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Abstract

Ensuring both transparency and safety is critical when
deploying Deep Neural Networks (DNNs) in high-risk ap-
plications, such as medicine. The field of explainable Al
(XAI) has proposed various methods to comprehend the
decision-making processes of opaque DNNs. However,
only few XAI methods are suitable of ensuring safety in
practice as they heavily rely on repeated labor-intensive
and possibly biased human assessment. In this work, we
present a novel post-hoc concept-based XAl framework
that conveys besides instance-wise (local) also class-wise
(global) decision-making strategies via prototypes. What
sets our approach apart is the combination of local and
global strategies, enabling a clearer understanding of the
(dis-)similarities in model decisions compared to the ex-
pected (prototypical) concept use, ultimately reducing the
dependence on human long-term assessment. Quantifying
the deviation from prototypical behavior not only allows
to associate predictions with specific model sub-strategies
but also to detect outlier behavior. As such, our ap-
proach constitutes an intuitive and explainable tool for
model validation. We demonstrate the effectiveness of our
approach in identifying out-of-distribution samples, spuri-
ous model behavior and data quality issues across three
datasets (ImageNet, CUB-200, and CIFAR-10) utilizing
VGG, ResNet, and EfficientNet architectures. Code is avail-
able at https://github.com/maxdreyer/pcx.

1. Introduction

Deep Neural Networks (DNNs) showcase remarkable per-
formance in tasks such as medical diagnosis [7] and au-
tonomous driving [19]. The significance of understanding
and validating Machine Learning (ML) models becomes
particularly pronounced in such safety-critical applications.
Notably, DNNs have been shown to learn shortcuts that
stem from spurious data artifacts, such as watermarks [29].
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They further provide unreliable predictions when faced with
samples from unrelated data domains, commonly referred
to as Out Of Distribution (OOD) samples. In both scenar-
i0s, model predictions may be rooted in incorrect reason-
ing, potentially leading to severe consequences when these
models are deployed in real-world applications.

The field of eXplainable Artificial Intelligence (XAI) has
emerged to demystify the inner workings of black-box mod-
els and offer insights into their decision-making processes.
XAI methods generally fall into the categories of global and
local. While global techniques study model behavior on the
class-wise or dataset-wise level, local XAl renders explana-
tions at the instance level, facilitating an understanding of
input feature relevance for specific prediction outcomes.

When deploying ML models, the importance of trans-
parency and safety for single decisions often takes prece-
dence, rendering global XAI insufficient on its own [24].
While local XAI techniques offer the potential for model
prediction validation, they often rely heavily on human as-
sessment to understand and interpret model behavior. The
labor-intensive process of human assessment, coupled with
the potential for human bias [16], hinders the practical
implementation of these systems in critical applications.
Therefore, a need for a more efficient and reliable means of
understanding and validating safety of ML models remains.

In this work, we address this challenge and propose a
novel concept-based XAl framework named Prototypical
Concept-based Explanations (PCX), that signals and re-
veals deviations from expected model behavior by provid-
ing meaningful and more objective explanations, reducing
the need for (possibly biased) human interpretation. Con-
cretely, for any prediction, PCX communicates the differ-
ences and similarities to the expected model behavior via
(automatically discovered) prototypes. Here, prototypes are
representative predictions, that summarize the global model
behavior in condensed fashion. To guarantee high inter-
pretability throughout, we build upon the latest progress
made in concept-based XAl, offering explanations in terms
of human-understandable concepts [1, 18], applicable to

3491



a concept-based explanation b validating predictions using prototypes c prediction strategy map

localization concept visualization

test sample feather

red color
1.3% '

prediction: water |
flamingo 4.3%

other concepts

Flamingo because of the feathers, red color and water.
Is this an ordinary explanation?

