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Abstract

With the current interest in deploying machine learning

(ML) models in safety-critical applications like automated

driving (AD), there is increased effort in developing sophis-

ticated testing techniques for evaluating the models. One

of the primary requirements for testing is the availability of

test data, particularly test data that captures the long tail

distributions of traffic events. As such data collection in the

real world is hazardous, there is also a necessity for gen-

erating synthetic data using simulators or deep learning-

based approaches. We propose a pipeline to generate aug-

mented safety-critical scenes of the Cityscapes dataset us-

ing pre-trained SOTA latent diffusion models with addi-

tional conditioning using text and OpenPose-based Con-

trolNet, where we have fine-grained control of the attributes

of the generated pedestrians. In addition, we propose a

filtering mechanism, similar to self-consistency checks in

large language models (LLMs), to improve the quality of

the generated data regarding the adherence to generated at-

tributes, reaching ∼ 25% improvement in our experiments.

Finally, using pre-trained SOTA segmentation models on

Cityscapes, we evaluate the generated dataset’s viability by

qualitatively evaluating the predicted segmentation maps.

1. Introduction

With the increased focus on AI applications in safety-

critical systems like autonomous driving (AD), there is

a growing need and interest in building trustworthy or

Safe AI models. Upcoming standards like ISO/CD PAS

8800 [22] and projects like KI-Absicherung1 propose con-

sidering functional insufficiencies where evidences from

various testing approaches are used to build an overall

safety argumentation for the AD vehicle [9]. One of the

key ingredients for such an approach is the availability of

assurance or test datasets [19, 38] which contain, in ad-

1https://www.ki-absicherung-projekt.de/en/

dition to normal AD scenarios, safety-critical scenarios or

corner cases [6, 43] where the long tail distribution of driv-

ing scenarios is captured (e.g., a scene of a child running

in front of a car). As such data acquisition is challeng-

ing and potentially dangerous to capture in the real world,

there is an interest in generating synthetic or augmented

datasets. Furthermore, the issues of data coverage and

completeness are considered through operational design do-

mains (ODDs) [25], which define the scope of AD vehicle

use (see, e.g., [21] for a pedestrian focused ODD or Euro

NCAP [13] for testing scenarios).

Figure 1. A sample image generated as part of our pipeline where

an image from the Cityscapes [11] dataset is augmented with a

pedestrian with attributes: female, young, grey shirt-color, dark-

skinned, running.

While several recent works [12, 16, 17, 20, 28, 36, 38,

41] focus on using computer simulators to generate syn-

thetic datasets for testing AD models, there is a gradual

shift in recent years to using deep learning based approaches

with the introduction of NeRFs [45] and diffusion mod-

els [7, 29]. While the former approaches allow for the easy

generation of new data, creating maps and digital assets is

cost-intensive, and the data still suffers from a lack of real-

ism, leading to domain gap issues. The deep learning-based

approaches not only present novel methods to generate crit-

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3594



ical scenarios in terms of new scenes but also augment ex-

isting datasets in critical ways, thereby staying close to the

original data distribution leading to smaller overall domain

gaps, compare also FID scores in [8]. However, as the gen-

eration of the safety-critical data requires not only realistic

image generation capability but also granular control over

the attributes of the objects inside the image, the deep learn-

ing approaches based on diffusion models like Stable Diffu-

sion [34] can still suffer from quality issues. For example,

if the goal is to generate a safety critical scene of ªa black

woman walking and wearing a red shirtº in front of the ego

vehicle, incorrect generation of the different attributes of the

person could lead to inconclusive tests.

We address this problem by designing a pipeline to aug-

ment images from existing datasets like Cityscapes with

pedestrians to create novel safety-critical scenarios (e.g.,

see Fig. 1). The pipeline takes as input images from the

Cityscapes dataset, textual prompts that contain the re-

quested attributes of the pedestrian, and additional con-

ditioning information like pedestrian pose. Using an ap-

proach similar to self-consistency techniques in large lan-

guage models (LLMs) [40], we introduce a filtering mech-

anism that improves the quality of the generated data w.r.t.

adherence to specification, i.e., images where the augmen-

tation is correct w.r.t. the specification are more likely to re-

main in the final augmented dataset. We evaluate the quality

of the augmented and filtered augmented datasets by human

evaluation on a sampled subset. Our contributions can be

summarized as follows:

• A pipeline for inpainting safety-critical pedestrians into

real-world datasets like Cityscapes with control over

granular attributes from the ODD.

