes the concatenation of these four AAD,
while ‘Model Outcome’ refers to the model’s output (y in
Sec. 3.1). All conv layers exclude the model outcome to
properly distinguish between white-box and black-box sce-
narios. For further details, please refer to Sec. 3.3 and the
original paper [4]. The MINT Model is trained using 100K
samples, a parameter previously adjusted by the authors in
[4]. In this investigation, our aim is to delve into the nuances
of factors within the purview of the original model devel-
oper (Development Stage in Fig. 1). Hence, we deliberately
refrain from altering this specific parameter, focusing our
inquiry instead on discerning how manipulations made by
the developer impact the model’s efficacy. For a deeper
understanding of how varying training samples influences
MINT Model behavior, we refer readers to the comprehen-
sive analysis provided in the original publication [4].

3588



Training Data 

External Data 

Activation Map
for data d

Vanilla MINT Model (Trainable)

Audited Model (Non-Trainable)

}?Map

Layer i

Conv Layers

Dense Layers

Max Pooling

Max of each
Activation map

eacheacheach
map

eacheach

Model Outcome
i

M

Dropout Layers

BatchNorm Layers

Figure 2. Learning framework of the Vanilla MINT Model trained with the Auxiliary Auditable Data obtained from the Convolutional
Layer i [4]. In general we consider P different Layers across the Audited Model where the model is inspected. The input to T is therefore
of size L = C × P (P = 4 in our case study).

Auditable Data Baseline

Conv Layer #1 0.76
Conv Layer #2 0.70
Conv Layer #3 0.65
Conv Layer #4 0.74
Model Outcome 0.81
All Conv Layers 0.84

Table 1. Classification accuracy for the various AAD and Model
Outcome configurations using the Baseline Vanilla MINT Model.
MINT model trained with 100K samples.

4.2. Baseline Performance

We first display the outcomes for the basic AdaFace FR
model. This model consists of a ResNet50 trained using
the MS1Mv3 dataset alongside the AdaFace loss function,
as described in Sec. 3.3. These outcomes serve as our base-
line for subsequent comparisons. The results are tabulated
in Tab. 1. The FR Model M verification accuracy in the
High-Quality Image Validation Set considered is 96.3%.

4.3. Scenario 1: Augmented Data Frequency

During the model training process, the common practice in-
volves processing all training data once per epoch. While
alternative approaches exist, such as assigning probabilities
to data to determine their processing frequency, the prevail-

ing and typically most effective method is for all data to
undergo a single pass per epoch [10]. This approach is also
employed in AdaFace training, meaning that if the AdaFace
model is trained for 20 epochs, each image is presented to
the model 20 times. This raises the question: Will increas-
ing the number of exposures of images during training re-
sult in more effective memorization of the data and conse-
quently impact the MINT detection capability?

To address this question, we introduce the procedure out-
lined in Fig. 3. On the left, we depict the baseline scenario,
where each data point is encountered once by the model in
each epoch. On the right, we illustrate the scenario with
increased frequency of image exposure, which we term the
Augmented Data Frequency scenario. Training has been ad-
justed such that 25% of the dataset is encountered only once
per epoch, mirroring the baseline scenario. Another 25% of
the dataset is repeated 10 times per epoch, followed by 20
times for the subsequent 25%, and finally, the last 25% is
repeated 30 times per epoch. After training the FR model in
this manner, we can analyze the results of the MINT Model.
We train a MINT Model T using each of the four sections
presented to examine the differences in results among them.
The detection results for each MINT Model are presented in
Tab. 2.

The performance of the Augmented Data Frequency FR
Model M is 98.2 %. Compared to the baseline model, we
have increased performance by nearly 2%, indicating that
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Figure 3. On the left, we have the baseline training method where
all images pass through the model once in each epoch. On the right
is our approach with Augmented Frequency Data where 25% of
the images pass once in every epoch, another 25% pass 10 times,
the next 25% pass 20 times, and the last 25% pass 30 times.

this modification in training is indeed beneficial for the FR
Model. However, the improvement comes at the expense
of significantly increased computational resources required
for model training.