L

quantifying
differences

difference to prototype prototype prototype 1
: closest
+0.3% S )
similar prediction
strategy
A -3.0%
in relevance o\ o
under-used 4.3% feather ° °
® oo
. °
B2 0% 4.3% red color e 0% .
in relevance 2.3% water flamingo class o o ® = [\
over-used : test sample

class ©
kelih()o{l °
prototype 3

outlier sample  test sample outlier sample

Figure 1. Using the PCX framework: By contrasting a prediction with the prototypical prediction strategy, the stakeholder can understand
how (un-)ordinarly the model behaves. (a): A flamingo prediction is based on concepts like “feather”, “red color” and “water”. While
recent concept-based XAl methods provide relevance scores, localization heatmaps, and visualizations for each concept, it remains unclear
whether such composition of used concepts is expected. (b): Comparing against prototypes enables to understand to what extend concepts
are similar (e.g., “feather”), underused (e.g., “red color”), or overused (e.g., “water”). These differences can be quantitatively measured
to assess the degree of an outlier prediction. (¢): PCX allows to automatically identify outliers, or, alternatively, the closest prototypical
prediction strategy. Prototypes are hereby automatically discovered, summarizing the global model behavior in condensed fashion.

any DNN architecture in a post-hoc manner. Notably, PCX
can hereby not only highlight which concepts are used, but
also which ones are not used. For the flamingo in Fig. la,
e.g., we learn that the red color concept, typically present
for the prototype in Fig. 1b, is underrepresented. Quantify-
ing differences in latent feature use allows for an objective
means to identify typical prediction strategies, e.g., for pos-
itively validating predictions, issuing warnings otherwise.

Contributions This work introduces PCX, an intrinsi-
cally explainable framework for validating DNN predic-
tions that combines both class-wise and instance-wise pre-
diction strategies. We show how PCX allows to

1. locally study predictions on the concept-level by lever-
aging state-of-the-art concept-based XAl techniques.

2. globally understand (dis-)similarities in prediction
strategies within and across classes via prototypes. We
further validate prototypes w.r.t. metrics such as faithful-
ness, stability and sparseness, demonstrating the superi-
ority of concept relevance scores over activations.

3. glocally quantify and understand (un-)usual concept use
by a model for individual predictions by comparing these
to prototypes. We showcase PCX for detecting spurious
model behavior, data quality issues and OOD samples.

2. Related Work

We now present an overview of related work in concept-
based XAI, prototypical explanations and OOD detection.

2.1. Concept-based Explanations

Contrary to traditional local feature attribution methods that
investigate the importance of input-level features, concept-

based XAI methods study the function (concept) of latent
representations in a specific layer of a DNN. Here, either
single neurons [6], directions, i.e., Concept Activation Vec-
tors (CAVs) [26], or feature subspaces [47] are investigated.
Early XAI works study how these concepts are used
for global decision making, e.g., the concepts most rele-
vant for an output class [26]. Recent works also general-
ize local feature attribution methods to compute importance
scores of concepts for individual predictions [1, 18], bring-
ing concept-based explanations to the instance level.
Whereas instance-wise concept-based explanations en-
able new levels of insight, they can be overwhelming and
complex for a stakeholder to process, as hundreds of con-
cepts might exist and need to be studied for each in-
stance [1]. Hence, other works [10, 17] illustrate the advan-
tage of visualizing local decisions in a global embedding,
as also shown in Fig. lc. With PCX, we extend this idea
by introducing prototypes. This further reduces the need
for human interpretation as it allows to compare individual
(local) prediction strategies with prototypical (global) ones.

2.2. Prototypes for Explanations

Prototypes represent example predictions that summarize
the global model behavior in condensed fashion, render-
ing them especially valuable for large and complex datasets.
While there is a large group of works focusing on using pro-
totypes for (robust) classification, e.g., [31, 51], few works
use prototypes for XAl. The works of ProtoAttend [4] and
[13] increase interpretability of DNNs by anchoring deci-
sions on prototypical samples. Whereas both require modi-
fication of the DNN architecture as well as additional train-
ing, [13] highlights similar features between test sample
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and prototype. In contrast, PCX is post-hoc applicable and
communicates similarities as well as differences via human-
understandable concepts.

Prototypical parts are widely used in interpretable mod-
els [11, 34, 35]. For example, ProtoPNet [11], one of the pi-
oneering works, dissects images into prototypical parts for
each class, subsequently classifying images by consolidat-
ing evidence from prototypes. It is important to note, that
whereas these works study prototypical parts, we define a
prototype as a prediction strategy.