• An automated self-consistency check over the augmented

images to filter out most augmented images that do not

adhere to required attributes and to also further under-

stand the limitations of foundational models like CLIP.

• Qualitative evaluation of publicly trained semantic seg-

mentation models on the augmented data to identify the

viability of the dataset and also indicate potential weak-

nesses of some of the models.

2. Related Work

In this section, we discuss SOTA approaches in synthetic

data generation and augmentation, both using computer

simulators and DNN-based approaches with a focus on

AD. Subsequently, we discuss how our proposed consis-

tency check for CLIP [32] differs from self-consistency ap-

proaches in LLMs.

As the interest in data generation in AD for both training

and testing has increased over the past years, several com-

puter simulator-based synthetic datasets have been gener-

ated like VirtualKITTI [16], GTA5 [33], SYNTHIA [36],

Valerie22 [20], Synscapes [41], and SynPeDS [38]. In ad-

dition, with the Carla [12] simulator, some works [17, 28]

generated test datasets with additional metadata attributes

and evaluated performance limiting factors of DNNs-under-

test. While one can ensure granular control of the scene

generation with both game engine and physical render-

based approaches, the data generated can still suffer from

low realism, leading to domain gap issues. Therefore, in-

sights can be gained only about DNNs-under-test when they

are both trained and tested exclusively on these datasets. To

transfer any insights gained about the DNN-under-test to

its behavior on real-world data, the field of domain adap-

tation and domain gap should be considered [39]. In addi-

tion, while these approaches make the generation of safety-

critical scenarios more cost-effective than real-world data

collection, the costs of creation of new digital assets and

maps for both simulators and physical renderers limit the

diversity of the generated data [45].

Due to these issues, there has also been an interest in

generating synthetic data using deep learning-based ap-

proaches. While some approaches [23] proposed gener-

ating complete synthetic images with GANs, others pro-

posed inpainting techniques for new object insertion or ob-

ject modification in real-world logs or existing datasets to

build new scenes with reduced domain gap. The Cityscapes

dataset [11] has been augmented using GANs [31] and

VAEs [2, 49]. Similarly, some approaches [1, 26] have used

CAD model rendering and sensor simulation to design data

generation pipelines for object insertion. More recently,

neural radiance (NeRF)-based approaches like UniSim [45]

allow for a granular manipulation of the entire scene by cre-

ating a digital twin of real-world logs. While the qualitative

results look promising regarding realism, some of these ap-

proaches are not available for open access.

With the recent success of publicly available diffusion

models, several works [7, 29, 42] use Stable Diffusion [34]

models to generate data. While DatasetDM [42] gener-

ates images and perception annotations for multiple tasks,

Metzen et al. [29] focus on generating images to identify

systematic errors of pre-trained classification models w.r.t.

ODDs. Boreiko et al. [7] is the closest to our approach

where they propose a multi-stage pipeline for outpainting

images where they have granular control of the different at-

tributes of the objects. They argue that outpainting leads to

improved image quality by removing hallucinations outside

object boundaries. In contrast, we propose inpainting on ex-

isting real-world datasets like Cityscapes in our pipeline to

improve the realism of augmented images while maintain-

ing overall data distribution.

There are also several works for pose-guided person im-

age synthesis, particularly for generating arbitrary poses

with different attributes, with a focus on the fashion indus-

try [4, 37, 44]. While [4, 37] both propose specialized ar-

chitectures based on diffusion models for the arbitrary pose
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Figure 2. Our proposed pipeline for generating safety-critical scenarios in AD datasets with self-consistency-based filtering to ensure a

higher quality of the final augmented dataset. On the top, we provide an overview of the different stages of the pipeline. On the bottom,

the inpainting pipeline is shown for a single image x, prompt t, and pose to obtain x
′.

synthesis, Xu et al. [44] focuses on pose and attribute gen-

eration using GANs.

