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Abstract

Lane detection plays an indispensable role in automated

driving functions and advanced driver assistance systems

by providing fundamental spatial orientation, which is im-

perative for trajectory planning with traffic regulation com-

pliance. The variability of lane structures across the world

poses challenges for data-driven lane detection models.

However, acquiring vast amounts of labeled data encom-

passing a wide variety of real-world scenarios for super-

vised learning is often cost-prohibitive. In this work, we

propose a Weakly Supervised Domain Adaptation frame-

work for Lane Detection (WSDAL), which requires easily-

provided labels exclusively for the number of lanes in the

target domain to aid the adaptation process. WSDAL con-

sists of a teacher-student network, an additional segmen-

tation head as an auxiliary task during training, and a

novel loss function that incorporates the number of lanes

prediction. As a versatile framework, WSDAL can be ap-

plied to any anchor-based lane detector. Between three

frequently-used lane detection datasets (TuSimple, CULane

and CurveLanes) for domain adaptation, WSDAL frame-

work demonstrates its effectiveness and efficiency over com-

mon unsupervised domain adaptation methods and fully su-

pervised training. In addition, we discuss the quality req-

uisites from the labels for the weakly-supervised domain

adaptation, indicating that label errors at realistic scales

still provide satisfactory results on the considered tasks.

1. Introduction

Lane information is one of the most essential informa-
tion required for assisted and automated driving functions,
which gives vehicles a fundamental understanding of their
position and orientation on the road. In addition, lane in-
formation is the cornerstone of path planning and control
algorithms. For this reason, precise and reliable lane detec-
tion is indispensable in safe automated driving systems.

The research leading to these results is supported by the German Fed-
eral Ministry for Economic Affairs and Climate Action (BMWK) within
the project AVEAS (www.aveas.org).
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Figure 1. Qualitative results of the proposed WSDAL. On the left
side of the figure, we show the advancement made by our proposed
method on the task of CULane ! CurveLanes, dealing with com-
plex urban traffic scenes. On the right side, we show an example of
the network trained on CurveLanes adapts to TuSimple that copes
with object occlusion. Best viewed in color, true positive predic-
tions shown in green, false positives in red, ground truth in blue.

However, lane detection poses unique challenges com-
pared to other object detection tasks due to the variety and
occlusion of the lanes [9, 30, 55, 62]. Therefore, detecting a
complete lane requires the detector to bridge the discontin-
uous parts at the semantic level. In addition, lane markings
span a wide area in images but have relatively few pixels,
demanding models to possess both local and global perspec-
tives to perceive lane features comprehensively [41, 61].
Furthermore, the task is especially challenging due to the
variability in the environment and lane shape. For instance,
the definition of lane markings shifts according to the driv-
ing context, as sometimes there are no center lane markings
on narrow roads, but the vehicle is supposed still to drive on
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the correct side of the road. Geographic location and terrain
affect the distribution of the lanes as well. The traffic rules
around the globe are significantly different: In some coun-
tries, people are allowed to drive on the hard shoulder in
certain traffic situations, while it is prohibited in most coun-
tries. Those changes in the traffic regulations create even
more challenges on top of the existing challenges in domain
adaptation, as it is not trivial to derive the availability only
based on appearance.

In this work, we introduce a novel domain adaptation
framework for anchor-based lane detection models. With
the help of simple meta labels from the target domain, the
Number-of-Lanes (NoL) from the image, the network can
be adapted to the target domain more efficiently. Compared
to the full-supervised counterparts, such weak labels have
cost advantages, as they are available via map services, for
instance, OpenStreetMap[29], or from existing vehicle fleet
that equips with sensor systems that have been quality as-
sured. We perform our experiments on three datasets that
are frequently used in lane detection research, including
a wide range of driving situations from highway to urban
driving, unveiling the advantages of the models that can be
adapted to target domain using simple and low-cost labels
from target domain. To the best knowledge of the authors,
previous work in the lane detection domain concentrates
mainly on the optimization of the network architecture and
unsupervised domain adaptation methods [9, 11, 16, 62],
which did not integrate publicly available world knowledge
from metadata. Our main contributions are as follows:
• We propose a novel framework utilizing cost-effective

number-of-lanes (NoL) labels from target domain images
as weak supervision signals complementing the common
unsupervised domain adaptation methods.