2.3. Out-of-Distribution Detection

A popular safety task in DNN deployment is OOD detec-
tion, catching data samples that are not of the training dis-
tribution. One line of research focuses on the fact that OOD
samples often result in uncertain predictions, rendering the
softmax output values already highly informative [22, 32].
Other works leverage, e.g., the latent activations and mea-
sure divergence from typical patterns [30]. Notably, OOD
methods are not intrinsically interpretable. Hence, first
works introduce post-hoc concept-based explanations for
OOD detectors [12, 42]. As PCX is rooted in concept-based
XAl it inherently provides interpretable OOD detection.

3. Methods

PCX is based on recent concept-based XAI techniques,
which are introduced in Sec. 3.1. Using concept-based ex-
planations, we define and compute prototypical explana-
tions, discussed in Sec. 3.2, to which we then compare in-
dividual predictions as described in Sec. 3.3.

3.1. Concept-based Explanations

A model’s prediction is the result of successive layer-wise
feature operations, where the intermediate latent features of
each layer are described by the activations of its neurons.
Given a sample x of dataset X, the latent activations a(x) €
R™ in a specific layer with n neurons can be viewed as a
point in a vector space (activation space) that is spanned by
n canonical basis vectors (one for each neuron).

Then, we can assign a concept ¢ to each neuron, or more
generally, also to a superposition of neurons describing a
direction in latent space via a CAV u® € R™. How the latent
activations a(x) are decomposed into a linear combination

of m (chosen) CAVs summarized by U = (u?,...,u™) €
R™*™ is described by the transformation
a(x) = U™ (x) (1)

from concept space to activation space. Here, v*'(x) € R™
summarizes the activation (contribution) of each of the m
concepts. Depending on the choice of the set of CAVs, the
decomposition might only be approximated, e.g., when us-
ing non-negative matrix factorization [17]. For simplicity

and to ensure exact reconstruction as in Eq. (1), we study
the concepts of individual neurons in this work, i.e., choose
u® = e® with canonical basis vectors e = J.; with Kro-
necker delta § leading to a direct mapping v*'(x) = a(x).

Concept Relevance Scores In order to attain an under-
standing of how concepts are used for individual samples
x and prediction outcomes y, we require relevance scores

¥ (x|y.) of each concept c. Concept relevance scores can

c
be computed using various established feature attribution
methods such as InputxGradient [43] or Layer-wise Rel-
evance Propagation (LRP) [5] (see [17] for an overview).
When studying each neuron’s concept, concept relevances
rel

VI (x|yy) are directly given by applying a feature attribu-
tion method and aggregating the relevances in the latent

space instead of the input space.

Concept Localizations Furthermore, we localize individ-
ual concepts in the input via heatmaps as shown in Fig. 1a.
Specifically, we leverage the CRP framework [1] that en-
ables concept-specific heatmaps by restricting the backward
pass of feature attribution methods (with LRP by default).

Concept Visualizations Several works have proposed
techniques to visualize concepts of latent representations
[37]. We adhere to the recently proposed Relevance Maxi-
mization approach [1]. This technique explains concepts by
exemplifying them, selecting reference samples that most
accurately represent the functionality of a neuron. These
reference samples highlight the input components most rel-
evant to a specific concept, as shown in Fig. la.

3.2. Finding Prototypes

During training, a model learns to extract and use features
from the input data to fulfill its training task. If we are to
collect the presence of such features (given by latent acti-
vations), we can measure feature distributions that are char-
acteristic for specific classes. The works of [30, 53] model
such distribution via multivariate Gaussian distributions.

In our framework, we collect relevances instead of ac-
tivations of features, which describe how features are uti-
lized by the model in making specific predictions. Thus,
relevances naturally filter out irrelevant activations and am-
plify useful features for the model’s class prediction. As
a result, relevances provide more precise and specific in-
formation regarding the encoded classes, as also illustrated
in Fig. 2 (bottom) using UMAP embeddings for eight Im-
ageNet class of feline species. Further, instead of assum-
ing a single Gaussian distribution for each class, we model
a class distribution via a multivariate Gaussian Mixture
Model (GMM). This is motivated by the fact, that multiple
sub-strategies can exist, e.g., flamingos photographed from
different perspectives or distances as shown in Fig. Ic.
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Figure 2. Intuition behind modeling prototypes: (fop): In concept
space, each dimension represents the relevance or activation of a
concept. We assume, that concept vectors v of a specific class are
forming distinct clusters that can be approximated by a mixture
of Gaussian distributions (GMM). (bottom): Concept relevances
(LRP e-rule) result in more disentangled UMAP embeddings com-
pared to activations. Shown are eight feline ImageNet classes (dif-
ferently color-coded) for the VGG-16’s last convolutional layer.
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Concretely, as illustrated in Fig. 2 (top), we model the
distribution p of concept attributions for each class k as