Self-consistency [40] has been proposed as a method to

improve the performance of large language models by sam-

pling multiple reasoning paths and then using some voting-

based approach to choose the final prediction. Multi-modal

foundational models like CLIP [32] can be used for dif-

ferent applications such as textual conditioning in Stable

Diffusion [34] or zero-shot classification of attributes of

objects in images [18]. Therefore, consistency-based ap-

proaches using CLIP can be used to improve the perfor-

mance of the overall application (e.g., improved quality

of generated images from Stable Diffusion). Recent ap-

proaches [14, 15] proposed a similar idea of improving the

performance of generation pipelines by CLIP-based checks.

However, while these approaches filter based on the cosine

similarity of the original and the generated image or gener-

ated image and class label, we extend the consistency check

to evaluation at the attribute level to ensure that the gener-

ated augmented test images adhere to the specification.

3. Pipeline

In this section, we first provide a formal notation of the

task and then describe the concrete pipeline we propose for

augmenting real-world datasets with safety-critical scenes

by inserting pedestrians using diffusion models and self-

consistency.

3.1. Notation

Let x ∈ X be an image from a test set X which we in-

tend to augment by inpainting safety-critical objects (e.g.,

pedestrians) to construct an augmented test set X ′. For in-

painting on an image x to generate its augmented counter-

part x′, we require both a region of interest (ROI) and the

required attributes as part of the specifications of the safety-

critical object. The choice of the ROI heavily influences the

safety criticality of the x′. Either manually or by an auto-

mated process, the ROI is chosen for each x by obtaining

the coordinates of the center and corresponding width and

height of a mask M(x). For the attributes, let P be the set

of all semantic dimensions, e.g., ªgenderº ∈ P where we

call attrp(x
′) the requested attribute for x′ w.r.t. to the di-

mension p ∈ P , e.g., attrgender(x
′) ∈ {male, female}. Such

a list of semantic dimensions and corresponding attributes

for AD can be taken from the operational design domain

(ODD) (e.g., as proposed by Herrmann et al. [21]). Given

a specification of requested attributes considering different

dimensions (e.g., gender: male, shirt-color: red, age: old,

skin-color: white), we build a textual prompt t.

Given user inputs, we can use a conditional generative

model G to generate an augmented image x′. Here, G can

consist of multiple conditioning models to support the gen-

erative process (e.g., text, pose, depth, . . . ). Some of these

models can, in addition to providing conditioning to G, also

be used for discriminate tasks like classification. For ex-
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ample, let model C(t) provide the textual conditioning to

G so that the specification in terms of required attributes is

produced in x′ during image generation/inpainting.

However, there is no guarantee that the textual condi-

tioning with t ensures that the generation process for x′ fol-

lows the specification, i.e., violations in the form of out-of-

subgroup (OOS) or out-of-class (OOC) [29] are possible.

Therefore, while it is straightforward to generate a test set

with the above mentioned steps, it is further necessary to

filter X ′ to retain only the images where the specification

is met (i.e., consistent) to maintain the quality. We refer to

this filtered augmented set as X ′

fl. As human inspection is

time intensive to evaluate such consistency, we propose to

automate this process by using some classification model

Cp(x
′) which classifies the attributes of dimension P in a

given image. As we use the same model C for both textual

conditioning of G and for attribute classification, we refer to

our approach as being based on self-consistency.

To highlight the usefulness of self-consistency and to

evaluate the classification model, we introduce the follow-

ing terms w.r.t. x′ and P: (i) x′ is consistent true positive

(ctp) w.r.t. attrp(x
′) if attrp(x

′) is requested and the classi-

fication model Cp(x
′) classifies it as such, (ii) x′ is a con-

sistent false negative (cfn) w.r.t attrp(x
′) if attrp(x

′) is re-

quested but the classification model Cp(x
′) does not clas-

sify it as such, and (iii) x′ is a consistent false positive (cfp)

w.r.t. attrp(x
′) if attrp(x

′) is not requested but the classifi-

cation model Cp(x
′) classifies it as such. This allows us to

quantify self-consistency using classification metrics, i.e.,

we can compute precision and recall. If the precision and

recall were 100%, then there would be effectively no in-

formation gain using self-consistency. However, our eval-

uations (see Tab. 3) indicate that there are significant de-

viations in self-consistency which offer signals to perform

filtering. For example, say shirt-color: brown is requested,

shirt-color: red is generated in x′ and shirt-color: red is

classified by Cp(x
′). This would be an instance of consis-

tent false negative and this signal can be used to filter x′.