• We provide a thorough analysis of the performance based
on three different datasets, including diverse driving sce-
narios, and discuss insights into the effectiveness of the
proposed method compared with existing methods.

• We demonstrate the universal applicability of the pro-
posed framework leveraging different anchor-based lane
detection architectures and image encoders. Certainly re-
lated to real-world application, we also discuss the impact
of potential label error in the target domain on the model’s
adaptation performance.

2. Related Work

2.1. Weakly-Supervised Learning

Despite the enormous success of data-driven computer vi-
sion models [2, 8, 24, 64], most of the ongoing work on
the downstream tasks follows the fully supervised train-
ing scheme, which is related to high labeling costs of the
data. Weakly supervised learning is used in several appli-
cations including object localization [6, 35], object detec-

tion [48, 58], semantic segmentation [4, 13, 20, 52]. Class
Activation Map (CAM) techniques [33, 63] are widely
used in weakly supervised learning with image-level la-
bels, where the discriminative area generated by CAM can
be further utilized for the supervision of computer vision
tasks like semantic segmentation [13, 52]. For those cases
where the expected predictions are dense, ground truth with
sparse information is also frequently leveraged as weak la-
bel. For instance, image-level labels in object detection
tasks or bounding boxes for segmentation tasks. Gao et

al. [6] proposed a method that utilizes number of objects as
supervision signal for object localization. Generating seg-
mentation masks in the given bounding boxes [4, 15, 37]
is used to generate unsupervised region proposals and iter-
atively updated to improve the segmentation capability of
the network. Joon et al. [13] combined external saliency
masks with image-level labels to train semantic segmenta-
tion models. Scribble [20] is also a low-cost annotation to
propagate the category information to the unlabeled pixels
for semantic segmentation. Those methods are complemen-
tary when various forms of weak supervision are used.

2.2. Data-Driven Lane Detection

Before deep learning methods were applied to lane detec-
tion, lane detection was heavily based on handcrafted fea-
tures [1, 25], which contain pre-processing, feature extrac-
tion and curve fitting [42, 59]. In the era of data-driven lane
detection, the most commonly used models can be catego-
rized into segmentation-based detectors and anchor-based

detectors. The vanilla approach treats lane detection as a
segmentation task. With LaneNet [28], the lane detection
task was accomplished by utilizing two lane segmentation
branches for foreground segmentation and identifying the
lane instances. Then, the segmentation maps were projected
into the bird’s eye view by transformation matrix. Further
improvements like SCNN [30] and RESA [61] utilized spa-
tial CNNs and added multi-stride connections, facilitating
the perception of continuous structures. There are also ex-
periments [55] that leveraged AutoML to explore and opti-
mize the model structure for lane detection models. Liu et

al. [22] utilized a style transfer model to enrich the training
set and introduced a second branch that predicts the exis-
tence of lane based on pixel-level ground truth.

Line-CNN [17] introduced the line anchor in lane detec-
tion. Similar to box anchors in object detection, anchors ex-
tract feature representations to constitute an anchor feature,
which is used for final prediction. LaneATT [41] extracts
local feature maps to form anchor local features. With the
help of an attention mechanism, a global feature vector is
aggregated to deal with the sparse property of the lane de-
tection task. SGNet [39] utilizes prior information like van-
ishing point and lane information to improve performance.
As a row anchor-based method [31], it predicts the probable
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cell for each predefined row on images. CondLaneNet [21]
further improved row anchor-based lane detection by learn-
ing a heatmap of possible starting points of the lanes as prior
information. Similar to many two-stage object detection
models, CLRNet [62] adopts learnable anchor parameters
for the regression tasks and the detection head gives pre-
diction for each tensor. CLRerNet [9] further improves the
performance by optimizing similarity cost that used during
optimization to align the confidence score with IoU score.