PP = Npk = MN(uf,EF) )

? K2

with A¥ > 0 and _; \¥ = 1 to ensure that all probabilities
add up to one. Here, u¥ and Ef correspond to the means
and covariance matrices of each Gaussian.

The probability density function of each Gaussian p¥ is
further given as

() = ! (v (=) ()

(2m)% det(XF)2
(3)

Having specified the number of Gaussians, GMMs then nat-
urally provide prototypes, i.e., one for each Gaussian as
in [25, 39]. In fact, we receive a mean and covariance matrix
for each prototype, which with Eq. (3) allows to measure
how likely a new point belongs to a prototype, further de-
tailed in the following section. Note, that as the mean does
not necessarily correspond to a training sample, we show
the closest sample for illustration purposes.

To summarize, PCX requires a pre-processing step to
find prototypes, as outlined in Fig. 3: For the training sam-
ples of each class, we compute concept relevance vectors
on which a GMM is fitted to provide the prototypes.
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Figure 3. Pre-processing pipeline of PCX : DNN predictions are
generated over training samples of a specific class. We further
compute concept relevance scores for each prediction, represent-
ing prediction strategies. By fitting GMMs on the concept rele-
vance vectors, we find prototypical prediction strategies.

3.3. Quantifying the (Extra-)Ordinary

Having modeled class prediction strategies via GMMs al-
lows to compute the likeliness of new sample (prediction)
to correspond to class k directly via the log-likelihood L*

LF(v) = logp*(v). 4)

Then, a prediction with concept relevances v corresponds

most likely to the class given as argmax, L* (v).
Analogously, we can also assign a test prediction to the

most likely prototypical prediction strategy p* given by

p(v) = argmax;, ; log pf (v). 5)

Other popular metrics that can be used to assign samples to
prototypical predictions include the Mahalanobis distance
and Euclidean distance, as further discussed in Appendix B.

Understanding (Dis-)Similarities A high likelihood as
in Eqgs. (4) and (5) directly results from small deviations in
concept relevance scores between test and prototype predic-
tion, given by the difference of concept relevance vectors

Af(v)=v—pf. ©6)

Thus, we can understand, which concepts are over- and un-
derused, corresponding to high and low entries in A¥ (),
respectively, or similar (with small entries in |A¥(v)|). It
is to note that it is also possible to include information from
the covariance matrices as in Eq. (3), allowing for an un-
derstanding of which concept combinations are (un-)usual,
further described in Appendix D.1.
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4. Experiments

We address the following research questions:

1. (Q1) What global insights can we gain with prototypes?

2. (Q2) How can we evaluate prototypes?

3. (Q3) How can we use prototypes to validate predictions
and ensure safety?

Experimental Setting We use ResNet-18 [20], VGG-
16 [44] and EfficientNet-BO [46] architectures on Ima-
geNet [40], CUB-200 [48] and CIFAR-10 [27]. Whereas
models on ImageNet are pre-trained from the PyTorch
model zoo, we train models on CUB-200 and CIFAR-10.
Details on datasets and training are given in Appendix A.

4.1. (Q1) Prototypical Concept-based Explanations

Class prototypes allow us to inspect and understand the
global prediction strategies of our model. Concretely, we
can study the concepts most relevant for each prototype,
with concept visualizations and localizations available for
easier understanding of the concepts, as shown in Fig. la.

Comparing Class Strategies To gain a global under-
standing at one glance, we visualize the similarity in pre-
diction strategies between all classes via a similarity matrix
in Fig. 4a. Here, we compute the cosine similarity between
class prototypes (one per class). Concretely, the prototypes
of the VGG-16 model for the first 20 ImageNet classes are
shown when using LRP-¢ for concept relevances in layer
features.28. There are apparent clusters with similar
prediction strategies, e.g., for fish and bird species.