Concretely, the filtering restricts to the subset

X ′

fl = {x′ |x′ ∈ X ′ : ∀p ∈ P : attrp(x
′) = Cp(x

′)} ,

which contains only those augmented images x′ that are

consistent true positives w.r.t. all attributes.

Considering the overall pipeline, two potential failure

modes are possible: (i) errors in the diffusion process and

(ii) errors in the classification model. To understand the

quality of the filtered data and the filtering process with a

focus on both these failure modes, we use human evaluation

on a subset of X ′ to identify samples where the specifica-

tion is met. From this, we can estimate the improvement

in quality from the augmented dataset to the filtered aug-

mented dataset.

3.2. Concrete Pipeline

Now, we describe the concrete pipeline and the different

components required for the generation of the filtered aug-

mented set X ′

fl as shown in Fig. 2.

Region of Interest: We automate the search for the re-

gions of interest M(x) by using LANG-SAM,2 a combi-

nation of the Segment Anything Model (SAM) [24] and

Grounding-DINO [27] to segment the entire scene in x.

Note that this step is not necessary if GT segmentation la-

bels are available. After segmenting, we search for regions

that are relatively ªfreeº, i.e., pixels belonging to classes

road or footpath, and choose a random pixel from this se-

lection. A rectangular mask M(x) with this pixel as a cen-

ter and pre-defined width and height is then chosen. We use

multiple variants of width, height pairs while maintaining

appropriate aspect ratio.

Object Inpainting with Diffusion models: Once the re-

gion of interest M(x) is identified, for the generation of

pedestrians with fine-grained attributes, we propose to use

as generative model G a SOTA text-to-image latent diffu-

sion model like Stable Diffusion [34]. As mentioned, G
can be conditioned with various additional models. For in-

painting, the input image x is encoded using an image en-

coder. The textual prompt containing the required attributes

attrp(x
′) as part of the specification is encoded by text en-

coder of CLIP [32] i.e., model C(t), for conditioning the

trained U-Net [35]. Furthermore, to ensure that the inpaint-

ing pedestrians have natural and realistic poses within the

images and to have greater variety in poses, we use an addi-

tional conditioning model, i.e., ControlNet [46] with Open-

Pose [10]. As shown in Fig. 2, user provided pose images

are overlaid in the ROI and ControlNet ensures that the in-

painted image x′ follows the provided input pose.

Filtering with Self-Consistency: We propose to filter

the augmented dataset X ′ to improve the quality of the

final filtered augmented set X ′

fl by using self-consistency

of CLIP [32], i.e., Cp(x
′). Earlier works have evaluated

zero-shot classification capabilities of CLIP both at unseen

datasets [32] and granular attributes [18]. Similar to the

earlier work [18], we use prompt template of the form [’a

photo of a {} person’, ’a photo of a {}
man’, ’a photo of a {} woman’, ’a photo

of a {} guy’, ’a photo of a {} lady’],

where the {} are replaced by either elements from

[’young’, ’younger’] or [’old’, ’older’]

to evaluate a semantic dimension, e.g., age using ensemble

prompting [18, 32]. Given the original specification prompt

t and its constituent attributes attrp(x
′) and the classifica-

tions of the CLIP model, we filter for the set of images that

are consistent true positives (ctp) for all dimensions.

2https://github.com/luca-medeiros/lang-segment-anything/tree/main
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4. Experiment Setup

We consider the test set of the Cityscapes dataset [11] to

perform the proposed augmentation with safety-critical sce-

narios. The test set contains 1525 images with resolutions

of 2048×1024 with semantic segmentation annotations for

19 classes relevant from an AD perspective. The images are

resized to 768 × 512 before they are input to the LANG-

SAM model for the ROI search.