2.3. Domain Adaptation for Lane Detection

Tackling domain shift for lane detection models is a fun-
damental yet less popular task. We started the evalua-
tion of domain shift for some models introduced as a pre-
liminary study in Appendix A showing the limited gen-
eralization ability of the models. As the lane detection
task can be regarded as a segmentation task, the com-
mon unsupervised domain adaptation methods can be uti-
lized including domain alignment with statistic divergence
[14, 23, 40, 45], domain adversarial learning [3, 46, 47],
normalization statistics alignment [18, 27], and self-training
[10, 19, 34]. There is also work which involves utilizing
weak labels for domain adaptation [5, 12, 26, 50, 51].

Ongoing research of lane detection research concentrates
on unsupervised domain adaptation, in which the labels in
the target domain are not available [38]. Domain adaptation
techniques in lane detection contain viewpoint transforma-
tion alignment from different domains, adversarial training,
and self-training methods. Yu et al. [56] proposed a method
to project images into a uniform viewpoint by estimating
the transformation matrix [53]. However, when the accu-
racy of the projection drops, the performance also degrades
significantly. Besides that, the lane geometry needs to be
similar as the model struggles when the label distribution
shifts. Adversarial learning-based methods are similar to
general unsupervised learning methods. Garnett et al. [7]
used discriminator to distinguish between the model’s pre-
dictions on the target and source domain. The gradient im-
age of the input helps to limit the deep features extracted by
the model. Hu et al. [11] further explored adversarial gen-
erative and adversarial discriminative methods for sim-to-
real domain adaptation. MLDA [16] is a pseudo label-based
lane domain adaptation method. It designs multi-level do-
main adaptation tasks including pixel-wise, instance-wise,
and category-wise tasks to generate pseudo labels on target
domain and improve model’s global understanding by pre-
dicting the types of lanes in the images on the target domain.
However, unsupervised adaptation methods are not able to
deal with the regulation shifts and changes with annotation
policy. Appearance-similar lane markings, which should be
detected in some contexts, yet not in others, can only be
addressed using costly, fully supervised learning methods
prior to our work.

3. Methodology

3.1. Problem Formulation

The goal of lane detection is to achieve the lane detection
task of taking the input image x 2 RH⇥W⇥3, where H

and W are the height and width of the RGB image, and
learn parameters ✓ for a mapping �✓ to the lane predic-
tion y 2 RN⇥L, where N denotes the number of lane an-

chors, i.e. the maximum number of possible lane predic-
tions, and L the dimension of the lane description vector
l. Here, l contains L � 2 elements l(1) . . . l(L�2) de-
scribing the lane position as coordinates, trained as regres-
sion and two elements l(L�1), l(L) for “foreground” and
“background” respectively, indicating whether the particu-
lar lane likely exists or not, trained as classification. �

S

✓
is

learned in source domain DS = {(xs, ys)}s2S . With un-
supervised domain adaptation methods, we utilize only the
images from the target dataset DUDA

T = {(xt)}t2T , while
for proposed Weakly Supervised Domain Adaptation frame-

work for Lane Detection (WSDAL), the number of lanes
nt  N in each target image is known during adaptation
with DWSDAL

T = {(xt, nt)}t2T .

3.2. WSDAL Framework

Base Architecture: Similar to current work in unsuper-
vised domain adaptation, we employ a self-training strat-
egy based on the teacher–student model. Fig. 2 illus-
trates the proposed Weakly Supervised Domain Adaptation
framework for Lane Detection (WSDAL), which contains a
teacher model (red) and a student model (blue), whose ar-
chitecture and initialization are shared. The teacher model
receives original target images, while the student model is
trained on data with strong augmentation on the target do-
main. In this case, the teacher model provides more reliable
lane predictions, so it is a reasonable strategy to turn fil-
tered predictions from the teacher model into pseudo labels
to supervise the learning of the student model, as transform-
ing low-quality lane predictions into pseudo labels for self-
training has a detrimental effect on the adaptation process.
In the lane detection task, we select only the lane predic-
tions that have their scores l(L�1)

n

!
> �c as the pseudo lane

labels. In case the number of pseudo lane labels exceeds
the maximum number of lanes in the dataset ND, we se-
lect lane predictions with the highest scores. Under the su-
pervision of pseudo lane labels, the student model not only
learns to extract more robust features to exclude the inter-
ference of data augmentation but also further adapts itself
to the data pattern of the target domain. During the itera-
tive training process, the teacher model is updated by the
student model indirectly from the target domain using the
Exponential Moving Average (EMA) strategy [43]:

✓
0
t
= ↵✓

0
t�1 + (1 � ↵)✓t (1)
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Figure 2. The framework of the proposed Weakly Supervised Domain Adaptation framework for Lane Detection (WSDAL). It consists of
a teacher-student network, a segmentation head as an auxiliary task during training and weak supervision utilizing number-of-lanes labels.

where ✓
0
t

represents the parameters of the teacher network at
step t, ✓t represents the parameters of the student network
at step t, and ↵ is a smoothing coefficient hyperparameter.
In this way, the teacher model is also able to acquire knowl-
edge related to the target domain, enabling it to generate
more accurate pseudo lane labels from the proposals [9]
consistently. Using pseudo lane labels, we can calculate the
loss in the lane detection task weighted by !det. with:

Ldet. = !det.LD (ȳdet., ŷdet.) (2)

where LD denotes the loss function from the anchor-based
detector, ȳdet is the pseudo lane label generated by teacher
model and ŷdet is the lane prediction by the student model.

Auxiliary Task: WSDAL framework can attach various
segmentation tasks, which share the feature maps from the
image encoder with the detection branch, as auxiliary tasks.
In the case of having multi-scale feature maps, we uti-
lize binary interpolation to derive the feature representation
with the smallest downsampling rate. Typically, lane detec-
tors perform instance segmentation tasks as auxiliary tasks
where they categorize each lane instance [31, 62]. In our
work, we compare it with binary segmentation as an addi-
tional auxiliary label strategy. The loss function LS

seg. is cal-
culated using cross-entropy to compare between predictions
and ground truths on the source domain. The segmentation
masks for training are generated by the existing lane mark-
ing annotations given the width of the lanes. Similar to the
lane detection task, the segmentation pseudo label is also
generated by the teacher model. The teacher model gener-
ates a probability map ŷseg of c channels given the image
without data augmentation, and filters ŷseg to foreground

points according to the probability threshold ↵c:

ȳseg. =

⇢
argmax

c
ŷseg., ŷseg. > ↵c

0, else (3)

The lane segmentation predictions obtained from the
teacher model are applied to the correct positional trans-
formation operation into pseudo segmentation labels. This
way it can be matched with the augmented image fed into
the student model. The weighted loss function for the seg-
mentation task is as follows:

Lseg. = !seg.LCE (ȳseg., ŷseg.) (4)

Weak Supervision Task: In target domains, unadapted de-
tectors generate lane predictions with low confidence scores
from out-of-distribution features, which hampers the pro-
cess of filtering out correct lane predictions. In our work,
we utilize the number of lanes to help the detector adapt to
the target domain. Through our number of lane (NoL) loss
we improve the confidence score of the lane predictions,
which can match with the ground truth. It is necessary to
ensure for any predicted lane description ln in y that the
foreground score l(L�1)

n and the background score l(L)
n sat-

isfy max(l(L�1)
n , l(L)

n ) ⇡ 1 by softmax function, such that
the confidence between positive and negative predictions re-
main as large as possible in the domain adaptation phase.

During the calculation of the number of lane loss, we
filter the lane predictions with high confidence scores from
the student model by l(L�1)

n

!
> �c as positive classifications.

The sum of their confidence scores is taken as the prediction
of the number of lanes currently achieved by the model.
In the initial stage, this value is usually smaller than the
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number of lanes during domain adaptation. Therefore, the
model under the supervision of weak labels increases the
confidence score of lane predictions through the propagated
gradients, especially the lane predictions whose confidence
score is higher than �c in the initial stage, which helps the
lane predictions with confidence scores above the threshold
to diverge from the other lane predictions. After domain
adaptation, the model does not acquire any meta informa-
tion from environment during inference.