At this point, we can compare individual class strategies,
such as the Brambling and Robin bird species (more exam-
ples in Appendix D). Both seem to have similar concepts,
as indicated by a similarity of 80 %. Whereas both show
orange-brown color in parts, they differ in a “gray-white
spotted” texture (indicating Brambling) and the combina-
tion of brown, white and black patches (indicating Robin).

Prototypes for Data Quality and Annotation When ex-
amining multiple prototypes per class, we gain a post-
hoc understanding of a model’s sub-strategies for decision-
making, including, e.g., prototypes for different types of
hens, or habitats for the ice bear class. This in turn shows
promise for large-scale data annotation by assigning sam-
ples to the respective prototypes. While studying proto-
types, we encounter a multitude of problems within the Im-
ageNet [40] (train) dataset such as wrong labels, poor data
quality, and correlating features (shortcuts). All following
and additional examples are provided in Appendix C.6.
Wrong Labels: We identify prototypes for objects not
corresponding to the actual label, likely due to a similar
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Figure 4. Prototypes allow for a global understanding of class
prediction (dis-)similarities. (a) Similarity matrix of the first 20
ImageNet class prototypes. We can identify distinct clusters for
fishes and bird species. (b) Unraveling the (dis-)similarities of
the Brambling and Robin prototype: Whereas both are similar in
terms of orange-brown color in parts, they differ , e.g., in a “gray-
white spotted” texture (indication for Brambling).

naming, including tigers for “Tiger Cat”, buses for “passen-
ger car” and Leopard Lacewing butterflies for “lacewing”.

Correlating Features: We reveal various correlations
that the model exploits for shortcut-learning, distinctly visi-
ble in prototypes, including cats in cartons or buckets, dogs
with tennis balls, and white wolves or lynxes behind fences.

Poor Data Quality: We further observe data quality is-
sues, such as large numbers of low-resolution images that
result in dedicated “blur” concepts relevant for, e.g., detect-
ing milk cans, red-breasted merganser or ties. Also, objects
are cropped out of images in some cases due to, e.g., data
augmentation, as for the “pickelhaube” class, stressing the
need to inspect data after applying augmentation.

4.2. (Q2) Evaluating Prototypes

To evaluate prototypical explanations, three established
XAI evaluation criteria in literature [17, 21] are applied,
namely faithfulness, stability and sparseness. We further in-
troduce a coverage measure and perform outlier detection.
Faithfulness: Local XAl methods compute importance
scores of features, which can either be input features or la-
tent features. One of the most popular evaluation methods
to check an explanation’s faithfulness to the model is to per-
form feature deletion [36]. Concretely, the most important
features (according to a chosen feature attribution method)
are removed successively, i.e., set to a baseline value, and
the change in model confidence is measured. A faithful ex-

3495



Table 1. Evaluating different attribution methods for concept relevance scores used for prototypes. We show results on ImageNet for 20
classes using (VGG | ResNet | EfficientNet) architectures averaged over all layers, where higher (1) values are better and best are bold.

Faithfulness (1) Stability (1) Sparseness (1) Coverage (1) Outlier Detection (1)
LRP (e-rule) [5] 12.2]14.2|7.4 91.7|90.6|96.1 37.1/36.6/37.0 56.4|66.5|71.3 70.9|78.8|82.8
Input x Gradient [43] 12.2]14.216.7 91.8]90.7|84.1 37.1/36.6|35.5 56.2|66.3|50.8 70.4]78.3]72.9
LRP (composite) [33] 12.6]13.6|7.5 98.1/99.0]/99.0 21.0/22.8|14.0 42.3|56.5|50.2 65.6]73.3|68.2
GuidedBackProp [45] 12.0]13.0/6.0 98.7]/99.3|85.9 31.1]/30.9|31.8 43.6]59.3|53.2 66.2]74.8|73.5
Activation (max) 11.9]12.5]6.3 99.3|99.2|199.1 7.1| 4.9 |9.8 27.5|39.5|36.1 54.3|57.7|57.3
Activation (mean) 11.1]13.1]15.9 98.7|98.8|92.8 11.4]12.2|24.0 24.8]|41.6]36.1 55.8160.8 | 60.2

planation is assumed to result in a strong confidence drop,
when the most important features are removed. In our case,
the most relevant concepts according to the nearest class
prototype are removed (i.e., set to zero activation), and the
change in the class output logit measured. To receive a final
score, the Area Under the Curve (AUC) is computed.