We can observe the MINT detection results in Tab. 2,
where we analyze the outcomes for different Augmented
Data Frequency scenarios. Firstly, we can conclude that
the number of times the data is observed when train-
ing the Audited Models is a significant factor in MINT
detection. In the last three rows, we can observe that the
MINT model performs worse as the data is seen less when
training the Audited Model. Conversely, for the layers
closer to the input (Conv Layers #1, #2, and #3), the MINT
detection accuracy remains stable independent of the train-
ing data frequency. Another noteworthy aspect is evident
when comparing Tab. 1 and Tab. 2. Let’s focus on the “All
Conv Layers” row, as it yields the best results. The base-
line model’s value is 0.84 (see Tab. 1), whereas in the aug-
mented frequency model, there are values both above (for
data augmented ×20 and ×30 times) and below (for data
augmented ×10 and ×1). This underscores an important
conclusion: developers have the power to dictate which
data the MINT Model detect better or worse by control-
ling the training data frequency without compromising

Auditable Data ×1 ×10 ×20 ×30

Conv Layer #1 0.72 0.74 0.73 0.72
Conv Layer #2 0.66 0.67 0.67 0.66
Conv Layer #3 0.68 0.67 0.69 0.68
Conv Layer #4 0.64 0.73 0.82 0.84
Model Outcome 0.75 0.76 0.80 0.85
All Conv Layers 0.76 0.81 0.85 0.87

Table 2. Classification accuracy for the various AAD and Model
Outcome configurations using the Vanilla MINT Model for the
Augmented Data Frequency scenario. MINT model trained with
100K samples.

the overall performance of their model. Consequently,
they could conceal illicitly the usage of certain training
data through appropriate training procedures, at least
to some extent.

4.4. Scenario 2: Reduced Batch Size

The batch size can also be an important factor in our setup.
Batch training involves processing sets of data together,
which leads to more stable training and prevents weight
updates from depending on a single sample. Using an ap-
propriate batch size is crucial for achieving proper model
training. Changing the batch size has a direct effect on the
performance of a model M . The question here is how does
this batch size affect the performance of the MINT Model
T ? The initial hypothesis is that the smaller the batch size,
the more influence each sample has on the modification of
the model’s weights, and therefore it could be more easily
memorized by the network.

In our setup, the baseline model referenced in Sec. 4.2
is trained with a batch size of 256. The experiments here
reduce this size to observe its impact on detection. The ini-
tial goal was to reach a batch size of 1 to examine the ef-
fects; however, training with such small batch sizes resulted
in the Audited Model M—in this instance, the AdaFace
model—not learning effectively, reducing its recognition
accuracy almost to random guess. The smallest batch size
that achieved a decent Audited Model performance was 8.
Tab. 3 displays the results with batch sizes of 8, 32, 64, and
256 (baseline). The performances of the Reduced Batch
Size FR Models M are 78.6%, 90.5%, and 94.0%, com-
pared to the baseline model’s 96.3%.

In Tab. 3, we can observe the results of the MINT Model
T for the various Audited Models M trained with differ-
ent batch sizes. In this case, it is evident that reducing the
batch size does not aid in improving MINT detection T ;
in fact, with a very small batch size, the results are even
worse. Therefore, reducing the batch size deteriorates
the performance of the Audited Model, offering no clear
advantages for MINT detection.
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Auditable Data 8 batch 32 batch 64 batch 256 batch

Conv Layer #1 0.73 0.77 0.75 0.76
Conv Layer #2 0.70 0.71 0.70 0.70
Conv Layer #3 0.61 0.65 0.65 0.65
Conv Layer #4 0.69 0.71 0.73 0.74
Model Outcome 0.80 0.82 0.82 0.81
All Conv Layers 0.79 0.83 0.84 0.84

Table 3. Classification accuracy for the various AAD and Model
Outcome configurations using the Vanilla MINT Model for the
Reduced Batch Size scenario. MINT model trained with 100K
samples.

Auditable Data with Dropout without Dropout

Conv Layer #1 0.76 0.79
Conv Layer #2 0.70 0.75
Conv Layer #3 0.65 0.65
Conv Layer #4 0.74 0.74
Model Outcome 0.81 0.80
All Conv Layers 0.84 0.87

Table 4. Classification accuracy for the various AAD and Model
Outcome configurations using the Vanilla MINT Model for the no-
Dropout scenario. MINT model trained with 100K samples.

4.5. Scenario 3: No Dropout

Dropout is a technique designed to prevent memorization,
and its beneficial use in network training is well-established
[10]. However, the goal of MINT is for the network to
detect if given data was used in training, thus the use of
dropout may be counterproductive. In this section, we
study: can the elimination of Dropout improve MINT de-
tection?

