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Abstract

Adversarial patch attacks, which can mislead deep
learning models and the human eye in both the digital
and physical domains, have led to a trust crisis. Tradi-
tional approaches to generating powerful attack patches re-
quire extensive, multi-scenario data, but suffer from slow
search speeds in adversarial gradient space, resulting in
low global attack success rates and high costs. Especially
high resource-consuming attack methods are not sufficient
to pose sufficient threats, which leads to the vulnerabil-
ity of defense. To address these challenges, we present a
novel framework AdvDenoise to generate universal adver-
sarial patches fast and robustly using denoise. Concretely,
we leverage the power of denoising diffusion probabilistic
models to craft or optimize these patches, deviating from
traditional pure gradient-based methods. We conduct com-
prehensive experiments on both pre-trained convolutional
neural networks and vision transformer detectors, evalu-
ating our method on standard benchmarks as well as in
simulated real-world physical settings. The results demon-
strate that our framework outperforms strong baselines,
achieving higher attack success rates, better transferabil-
ity across models, and improved robustness to transforma-
tions while maintaining visual realism and computational
efficiency. When our method’s performance approaches the
state-of-the-art, the total time required to generate 100-
shots adversarial patches is substantially lower than the
state-of-the-art methods, with a remarkable 48.15% reduc-
tion in time complexity. The code and examples are publicly
available at https://github.com/advdenoise/
advdenoise.

∗ Corresponding author.

1. Introduction

Adversarial Patches (APs) have emerged as potent tools
to generate adversarial examples, significantly impacting
deep learning models on a variety of computer vision tasks
[2, 29, 39]. Recent developments in APs have used natu-
ral phenomena, such as lighting [46] and shadows [48], or
employed mimetic camouflage strategies [22, 37, 40, 45] to
deceive detectors in both Convolutional Neural Networks
(CNNs) and Vision Transformers (ViTs), even often evad-
ing human eye detection. This concept harkens back to
Szegedy et al. [38] seminal 2014 work, where they first
defined adversarial examples, underscoring the evolving na-
ture of attacks in the field. That means a perfect adversarial
attack should fool not only the machine learning detector
but also human eyes at the same time.

APs have significantly advanced adversarial Attack Suc-
cess Rates (ASR) with the continuous efforts of the com-
munity in recent years, thereby undermining trust in deep
learning. However, their creation is hampered by the
vast search space required in traditional gradient-based
[1, 20, 34, 39] or Generative Adversarial Networks (GANs)
[7, 15, 26] training processes. Specifically, in real-world
applications like autonomous driving and surveillance, the
resource-intensive nature of generating APs often results in
a lag behind the evolving defenses of machine learning sys-
tems. We know that in cyber attacks, according to MITRE
ATT&CK [36], attack speed is often the key to success or
failure. Therefore, the challenge of efficiently generating
effective robust APs remains a critical area of inquiry.

Diffusion Models (DMs) [14] have recently emerged
as a powerful class of likelihood-based generative mod-
els, posing a formidable challenge to the dominance of
GANs. DMs exhibit several desirable properties, includ-
ing increased training stability and improved coverage of
the data distribution [6, 32]. At their core, DMs comprise
two distinct processes: a forward diffusion process and a
reverse generation process. The forward diffusion process
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gradually corrupts the input data by introducing Gaussian
noise, eventually transforming it into pure noise. On the
contrary, the reverse generation process aims to recover the
original data from this noise through a denoising-like tech-
nique. A well-trained diffusion model is remarkably capa-
ble of generating high-quality images from random noise
inputs, showcasing its generative prowess.

Given that the demonstrated superiority of denoising dif-
fusion probabilistic models [14] and their variants [6, 10,
21, 32] in image generation tasks suggests a viable approach
to the challenges previously outlined. Recent works [3–
5, 25, 27, 30, 44, 45, 47] have demonstrated that injecting
adversarial noise using DMs to mislead deep learning mod-
els is becoming increasingly sophisticated. However, while
these approaches normally focus on improving attack suc-
cess rates, transferability, and resistance to purification, they
often overlook the potential to leverage fast diffusion-based
solvers for accelerated APs generation. In response, DMs
have been observed to generate universal and robust APs,
indicating a higher likelihood of successful attacks or trans-
fers on CNNs and ViTs.