Stability: To evaluate stability, we compute five proto-
types on k-fold subsets of the data (k = 10 as default). We
then map prototypes together using a Hungarian loss func-
tion [28] and measure the cosine similarity between vectors.

Sparseness: We compute the cosine similarity between
the absolute value of the prototype vector (i.e., centroid p)
and the unit vector, which represents a uniform distribution
of concept attributions. The less similar a prototype is to the
unit vector, the more sparse, and easier to interpret.

Coverage: To measure how well prototypes model the
underlying distributions and are suitable to assign correct
prediction strategies, we introduce the coverage metric. The
task is to correctly assign sample predictions from a hold-
out set correctly to known sub-strategies using Eq. (5). We
therefore compute eight prototypes on concept attributions
from eight (animal) classes of the same family. Such a set-
ting is illustrated in Fig. 2 (bottom) for feline species. De-
tails on the groups of classes are given in Appendix C.

Outlier Detection: GMMs do not only allow to assign
samples to prototypes, but also to detect outliers. We ad-
here to the same setting as for the coverage metric, but now
measure how well we can detect outliers (from other classes
of the same family) using Eq. (4). Concretely, the AUC is
measured when plotting the true positive rate over false pos-
itive rate under a varying detection threshold.

In the following, we evaluate the influence of various de-
grees of freedom of our approach. This includes the choice
of the underlying attribution method to compute concept
relevance scores, and the number of prototypes used to fit
the GMM. Note, that the concept basis U, as in Eq. (1), is
also variable. We refer to [17] for a thorough comparison
of various techniques to compute concept bases. Further
note, that we average the evaluation scores computed over
multiple model layers (layers are detailed in Appendix A).

4.2.1 Evaluating Concept Attribution Methods

We compare (modified-)gradient-based attribution meth-
ods to compute concept relevances, including LRP vari-
ants [5, 33], InputxGradient [43], GuidedBackProp [45]
and activation with max- and mean-pooling (details in Ap-
pendix C). Notably, we refrain from using other popular
methods such as SHAP and GradCAM due to their inef-
ficiency or inapplicability, as discussed in Appendix C.

When comparing the results in Tab. 1 (standard errors
reported in Appendix C) for models on ImageNet, it is ap-
parent that relevance scores (computed via local XAI meth-
ods) are not only more faithful than activation values, but
also more sparse, similarly observed in [15]. Further, rele-
vances lead to better coverage and outlier detection scores,
indicating higher disentanglement of distributions, as also
observed in Fig. 2 (bottom). Generally, higher-level layers
result in better scores, as shown in Appendix D.

Overall, LRP (e-rule) relevances result in high faithful-
ness, sparseness, coverage and outlier detection scores, by
still providing stable prototypes. Thus, in the following, we
use LRP (e-rule) relevances.

4.2.2 Varying the Number of Prototypes

Increasing the number of prototypes allows for a more fine-
grained, but also more complex understanding. Interest-
ingly, faithfulness does not significantly increase with the
number of prototypes, as shown in Fig. C.1 of Appendix C.
It could be expected, that the closer a prototype to the actual
sample (which is more probable for a larger number of pro-
totypes), the higher the faithfulness score. Apparently, this
is true when removing the first concepts, but for later stages
the summarizing (global) effect of few prototypes seems to
be favorable, as further detailed in Appendix C.

There are, however, clear trends regarding stability, that
is decreasing, and sparseness, which is increasing. Further,
as can be expected, coverage and outlier detection scores
are improving as well. All trends are depicted in detail in
Fig. C.1 of Appendix C. We also provide qualitative exam-
ples for different prototype numbers in Appendix D.2.
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4.2.3 Using GMMs for Improved Clustering

The k-means clustering algorithm represents a simpler alter-
native to GMMs for finding prototypes that is not based on
covariance estimation. In fact, k-means is commonly used
as a starting point to fit GMMs [38]. Compared to k-means,
GMMs lead to improved coverage and outlier detection
scores, as further shown and discussed in Appendix C.3.
Notably, the covariance information is especially improv-
ing outlier detection for small numbers of prototypes.