For the proposed pipeline, as the inpainting diffusion

model, we consider three publicly available custom check-

points, namely SD-v1.5,3 Reliberate-v2,4 and Deliberate-

v5.5 For the ControlNet [46] component based on Open-

Pose [10], we choose the publicly available model control-

v11p-sd15-openpose.6 We make use of the code provided

from Stable Diffusion web-ui [3] and adapt it as a python

script for our pipeline. Regarding the hyper-parameters,

we use the ªEuler-aº sampler for the diffusion model and

a classifier-free guidance scale (cfg) of 0.6. To foster re-

producibility, the code, along with a detailed list of used

prompts and hyper-parameters are provided.7 We use a

NVIDIA Tesla V100 for our experiments. On average, the

pipeline takes ∼ 8 seconds to inpaint a single image.

We also consider publicly available pre-trained models

trained on Cityscapes dataset, such as two SETR [48] mod-

els, and one ICNet [47] model, as DNNs-under-test and per-

form inference on the filtered augmented set X ′

fl. We use

the inference pipeline and the model weights from the mm-

segmentation repository [30]. For the first SETR model,

we consider a model with relatively high performance with

a mIoU of 79.21 on the unaugmented Cityscapes test set

trained with a resolution of 768 × 768 and a batch size of

8. The backbone is a ViT-L with training method SETR

PUP [48]. As a contrast, we choose a relatively weaker

SETR model that has been trained on fewer, i.e., 16k, iter-

ations and has a mIoU of 60.00. To contrast with the more

recent SETR architecture, we choose a slightly ªolderº IC-

Net model, which has a mIoU of 68.14 trained with images

of resolution 832× 832 and uses a ResNet-18 backbone.

5. Results

In this section, we evaluate the three Stable Diffusion

checkpoints, identify a suitable one, and then evaluate the

quality of the generated augmented data from our pipeline

and the improvements due to self-consistency. Subse-

quently, we evaluate the three different DNNs-under-test on

the generated augmented images and discuss the viability of

the generated data and the observed DNN performances.

3https://huggingface.co/runwayml/stable-diffusion-v1-5
4https://huggingface.co/XpucT/Reliberate
5https://huggingface.co/XpucT/Deliberate
6https://huggingface.co/lllyasviel/ControlNet-v1-1/tree/main
7https://github.com/sujan-sai-g/Exploiting-CLIP-Self-Consistency-to-

Automate-Image-Augmentation-for-Safety-Critical-Scenarios

Size
% of Consistent Images

(Eval. by Humans)

Augmented

Set X ′
1439 69.23%

Filtered

Augmented Set X ′

fl

649 87.5%

Table 1. Human evaluation of 10% of the augmented set and

the filtered augmented set highlighting the benefits of the self-

consistency based filtering approach.

5.1. Comparison of different Stable Diffusion
checkpoints

The inpainting quality of our pipeline is heavily influenced

by the choice of the generative model G. Among the

publicly available latent diffusion models, Stable Diffu-

sion [34] is a popular choice [7, 29]. However, as variants in

terms of model weights are available for Stable Diffusion,

the choice of the variant could also have an influence on

the quality of the final output. Therefore, using weights

from three different checkpoints of Stable Diffusion, i.e.,

SD-v1.5, Reliberate-v2, and Deliberate-v5, we perform a

qualitative evaluation of the generated data to identify a

suitable model. To generate the data, we augment 1525 test

images from the Cityscapes dataset. Here, as part of the

specification for requested attributes attrp(x
′), we consider

five semantic dimensions (i.e., age, gender, skin-color,

shirt-color, action), which we reflect in the generated

prompt t as ªa {age} {gender} {skincolor}
person:1.5 wearing {shirtcolor} colored

shirt {action}, full body shotº (similar to

other works [7, 29]). The values per dimension are shown

in Tab. 3 and, in combination, result in 112 different

prompts.

Fig. 3 shows three samples each from the three check-

points. In terms of the inpainting, based on random sam-

pling of the generated data, we notice that it is more likely

that inpainting fails with the SD-v1.5 checkpoint (see first

two rows for SD-v1.5 in Fig. 3). Furthermore, the inpaint-

ing quality in comparison to the other two models appears

to be ªpoorº in terms of realism (see also Appendix A). As

human evaluation of the samples yields no strong qualitative

difference between the two latter checkpoints, we select the

more recent Deliberate-v5 model.