To bridge the gaps in existing adversarial patch gener-
ation methods, we introduce AdvDenoise, a novel frame-
work that harnesses the power of denoising diffusion mod-
els to enable fast and effective adversarial patch creation.
Unlike typical end-to-end approaches [5, 22, 40], AdvDe-
noise employs an innovative strategy that generates adver-
sarial patches through a diffusion process that starts from
intermediate patch stages, similar to a fission process.

This fission process offers several distinct advantages
over traditional methods. First, it promotes a more uniform
framework for adversarial patch generation, mitigating is-
sues such as the collapse of the optimization process due
to mismatched attack responses across different models or
datasets. By starting from intermediate patch stages and
gradually refining patches through a diffusion process, Ad-
vDenoise can effectively navigate the complex adversarial
landscape and generate robust and transferable patches.

And, the fission-like diffusion process employed by Ad-
vDenoise also allows for greater flexibility and control over
the patch generation process. By starting from interme-
diate stages, researchers and practitioners can selectively
guide the diffusion process towards desired patch charac-
teristics, such as visual inconspicuousness, transferability
across models, or robustness to various transformations.
This level of control is particularly valuable in scenarios
where specific attack requirements or constraints need to be
addressed.

Furthermore, AdvDenoise opens up new avenues for in-
corporating additional prior knowledge or constraints into
the patch generation process. By conditioning the dif-
fusion model on relevant information, such as the target
model’s architecture, dataset characteristics, or deployment

environments, AdvDenoise can generate tailored adversar-
ial patches that are optimized for specific use cases or threat
models.

Through this innovative fusion of diffusion models and
adversarial patch generation, AdvDenoise aims to push the
boundaries of adversarial machine learning research, en-
abling the rapid and efficient crafting of robust adversar-
ial patches. By addressing the limitations of existing meth-
ods and leveraging the powerful generative capabilities of
diffusion models, AdvDenoise has the potential to advance
our understanding of model vulnerabilities and drive the de-
velopment of more secure and trustworthy computer vision
systems.

In a nutshell, our contributions are threefold:
•We introduce the novel AdvDenoise framework, which

utilizes a fast solver for the denoising of diffusion models
to outperform current methods in terms of speed and cost in
multiple attack vectors.
•We propose a fast fission method based on denoise for

the generation of adversarial patches, employing the diffu-
sion of adversarial characteristics and selective patch reten-
tion to achieve effective results without the complexity of
adversarial composite examples.
• We validate our approach through a series of robust-

ness and efficiency experiments on a dedicated simulator.
The code and examples of AdvDenoise will be avail-

able at https : / / github . com / advdenoise /
advdenoise.

2. Related Work

In this section, we briefly introduce some recent develop-
ments in adversarial patches and diffusion models.

2.1. Adversarial Patches

For physical domain adversarial attacks, universal pertur-
bations in the digital domain [38] often prove ineffective
due to real-world factors such as rotation, lighting variations
[46], and shadows [48]. Adversarial patches, which involve
adding or sticking carefully crafted patches onto the target
objects, have emerged as a common and effective technique
for causing misclassifications in machine learning systems
[2, 15, 29, 39].

Early work on adversarial patches relied on
optimization-based approaches, iteratively updating
the patch to maximize the loss of the target model [2].
However, these methods are computationally expensive
and often require a large number of iterations to converge.
More recent work has explored data-driven approaches,
training generative models to synthesize adversarial patches
directly [22, 29, 40]. Although these methods can generate
patches more efficiently, they typically require a significant
amount of training data and computational resources.
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Figure 1. The core architecture of AdvDenoise framework. The three explosive emoji represent 1⃝ the split fission of the patch itself, 2⃝
the diffusion synthesis of the APs, and the collection of a set of APs (far right). The red and gray dotted line represents the return direction
of the gradient descent in different periods.

⊕
represents the image overlay add.

One limitation of existing adversarial patch methods is
that they are primarily designed for static scenarios, where
the patch is applied to a single image or object. In real-
world settings, however, the patch may be subject to various
transformations, such as rotations, occlusions, or changes
in viewpoint, which can impact its effectiveness. More-
over, most previous methods [15, 20, 39] focus on generat-
ing patches that cause misclassification at a single point in
time, without considering the temporal aspect of an attack,
where the adversary may need to maintain the misclassifi-
cation over an extended period.