4.3. (Q3) Validating Predictions

In this section, we leverage prototypes to validate predic-
tions, reveal spurious model behavior, and identify OOD
samples in a human-interpretable, yet automated, manner.

To achieve these goals, we employ a two-step approach:
First, we compute the class likelihood as in Eq. (3), which
provides a quantitative measure of how unusual a sample is
to the model. This score allows to objectively assess spuri-
ous predictions and OOD samples in Secs. 4.3.1 and 4.3.2,
respectively. To provide detailed human-understandable in-
formation, we secondly proceed to compute the difference
between concepts relevance values with the prototypes, al-
lowing to identify which features are over- or underused in
the context of the given sample.

Spotting Differences: In Fig. 1a, a sample is predicted as
“flamingo” with a class likelihood slightly below the ordi-
nary. We begin by studying the deviation of relevance val-
ues in Fig. 1b between sample and prototype. The sample
shows strong relevance on the water concept, suggesting an
unusual amount of water in the background. Additionally,
the comparatively lower relevance on the redness concept
indicates that the depicted flamingo lacks the expected level
of redness. Notably, we can also analyze deviations to pro-
totypes of other classes, offering counterfactual insights.

Aligning to Prototypical Strategies: The sample closely
aligns with prototype 1, representing flamingos standing
in water. By understanding the underlying prototypes we
can thus not only understand the data (or domain) as per
the model’s perception, but also to identify similar data in-
stances, e.g., more flamingos in water, useful for data an-
notation purposes. We further want to remark the idea of
tracking prototypes during training, possibly giving insights
into challenges such as (detecting) data drift [23].

4.3.1 Use Case: Spurious Model Behavior

Several works in the field of XAI have tackled the problem
of revealing spurious model behavior. The usual approach
is to study outliers, e.g., in local explanations [3, 29, 41] or
latent representations [8, 9, 49]. Whereas PCX allows to
find and study outlier predictions, we also want to highlight
the study of ordinary, i.e., prototypical predictions.

UMAP embedding of training predictions for carton class

_I outlier
cluster
“«%.

prototype

2600

2500

2400
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other
outliers
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a checking prototypes for spurious behavior

input localization concept visualization

concept 467

3 Chinese watermark concept most relevant
b checking outlier clusters for spurious behavior

input localization concept visualization

concept 328

4“3 Tiger Cat concept most relevant

Figure 5. Revealing spurious model behavior with PCX: (a)
Firstly, we examine the characteristic concepts of each prototype
to find spurious concepts. As shown, a spurious Chinese water-
mark concept is most relevant for the prototype of the “carton”
class. (b) Secondly, clusters of training predictions that deviate
strongly from prototypes can be studied for spurious behavior. For
the “carton” class, we reveal a cluster of Tiger Cats in cartons, that
lead to the model using cat features to predict the carton class.

An illustrative example is given by the ImageNet “car-
ton” class, as shown in Fig. 5a. Here, we reveal that most
characteristic for the class prototype is a gray “Chinese wa-
termark” concept which is overlaid over the entire image
(best observed in digital print).

Furthermore, our analysis extends beyond individual
outlier samples to include the study of entire outlier clus-
ters within the training set. These outlier clusters represent
instances that significantly deviate from the norm and of-
ten reveal surprising and unexpected model strategies. In
Fig. 5b, we discover an outlier cluster consisting of sam-
ples depicting cartons with cats inside, leading the model to
utilize cat-related features to increase its prediction confi-
dence. Notably, the cat cluster receives its own prototype as
we increase the number of prototypes (see Appendix D).

This example underlines the value of examining proto-
types to ensure safety. Notably, once examined, they allow
for each new prediction to be automatically validated and
understood when assigned to a prototype (and no outlier).

4.3.2 Use Case: Out-of-Distribution Detection

In Sec. 4.2, we use PCX to detect outlier predictions that de-
viate from prototypes. In the following, we investigate the
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Table 2. OOD detection results for (VGG|ResNet|EfficientNet) models trained on CUB-200. Higher AUC scores are better with best bold.