5.2. Evaluation of the pipeline

In this experiment, we evaluate the improvement in quality

achieved by our filtering mechanism using self-consistency

when applied to the augmented set X ′ generated using the

Deliberate-v5 checkpoint. Based on the consistency check,

we filter for images that are consistent true positives (ctp)

for all attributes using CLIP to obtain the filtered augmented
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(a) Input Image (b) SD-v1.5 (c) Reliberate-v2 (d) Deliberate-v5

Figure 3. Samples of the augmented images with inpainted pedestrians using three different checkpoints of latent diffusion models [34].

Note that in some instances, e.g., the top 2 images in SD-v1.5, inpainting could completely fail.

Precision Recall F1-Score Support

Inconsistent

Images
0.47 0.84 0.61 44

Consistent

Images
0.89 0.59 0.71 99

Table 2. Using human evaluation as ground-truth information, we

test the efficacy of the filtering approach by framing it as a clas-

sification problem. 10% of samples from augmented X ′ that are

evaluated by humans is compared against the self-consistency re-

sults.

set X ′

fl and the size of both sets is shown in Tab. 1.8 Nearly

half of the images were filtered either because of inconsis-

tent attributes or because no pedestrian was actually gener-

ated at all. To ensure that there is, in fact, an improvement

in the quality, we perform a human evaluation of 10% of X ′

and X ′

fl, respectively. The human evaluator checks if the

augmented image contains a pedestrian with the specified

attributes, i.e., now the consistency is checked by a human.

We see a significant improvement of about ∼ 25% in qual-

ity using our self-consistency filtering approach.

Furthermore, we evaluate the quality of the filtering pro-

cess itself, as discussed in Tab. 2. Here, the 143 (10% of

1439) samples from X ′, which are evaluated by humans

8There is a deviation between the test set size of Cityscapes (1525) and

the augmented set X ′ (1439) as some images are skipped during the ROI

search process as no mask M(x) can be found.

(ground-truth) are compared against the self-consistency re-

sults of CLIP (predictions). Therefore, the precision shown

in Tab. 2 should correspond to the % of consistent images

in X ′

fl shown in Tab. 1. However, there is a slight devia-

tion (∼ 2%) between both the values as the human evalua-

tion is done on independent sets. While the filtering process

through self-consistency is good at detecting inconsistent

images with a high recall of 84%, a lot of consistent images

are filtered out. However, as data generation is relatively

cheap, higher recall on inconsistent images is of higher im-

portance to obtain a higher quality X ′

fl.

We further evaluate the self-consistency of CLIP by cal-

culating the ctp, cfp, and cfn (as defined in Sec. 3) for each

of the attributes before we perform the filtering. Based

on these values, we calculate the precision, recall, and f1-

score for self-consistency in Tab. 3 on the augmented set

X ′. Consider the dimensions age and gender. As the pre-

cision and recall values are relatively high for the attributes

within these dimensions, we can conclude that the textual

conditioning and model classification are highly consistent

for these dimensions, implying that the classification and

generation processes agree. This could suggest that both

CLIP and diffusion models are good at classifying and gen-

erating common attributes. In contrast, consider the di-

mension shirt-color where significant deviations in the re-

call can be seen for certain attributes like brown and grey.

In Fig. 4, we show examples of inconsistencies for shirt-

colors, which show that the textual conditioning fails in cer-
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Sem. Dimension Support PrecisionSC RecallSC F1-ScoreSC

Age
Young 732 0.89 0.84 0.86

Adult 707 0.84 0.89 0.86

Gender
Female 717 0.90 0.90 0.90

Male 722 0.90 0.90 0.90

Skin-colour
Dark-skinned 715 0.77 0.93 0.84

White-skinned 724 0.91 0.72 0.80

Shirt-colour

Red 188 0.91 0.79 0.84

Blue 197 0.75 0.80 0.78

Green 231 0.92 0.85 0.88

Black 201 0.56 0.59 0.57

White 207 0.78 0.60 0.68

Brown 195 0.69 0.05 0.09

Grey 220 0.36 0.76 0.49

Action
Walking 734 0.80 0.94 0.87

Running 705 0.93 0.76 0.83

Table 3. For the generated dataset before filtering, we estimate the consistency at attribute level using the defined consistent true positive

(ctp), consistent false positive (cfp), and consistent false negative (cfn) values.

tain cases where the shoe or pants are red instead of the

shirt. Similar failures can also occur when the classification

itself fails, which was also discussed in an earlier work [18].