2.2. Diffusion Models

Diffusion models [6, 10, 14, 32, 33] have recently gained
significant attention due to their impressive performance in
generative tasks. These models operate by gradually adding
Gaussian noise to the input data during a forward diffusion
process, and then learning to reverse this process by training
a denoising model to predict the added noise at each step,
ultimately reconstructing the original data.

The forward diffusion process is defined as a Markov
chain of gradually adding Gaussian noise p(xT ) =
N (xT ; 0, I) to the data x0, resulting in a sequence of noisy
latent variables {x1, ...,xN−1}, where T is the total number
of diffusion steps. The forward process is parameterized by
a variance schedule {β1, ..., βN}, where βt ∈ (0, 1) deter-
mines the amount of noise added at each step,

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI)

The reverse denoising process aims to learn the reverse
transition from noise to data by modeling the conditional
distribution pθ(xt−1|xt), where θ represents the parameters
of the denoising model. The goal is to iteratively denoise
the noisy latent variables xT to recover the original data x0.

The denoising model is trained by optimizing the follow-
ing objective:

L(θ) = Eq(x0),ϵ∼N (0,I)

∣∣∣∣ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)

∣∣∣∣2
where ϵθ(·, t) is the denoising model that predicts the

noise ϵ at time step t, and ᾱt is the cumulative product of
the variance schedule. During the sampling process, the de-
noising model is applied iteratively to progressively denoise
the initial noise xT ∼ N (0, I), generating samples from the
data distribution p(x0).

The success of diffusion models in various domains,
such as image synthesis [32], and text generation [10], has
motivated researchers to explore their applications in adver-
sarial machine learning. Recent works have demonstrated
the potential of diffusion models for both attacking [3, 18,
25, 30, 44, 45, 49] and defending [5, 24, 31, 42, 43, 47]
against adversarial examples.

Despite these promising applications, the potential of
diffusion models in the context of adversarial patches re-
mains largely unexplored. The ability of diffusion models
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to generate high-quality samples while maintaining control
over specific attributes or regions of the output could prove
valuable for crafting effective adversarial patches. Addi-
tionally, the iterative nature of the diffusion process may
allow for the generation of dynamic adversarial patches that
can adapt to changes in the target object or environment
over time.

In this work, our aim is to bridge this gap by investigat-
ing the use of diffusion models for generating adversarial
patches tailored to dynamic real-world scenarios. Our ap-
proach leverages the strengths of diffusion models in con-
trolled generation, while addressing the limitations of ex-
isting adversarial patch methods in handling temporal and
transformational aspects of the attack.

3. Methodology

In this section, we introduce a novel Adversarial Patches
Fast Generation Framework Using Denoise termed AdvDe-
noise as illustrated in Figure. 1. Our approach begins with a
clear definition of the problem and subsequently introduces
two phases, including forward fission and reverse fission,
together facilitating robust and fast adversarial patches gen-
eration using denoise in complex scenarios.

3.1. Problem Definition

Let xclean be the clean input (e.g., object image) to the
machine learning system, D be the detector function (e.g.,
CNNs or ViTs), and P be the random patch rendering func-
tion. First, the area where xclean needs a patch is isolated
by a mask. A perturbation δ ∼ N (0, 1) drawn from a stan-
dard normal distribution is added to xclean, resulting in
x′
clean. This perturbed input is then passed through P to

generate x′
adv , such that D(xclean

⊕
x′
adv) ̸= y, where

y represents the true label.
The notation

⊕
denotes the operation of overlaying the

adversarial patch x′
adv onto the clean input xclean. By ap-

plyingP with different random values of δ, we can generate
a naive adversarial input xadv .