LSUN Places365 Textures ImageNet Average
MSP [22] 99.2|98.8|98.9 91.2193.9|88.4 89.2]/91.6|89.7 85.3]90.7|87.0 92.0
Energy [32] 100.0|99.8|47.7 97.3|96.1|84.4 94.7/95.0]/63.9 89.7|93.2|87.2 87.4
Mabhalanobis [30] 16.9]74.4]53.1 80.3195.9/90.0 92.1]/96.9]95.6 89.4|95.7|89.6 80.8
PCX-E (ours) 99.9/99.8|99.8 95.9(97.4|94.9 98.7]198.9]98.6  93.2|95.7|92.7 97.1
PCX-GMM (ours) 100.0/99.9|99.9 97.9|98.5(96.1 99.3|99.3|98.8 95.9|97.2|93.6 98.0

understanding OOD detection failure cases

' localization  concept vis
|

s localization

L 2.9% -

OOD sample

(Windsor tie predicted)

prototype

4—3 resembles prototype in blurriness (Windsor tie)

Figure 6. Understanding why an OOD detection is classified as in-
distribution: For the model, the blurry OOD sample is similar to a
“Windsor tie” prototype due to the high relevance of blurring (top
concept). This suggests a potential flaw in the model as it relies on
a blur concept rather than the actual “tie-like” concept.

effectiveness of our approach for detecting OOD samples,
and compare against established and dedicated methods in
literature, namely MSP [22] based on softmax probabilities,
Energy [32] and Mahalanobis [30]. The task is to detect
samples from unrelated datasets such as LSUN [52], iSUN
[50], Textures [14], SVHN [54] and Places365 [55]. For
PCX, we perform OOD detection by measuring the like-
lihood for the predicted class using Eq. (4) (PCX-GMM),
and alternatively also compute the Euclidean distance to the
closest prototype of the predicted class (PCX-E). To evalu-
ate OOD detection performance, we report the AUC when
plotting the true positive rate over false positive rate under
a varying detection threshold. PCX and Mahalanobis are
hereby based on features of the last convolutional layer.

For the models trained on CUB-200, PCX is most ef-
fective for OOD detection (results given in Tab. 2). Note
that we exclude bird species from ImageNet here. For
CIFAR-10 and ImageNet models, the Energy method per-
forms slightly better on average, as shown in Appendix D.4.

Importantly, PCX is intrinsically explainable (contrary to
other dedicated OOD detection methods), allowing to un-
derstand why OOD samples are (falsely) classified as in-
distribution. In Fig. 6, a sample from LSUN (predicted as
“Windsor tie” by a VGG-16 on ImageNet) is similar to a
class prototype, because of a “blur” concept relevant for
both. This reveals that the model has learned to associate
blurred images with the “Windsor tie” class, as many low-
resolution training samples exist. Thus, by understanding
OOD failure cases, we can reveal flaws of the model itself.

5. Limitations and Future Work

PCX relies on estimating covariances for GMMs which be-
comes unstable with few data points. To automatically spec-
ify the number of prototypes, studying approaches as in
[2, 35] is of interest. Further, how to choose a concept ba-
sis (i.e., U) with optimal human-interpretability is still an
open question in concept-based XAl literature. Improving
concepts will also further increase the usefulness of PCX.

6. Conclusion

PCX is a novel concept-based XAI framework that brings
prototypes to local explanations, providing more objective
and informative explanations of DNNs in a post-hoc man-
ner. Concept-based prototypes hereby enable to study the
model behavior on the whole training data efficiently and
in great detail, allowing to understand sub-strategies and is-
sues with the data. As PCX bases prototype extraction on
GMMs, we receive effective quantitative measures for in-
and outlier detection. By assessing the difference to the pro-
totypical model behavior, PCX reduces the reliance on hu-
man assessment and allows for a scalable analysis of large
sets of predictions. We demonstrate the value of our method
in detecting spurious behavior by studying not only outliers,
but also inliers, i.e., the prototypes. Further, PCX shows
not only effective for OOD detection, but is simultaneously
interpretable, revealing flaws of the model itself through
missed OOD detections. This work firstly introduces post-
hoc concept-based prototypes, showcasing XAI’s potential
for broader applicability in ML validation and safety.
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