5.3. Insights on pre­trained models

In this experiment, we evaluate the viability of X ′

fl by per-

forming inference on this data using publicly available pre-

trained models. As we do not generate the corresponding

ground-truth for X ′

fl, we perform a qualitative evaluation of

the segmentation outputs. To study the viability of X ′

fl, we

can consider the following two requirements: (i) the gener-

ated images need to be close to the original data distribution

to reduce issues related to domain gap, and (ii) the gener-

ated test set should be challenging for the DNNs-under-test

to gain some insights about their failures. To test this, we

choose two SETR models, one with very high performance

and one with relatively lower performance on the standard

Cityscapes test set. In addition, we choose an ICNet model,

which is a relatively older architecture. We deliberately

construct augmented images that are relatively easy to de-

tect, i.e., the pedestrians are in front of the ego-vehicle with-

out any occlusions. As can be seen from Fig. 5 and Ap-

pendix B, while the stronger SETR model segments the in-

painted pedestrians without any issues, the weaker model

and the older architecture have artifacts in the predictions

for these ªeasyº pedestrians, while the overall segmentation

for other classes remains reasonable. This shows the poten-

tial viability of the dataset for uncovering the weaknesses of

the latter models.

6. Conclusion

We introduced a pipeline for the generation of safety-critical

scenarios in AD datasets using inpainting with diffusion

models conditioned with text and pose. The pipeline of-

fers fine-grained control over the generation of different at-

tributes of safety-critical pedestrians, enabling the testing

for the systematic failure modes of different DNNs-under-

test. In addition to the augmented images, this method also

enables the generation of granular metadata about the in-

painted objects, which can be used for downstream evalua-

tion tasks like identifying systematic weaknesses [18]. Fur-

thermore, we show that the performance of the pipeline can

be significantly improved by employing a self-consistency

check using CLIP to ensure that the inpainted images con-

tain the requested attributes. In our experimental results, we

first perform a qualitative evaluation to find the best check-

point for our proposed task. Then, we evaluate the impact

of the proposed self-consistency check by human evaluation

of a subset of the unfiltered and filtered data. Our evaluation

shows that self-consistency leads to ∼ 25% improvement in

the quality of filtered data. We further show the viability of

the generated data by qualitative evaluation of the inference

results of pre-trained segmentation models.

Limitations and Future work: While diffusion mod-

els show significant capabilities, certain semantic dimen-

sions like occlusion still prove challenging. Modifying the

pipeline to enable multi-step inpainting might solve this

issue, but we leave this for future work. Similarly, the

pipeline can be extended to other road users, e.g., using

different poses and prompts for wheel-chair users or edge-

based conditioning to capture bikes. Although there has

been an improvement in photo realism, certain artifacts can
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Figure 4. Samples of inconsistent images which we aim to filter from the augmented set. Left: specification shirt-color is brown but

generated color is white, Right: specification shirt-color is red but generated color is white.

(a) Input Image (b) SETR Model (Strong) (c) SETR Model (weak) (d) ICNet

Figure 5. Performance of three pre-trained models on images from the filtered augmented set.

still occur during the generation of face or body parts. Sim-

ilarly, for certain colors, like red or green, the image satura-

tion in the inpainting area does not fit the rest of the image.

With improvement in diffusion model quality, such issues

can be mitigated. Concerning fairness and bias, the given

specification could introduce design- or selection-biases.

Furthermore, the produced images can sometimes carry so-

cietal biases [5]. When this pipeline is used in an industrial

context, care must be taken to ensure such biases do not

transfer into the generated datasets. For a quantitative eval-

uation of DNNs-under-test, corresponding GT data is also

required. While it is possible to generate bounding boxes

based on the ROI, detailed segmentation masks might be

possible based on the input pose which we intend to explore

in future work.
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