Let L be a loss function applied to D that satis-
fies the above inequality, encouraging the detector to
misclassify the adversarial input. We introduce the
FFi, (i = 1, 2, ..., n) to represent the diffusion forward
fission process, which generates a series of intermediate
patches, and RFi to represent the reverse fission pro-
cess. By solving the following optimization problem (Equa-
tion. 1), we can generate a series of final adversarial patches
x
(RFi)
adv .

x
(RFi)
adv = argmax

xadv

L(D(xclean

⊕
x
′(FFi)
adv , δ),y) (1)

3.2. Denoising Adversarial Attack Framework

The overview architecture of AdvDenoise is illustrated in
Figure. 1. The procedures for the adversarial patches (APs)
area mask, adversarial synthesis, including the 3D render-
ing, and loss function, follow previous work [22, 37, 40].
In a large number of experiments, we perceptually found
that there exists a certain attack boundary around the final
APs, which means that local feature diffusion from the fi-
nal APs has a higher probability of finding a set of effective
APs. Thus, we propose the forward and reverse fission (FF
and RF ) processes, which make up the denoise-based fast
fission using the diffusion model.

Our training data comprises images sampled from a
photo-realistic simulator CARLA [8] under varying vehi-
cles settings, capturing diverse scenarios. We leverage a
pre-trained image segmentation network [16] to isolate the
target vehicles, generating binary masks. Concurrently, we
render camouflage textures onto the vehicle surfaces within
the same simulated environments, creating the 2D camou-
flage. We iteratively optimize the adversarial camouflage
patches through diffusion-based fission and backpropaga-
tion in different periods, guided by our tailored loss func-
tion (Equation. 1) that balances visual inconspicuousness
with the ability to evade detection or misclassification by
computer vision models.

The use of diffusion models in AdvDenoise enables
faster and more efficient attacks compared to iterative op-
timization techniques. Diffusion models, known for their
stable training and high-quality sample generation capabil-
ities, can leverage their learned representations to rapidly
produce adversarial patches from noise inputs. This con-
trasts with traditional gradient-based methods, which often
suffer from slow convergence and computational inefficien-
cies due to the need for multiple forward and backward
passes through the target model.

By leveraging the above framwork workflow, AdvDe-
noise can efficiently explore the local feature space around
the final APs and generate a diverse set of candidate APs.
This not only improves the attack success rate but also en-
hances the robustness of the generated APs against various
transformations and environmental conditions, as the diffu-
sion model learns to capture the underlying distribution of
effective APs.

3.3. Denoise-based Fast Fission

Previous works [2, 5, 22, 37, 40] use end-to-end method
to generate APs are very resource consuming. Instead,
we adopt DMs as accelerator because we believe that the
denoise-based fission (FF and RF ) will quickly spread a
series of patch sets across an adversarial range. The ex-
perimental results in Figure. 2 show the effectiveness of
AdvDenoise.

The forward fission process, denoted as FFi, takes the
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final APs xadv as input and progressively adds Gaussian
noise to generate a series of intermediate noisy patches
x
(FFi)
adv , where N is the number of diffusion adversarial

steps. And the reverse fission process, denoted as RFi, aims
to denoise the intermediate noisy patches x(FFi)

adv to gener-
ate a set of candidate APs x(RFi)

adv .
Once a possible patch is obtained, we leverage the it-

erative forward and reverse fission processes to efficiently
explore the local feature space around the initial patch and
generate an improved set of adversarial patches. In the for-
ward process, we apply a probability variation space at each
step, effectively performing an iterative optimization proce-
dure to find better APs rapidly. These processes can be de-
scribed using conditional probability distributions as shown
in Equation. 2 and Equation. 3, respectively.

FFi = q
(
x
′(i)
adv|x

′(i−1)
adv

)
= N

(
x
′(i)
adv;µf (x

′(i−1)
adv ), βI

) (2)

µf (x
′(i−1)
adv ) =

√
1− β(x′(i−1)

adv

+ α∇x′
adv
L(D((xclean

⊕
x
′(i−1)
adv ),y)))

RFi = p
(
x
(i−1)
adv |x

(i)
adv, x

′(i)
adv

)
= N

(
x
(i−1)
adv ;µr(x

(i)
adv, x

′(i)
adv), βI

) (3)

µr(x
(i)
adv, x

′(i)
adv) =

√
1− β(x

(i)
adv

+ α∇xadv
L(D((x(i)

adv

⊕
x
′(i)
adv),y)))

where I is the identity matrix, β is an adjustable param-
eter, ∇ represents the backpropagation gradient vector, and⊕

denotes the image overlay operation.
In the forward fission process (Equation. 2), we itera-

tively add Gaussian noise to the previous step’s adversar-
ial patch x

′(i−1)
adv to obtain a noisy intermediate patch x

′(i)
adv .