We first train the baseline FR model in the same manner
as before but removing the dropout layer and compare the
results of these two models (with or without Dropout). The
performance of the no-Dropout FR Model M is 96.2%, vir-
tually identical to the baseline model (96.3%). Observing
the results in Tab. 4, it is evident that eliminating Dropout
is beneficial for MINT detection, increasing the detec-
tion accuracy by 3%, from 0.84 to 0.87 (i.e., 23% rela-
tive decrease in MINT detection errors), without com-
promising the performance of the Audited Model.

4.6. Scenario 4: Different Loss Function

The loss function defines the learning of a model [24], di-
rectly influencing the model’s memorization capabilities.
The question here is: can certain loss functions favor MINT
detection over others?

In Tab. 5, we present the experiments for the Differ-
ent Loss Function scenario. The same model was trained
using three distinct loss functions: ArcFace [6], CosFace

Auditable Data AdaFace CosFace ArcFace

Conv Layer #1 0.76 0.74 0.67
Conv Layer #2 0.70 0.68 0.62
Conv Layer #3 0.65 0.69 0.72
Conv Layer #4 0.74 0.74 0.75
Model Outcome 0.81 0.77 0.78
All Conv Layers 0.84 0.82 0.81

Table 5. Classification accuracy for the various AAD and Model
Outcome configurations using the Vanilla MINT Model for the
Different Loss Function scenario. MINT model trained with
100K samples.

[35], and AdaFace [22]. The overarching conclusion is
that the loss function is indeed significant in detection,
altering the MINT Model’s detection outcomes. Upon
closer examination, we observe that depending on the
loss function, the MINT Model performs better with in-
formation extracted from different parts of the network.
For instance, with the ArcFace function, the MINT Model
performs worse with information from the initial convolu-
tional layers (Conv Layers #1 and #2) than with the lat-
ter ones (Conv Layers #3 and #4). Conversely, with the
AdaFace function, the best-performing MINT Model is the
one trained with Conv Layer #1, and the least effective is
with Conv Layer #3. The CosFace function presents an in-
termediate case between the two aforementioned functions.

5. Discussion
As we have seen, the developer has the ability to positively
or negatively influence MINT detection. This has two main
applications.
• The first key application of our research is that an au-

diting or regulatory body (such as the European Union)
establishes training guidelines that developers must fol-
low to achieve the best possible MINT detection. In this
case, this could involve avoiding the use of dropout, uti-
lizing loss functions that favor this detection the most,
and/or ensuring that data passes through the model a min-
imum or maximum number of times. This would result in
greater model transparency and, therefore, user trustwor-
thiness in modern AI/ML systems [7]. Moreover, this can
also be subject to minimum conditions regarding the de-
crease in performance of the developer’s model M , mean-
ing that ML strategies to help auditing processes do not
result in a performance decrease of inspected models.

• On the other hand, there is the possibility that developers
exploit our findings to conceal that certain data was used
for training. This option is dangerous, specially in the
Augmented Data Frequency scenario, where it has been
observed that the developer can reduce the MINT detec-
tion capability of certain data used in training while favor-
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ing others. The second main application of this work is
to make this possibility visible to encourage the scientific
community to develop new techniques designed to pre-
vent (or control) the illicit hiding of training data or other
training details that should be visible because of legal re-
quirements or other reasons.

6. Conclusions

We have analyzed potential factors in the development stage
of AI/ML models (see Fig. 1) that impact MINT detection
(i.e., detecting that given data was used or not in the train-
ing of AI/ML models). After a general description, then, to
better illustrate our methods and methodology, and without
loss of generality (our methods and methodology can be ap-
plied to any other domain where AI/ML models are trained
with data), we have developed and explored a case study in
face recognition. Through experiments involving the modi-
fication of certain training parameters of the Audited Model
M , we have explored their effects on MINT detection, pre-
senting a diverse range of scenarios and results. Our find-
ings suggest that certain parameters, such as dropout elimi-
nation, the utilization of specific loss functions, or increas-
ing the number of times data passes through the network,
can favor MINT detection, resulting in improvements of up
to 23% relative decrease in MINT detection errors. Further-
more, we have demonstrated that developers can manipu-
late the MINT detection difficulty of certain data by adjust-
ing their frequency of exposure within the Audited Model
training process.

Our future work in this line will: 1) improve the MINT
detection accuracy with improved learning architectures, 2)
exploit general AI models to help in that regard in specific
AI/ML domains of our interest such as biometrics [5], 3) in-
troduce multimodal methods [26] to improve the proposed
auditing processes, and 4) investigate how certain human
feedback [27] can help to curate and improve the proposed
methods.
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