The mean of this Gaussian distribution, µf (x
′(i−1)
adv ), is com-

puted by taking a weighted sum of the previous patch and
the gradient of the loss function with respect to the adver-
sarial patch, scaled by a factor α. This gradient term en-
courages the generation of patches that maximize the mis-
classification of the target object.

In the reverse fission process (Equation. 3), we aim to
denoise the intermediate noisy patch x

′(i)
adv to obtain a candi-

date adversarial patch x
(i−1)
adv . The mean of this conditional

distribution, µr(x
(i)
adv, x

′(i)
adv), is computed similarly to the

forward process, but with an additional term x
(i)
adv repre-

senting the target clean input overlaid with the noisy patch.
This term ensures that the generated candidate patch retains
the adversarial properties while maintaining visual realism.

The candidate APs x(RFi)
adv are then evaluated using the

loss function described in Equation. 1, and the AP with the

Algorithm 1 : AdvDenoise

Input: clean object image: xclean; detectors from CNNs
or ViTs: D; random noise patch generator P

Output: A set of {xadv} obtained from fission
Phase I: Forward Fission

1: x′
clean ←Mask(xclean)

2: x′
adv ← P (x′

clean)
3: if D(xclean

⊕
x′
adv) ̸= y # Calculate by Equation. 1

then
4: for i = 1, 2, ..., n do
5: x

′(FFi)
adv ← x′

adv # Calculate by Equation. 2
6: end for
7: else

Return to Line 2.
8: end if

Phase II: Reverse Fission
1: for i = 1, 2, ..., n do
2: X

′(RFi)
adv ← xclean

⊕
x
′(FFi)
adv

3: if X′(RFi)
adv ̸= y # Calculate by Equation. 1 then

4: x
(RFi)
adv ← x

′(RFi)
adv # Calculate by Equation. 3

5: {xadv} ← x
(RFi)
adv

6: else
Break. # Get series of AdvDenoise APs.

7: end if
8: end for

highest adversarial effectiveness and visual realism is se-
lected as the final output. By iterating through these forward
and reverse fission processes, AdvDenoise can efficiently
explore the local feature space and generate diverse and ef-
fective adversarial patches tailored to the target object and
environment.

The pseudo-code of AdvDenoise is shown in Algo-
rithm. 1.

4. Experiments
In this section, we present the results of our comprehensive
experiments conducted on three popular metrics. We com-
pare the performance of our proposed method with 6 target
models and 4 state-of-the-art adversarial patches attack ap-
proaches. To gain a deeper understanding of the key com-
ponents contributing to the effectiveness of our AdvDenoise
framework, we conduct a ablation study.

4.1. Experimental Settings

Datasets and Competitors. We evaluate our AdvDenoise
framework on the CARLA simulator v0.9.14 [8], which
provides a rich and diverse set of scenarios for testing ad-
versarial patch attacks in simulated physical domains. For
the training and evaluation of our method, we leverage
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Figure 2. APs visual comparison results among of different approaches under classic representatives of CNNs and ViTs.

two high-resolution image datasets which generated by the
CARLA using default settings. The training set comprises
50,000 carefully curated images, while the testing set con-
sists of 15,000 distinct images. These datasets are designed
to capture the diversity and complexity of real-world sce-
narios by sampling images from a wide range of vehicles
and distances.

For fair comparisons, we focus on vehicle-based adver-
sarial patches in a multi-scenario physical domain setting.
We choose AdvPatch [39], FCA [40], DTA [37], and
AdvShadow [48] as competing methods. Although these
methods are designed to attack object detection models,
there can be significant variability in their performance
due to different experimental settings. To ensure a fair
evaluation, we carefully identified localization areas that
maximize the capabilities of each competitor in a unified
scenario through extensive testing.

Target Models. Following the comprehensive survey
by Zou et al. [50] and considering the practical relevance
of adversarial attacks, we selected a diverse set of target
models for our experiments. These include Mask RCNN
[13], SSD [28], YOLOv5s [17], YOLOS [11], ViDT [35],
and CFDT [23], encompassing both Convolutional Neural
Networks (CNNs) and Vision Transformers (ViTs). And
these models are the official implementation PyTorch
version.

Implementation Details. To verify the effectiveness
of AdvDenoise, the hyperparameters are set as follows, we
set the batch size, initial learning rate, and dropout rate
to 32, 1e-5, and 0.4, respectively, for the attack setting.
We employ the Adam optimizer [19] with β1 = 0.9,
β2 = 0.999 , the max epoch is 5, and early stopping for
the input. All experiments were conducted on a server
equipped with 4 * NVIDIA GeForce RTX 3090 GPUs.

4.2. Evaluation Metrics

Attack Success Rate (ASR). This evaluation metric,
commonly used in previous works [2, 22], is defined
as the percentage of target objects that were correctly
detected before the perturbation, but were not detected
or falsely detected after applying the adversarial patch.
The higher values indicating more powerful adversarial
attack. The ASR is defined as the percentage of input
images for which the application of the adversarial patch
successfully causes the target model to produce an incorrect
prediction or classification. It can be calculated as follows,
ASR = (Nadv)/(Ninput) ∗ 100%, where Nadv , Ninput

means number of successful adversarial attacks and total
number of input images, respectively.

Structural Similarity Index Measure (SSIM). To
quantitatively assess the visual similarity between the
generated adversarial patches xadv and the original clean
images xclean, we employ the SSIM. SSIM [9, 12, 41]
is a widely-adopted metric that objectively quantifies the
perceived visual distortion between two images by consid-
ering their luminance, contrast, and structural information.
The SSIM index is calculated as, SSIM(xadv, xclean) =
[l(xadv, xclean)]

α ∗ [c(xadv, xclean)]
β ∗ [s(xadv, xclean)]

γ ,
where l, c, s represents luminance, contrast and structural
similarity respectively. The higher values indicating greater
structural similarity between the two images. A value of
1 signifies that the two images are identical, while lower
values indicate increasing dissimilarity.

Time and Cost. We measure the training time re-
quired for generating adversarial patches, starting from
initializing the random patch noise. The computational cost
is estimated based on the pricing structure of Amazon Web
Services (AWS) in 2023† .

†https://aws.amazon.com/pricing
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By evaluating our method using these diverse metrics,
we can comprehensively assess the effectiveness of Adv-
Denoise in generating adversarial patches that achieve high
attack success rates while maintaining visual realism and
computational efficiency, making it suitable for practical
real-world applications. Note that, the time here is only for
the model training time (some exist early stopping). And
the cost is also directly calculated the cost of the machine
according to this time, and the artificial cost is not consid-
ered.

Method ASR SSIM 1-S * 100-S * Cost
AdvPatch 56.78 0.12 3.5h 348h $ 3.92k

FCA 79.66 0.59 4.2h 400h $ 4.51k
DTA 80.29 0.54 4.5h 370h $ 4.17k

AdvShadow 85.28 0.78 4.1h 405h $ 4.57k
AdvDenoise 82.49 0.66 3.7h 210h $ 2.37k
* S repersents number of shots.

Table 1. Main comparison with state-of-the-art methods.

4.3. Comparison with State-of-the-Art Methods

The results presented in Table. 1 and Figure. 2 demonstrate
the significant improvements achieved by our AdvDenoise
framework. With an Attack Success Rate (ASR) peaking at
82.49%, comparable to advanced state-of-the-art methods,
AdvDenoise also exhibits exceptional performance in terms
of visual realism, as evidenced by its Structural Similarity
Index Measure (SSIM) scores being very close to the state-
of-the-art.

However, AdvDenoise’s true strength lies in its remark-
able computational efficiency. When generating adversar-
ial patches, either in a single-shot or multi-shot (100-Shots)
setting, AdvDenoise requires almost the lowest computa-
tional cost among all evaluated methods. In the specified
run-time environment, the total time required for generat-
ing 100 adversarial patches decreased from 405 hours to
210 hours, a remarkable 48.15% reduction in time complex-
ity compared to the state-of-the-art. Consequently, the cor-
responding computational costs have also been greatly re-
duced. While, it should be noted that in the single-shot set-
ting, AdvPatch is actually more efficient (0.2h faster). One
explanation is that AdvPatch without requiring iterative op-
timization or multiple passes through the target model.

This outstanding computational efficiency, coupled with
the high attack success rates and visual realism, suggests
that AdvDenoise is particularly well-suited for realistic ad-
versarial attack scenarios. By leveraging the power of de-
noising diffusion models and the proposed forward and re-
verse fission processes, AdvDenoise can effectively gener-
ate a diverse set of high-quality adversarial patches tailored
to the target object and environment.

The ability to rapidly explore the local feature space
around the initial patches and generate candidate solutions
not only improves the overall attack success rate but also
enhances the robustness of the generated patches against
various transformations and environmental conditions. This
robustness is crucial in practical real-world settings, where
the adversarial patch may be subjected to various distortions
and changes in viewpoint or lighting conditions.

The significant reduction in computational cost achieved
by AdvDenoise makes it more accessible and practical for
researchers and practitioners working on adversarial ma-
chine learning, enabling them to conduct extensive exper-
iments and evaluations without the need for excessive com-
putational resources.

Figure 3. Heatmap of AdvDenoise adversarial transferability. We
report top-1 attack success rate (%) of each method.

4.4. Robustness and Transferability on Targets

Our extensive experiments, illustrated in Figure. 3, high-
light AdvDenoise’s superior attack robustness (the attack
success rate) and transferability across diverse target mod-
els. The main diagonal entries show that the Attack Success
Rate (ASR) of the white-box attack on pre-trained mod-
els against either Convolutional Neural Networks (CNNs)
or Vision Transformers (ViTs) is consistently around 80%,
demonstrating AdvDenoise’s effectiveness in generating
adversarial patches tailored to the specific architecture of
the target model.

Interestingly, we observe that the antidiagonal entries
exhibit higher values than the secondary diagonal entries.
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This indicates that the adversarial patches generated based
on CNN models still maintain a certain level of generaliza-
tion when attacking ViT models, although the overall per-
formance is not as strong as when attacking the source CNN
models. Notably, for the CFDT model, we observe an aver-
age decrease in ASR of 31.85% when attacked by patches
generated from CNN models, suggesting that the transfer-
ability of adversarial patches between fundamentally differ-
ent architectures (CNNs and ViTs) is limited.

We also find that off-diagonal entries sometimes exhibit
higher values than the corresponding diagonal entries, in-
dicating that certain adversarial patches transfer more ef-
fectively to different models than to the source model they
were generated for. This intriguing phenomenon may re-
sult from the patches capturing generalized vulnerabilities
shared across multiple models, model-specific sensitivities,
or overfitting to idiosyncrasies of the source model during
the patch generation process. This complex interplay be-
tween adversarial tactics and diverse model architectures
warrants further investigation to deepen our understanding
of these dynamics.

AdvDenoise’s ability to generate adversarial patches that
are not only effective against the source model but also ex-
hibit varying degrees of transferability to other models is a
valuable asset in practical adversarial attack scenarios. This
robustness and transferability can aid in assessing the vul-
nerability of diverse machine learning systems to adversar-
ial threats, enabling the development of more robust and
secure models.

4.5. Ablation Study

The study helps us disentangle the impact of various de-
sign choices and analyze their individual contributions to
the overall performance of our approach.

Role of Guidance Scale. The guidance scale param-
eter in diffusion models controls the trade-off between fi-
delity and diversity during the generative process. We ab-
late this parameter to understand its effect on the visual
quality and attack success rates of the generated adversarial
patches. As table. 2, we evaluated the performance of Ad-
vDenoise with the above experimental settings and follow-
ing guidance scale values: [1.0, 10.0]. Our results suggest
that a carefully chosen guidance scale value can strike a bal-
ance between patch realism and adversarial effectiveness. If
the primary objective is to maximize adversarial effective-
ness while maintaining reasonable visual realism, a guid-
ance scale value between 4.0 and 6.0 could be a suitable
choice. This range strikes a balance between a high ASR
(76.41%, 82.49%) and an acceptable SSIM (0.66, 0.78).
If the primary focus is on maximizing adversarial effec-
tiveness without significant concerns about visual realism,
higher guidance scale values (e.g., > 8.0) could be chosen,
as they achieve the highest ASR but with lower SSIM.

Guidance Scale ASR SSIM
1.0 58.30 0.90
2.0 64.72 0.88
3.0 70.11 0.85
4.0 76.41 0.78
5.0 79.86 0.74
6.0 82.49 0.66
7.0 83.01 0.57
8.0 84.23 0.50
9.0 85.36 0.44

10.0 85.48 0.39

Table 2. Impact of Guidance Scale on Adversarial Patch Attack
Success Rate (ASR) and Structural Similarity Index (SSIM).

Through these ablation studies, we aim to provide a com-
prehensive analysis of the key factors influencing the perfor-
mance of AdvDenoise. The findings from these studies not
only validate the effectiveness of our framework but also
offer guidance for future improvements and adaptations to
specific application requirements.

5. Conclusion

In this paper, we introduced AdvDenoise, a novel frame-
work for generating universal and robust adversarial patches
using denoising diffusion models. Our approach leverages
the power of diffusion models and the proposed forward and
reverse fission processes to efficiently explore the local fea-
ture space around an initial adversarial patch, generating a
diverse set of candidate patches tailored to the target object
and environment.

Limitation and Future Work. Although AdvDenoise
shows promising results with visually realistic patches and
significantly reduced time complexity, our method neces-
sitates further rigorous mathematical analysis and theoreti-
cal grounding. In the future, a crucial research direction is
investigating whether AdvDenoise can generate adversar-
ial patches that exploit vulnerabilities shared across diverse
model architectures and paradigms.
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surveillance cameras: adversarial patches to attack person
detection. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops, pages
0–0, 2019. 1, 2, 3, 6

[40] D Wang, T Jiang, J Sun, et al. Fca: Learning a 3d full-
coverage vehicle camouflage for multi-view physical adver-
sarial attack. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, pages 2414–2422, 2022. 1, 2, 4, 6

[41] Z Wang, A C Bovik, H R Sheikh, et al. Image quality as-
sessment: from error visibility to structural similarity. IEEE
transactions on image processing, 13(4):600–612, 2004. 6

[42] Zekai Wang, Tianyu Pang, Chao Du, Min Lin, Weiwei Liu,
and Shuicheng Yan. Better diffusion models further improve
adversarial training. In International Conference on Machine
Learning, pages 36246–36263. PMLR, 2023. 3

[43] Shutong Wu, Jiongxiao Wang, Wei Ping, Weili Nie, and
Chaowei Xiao. Defending against adversarial audio via dif-
fusion model. arXiv preprint arXiv:2303.01507, 2023. 3

[44] H Xue, A Araujo, B Hu, et al. Diffusion-based adversarial
sample generation for improved stealthiness and controlla-
bility. arXiv preprint arXiv:2305.16494, 2023. 2, 3

[45] Haotian Xue, Alexandre Araujo, Bin Hu, and Yongxin Chen.
Diffusion-based adversarial sample generation for improved
stealthiness and controllability. Advances in Neural Informa-
tion Processing Systems, 36, 2024. 1, 2, 3

[46] C Yan, Z Xu, Z Yin, et al. Rolling colors: Adversarial laser
exploits against traffic light recognition. In 31st USENIX Se-
curity Symposium (USENIX Security 22), pages 1957–1974,
2022. 1, 2

[47] B Zheng. Latent magic: An investigation into adversarial
examples crafted in the semantic latent space. arXiv preprint
arXiv:2305.12906, 2023. 2, 3

[48] Y Zhong, X Liu, D Zhai, et al. Shadows can be dangerous:
Stealthy and effective physical-world adversarial attack by
natural phenomenon. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
15345–15354, 2022. 1, 2, 6

[49] Haomin Zhuang, Yihua Zhang, and Sijia Liu. A pilot study
of query-free adversarial attack against stable diffusion. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 2384–2391, 2023. 3

[50] Z Zou, K Chen, Z Shi, et al. Object detection in 20 years: A
survey. Proceedings of the IEEE, 2023. 6

3490


	. Introduction
	. Related Work
	. Adversarial Patches
	. Diffusion Models

	. Methodology
	. Problem Definition
	. Denoising Adversarial Attack Framework
	. Denoise-based Fast Fission

	. Experiments
	. Experimental Settings
	. Evaluation Metrics
	. Comparison with State-of-the-Art Methods
	. Robustness and Transferability on Targets
	. Ablation Study

	. Conclusion