The weighted number of lanes loss is calculated by:

Lnum. = !num.Lsmooth-l1

⇣
nt,

P
n2N 0 l

(L�1)
n

⌘
(5)

where nt is the number of lanes and N
0={n | l(L�1)

n > �c}.
Optimization Process: As shown in Fig. 2, the images in
the source and target domains have a total of three paths in
the network:
1. In the first path shown in red, the images from the target

domain are fed into the teacher model without data aug-
mentation, where the teacher model produces detection
and segmentation predictions. Subsequently, the pre-
dictions are filtered into pseudo labels according to the
threshold �c and ↵c. We do not calculate any gradient in
this step.

2. In the second path shown in blue, the images after data
augmentation from the target domain propagate through
the student model generating predictions. Firstly, they
are compared with the pseudo labels generated by the
teacher model where LT

det. and LT

seg. can be derived. The
sum of confidence scores above �c is taken as the predic-
tion of the number of lanes to get the LT

num. .
3. For the third path shown in black, we calculate the losses

LS

det. and LS

seg. on the detection and segmentation pre-
dictions of the student model given images with strong
data augmentation.
In the process of domain adaptation, we iteratively up-

date both student and teacher models. The student net-
work rapidly transfers the knowledge of the model from
the source domain to the target domain, driven by a combi-
nation of self-supervised and weakly supervised processes.
The parameters of the student model are updated to the
teacher model via EMA, which enables the teacher model
to generate accurate predictions consistently during train-
ing. In the WSDAL framework, the overall loss function is
stated as follows:

Ltotal = LT

det. + LT

seg. + LT

num. + LS

det. + LS

seg. (6)

4. Experiments

4.1. Datasets and Evaluation Metrics

TuSimple: TuSimple [44] is a lane dataset focusing on
highway scenarios collected in the United States contain-

ing around 6000 images. The dataset is relatively homoge-
neous as the data were collected under good and moderate
weather conditions and only covers highways. For the eval-
uation, lanes are evaluated using sampled points. When the
distance between the ground truth point and the lane predic-
tion point is less than 20 pixels, the prediction is considered
as correct. For a lane prediction, it is regarded as a true pos-
itive if the percentage of correct point predictions is higher
than 85%. We report besides the False Positive Rate (FPR),
False Negative Rate (FNR) and accuracy, also the F1-score:

F1-score = 2·Precision·Recall
Precision+Recall (7)

where Precision = TP
TP + FP , Recall = TP

TP + FN .
CULane: CULane [30] is a large scale dataset that con-
tains diverse driving situations in Beijing with 133,235
frames. In addition to normal scenario, there are eight chal-
lenging subsets including traffic jams, nights, intersections.
For evaluation, we strictly follow the evaluation scheme
from [30]: A true positive prediction is considered as the
prediction with a certain width that has an Intersection-of-
Union over a predefined threshold of the ground truth. We
report the F1-scores of the subsets and overall dataset. For
the subset cross, we report the number of false positives.
CurveLanes: CurveLanes [55] is a large scale lane detec-
tion dataset with 150,000 images for complex driving sce-
narios and up to 14 lanes per image. Like the CULane
dataset, this dataset was also collected in China with high
urban bias. Besides that, this dataset also concentrates on
curved lane markings different from the natural distribution
of curvature from other datasets. The evaluation scheme is
similar to CULane and we report F1-scores, Precision and
Recall values based on predefined IoU thresholds.

4.2. Implementation

To simplify the experiment, we select LaneATT [41] and
CLRNet [62], two anchor-based detection architectures that
are frequently used as baseline model for the performance
comparison [9, 49]. When CULane is used as the source
domain, following the default settings of LaneATT, all in-
put images are resized to 640 ⇥ 360 and using AdamW op-
timizer with a cosine annealing learning rate strategy. CLR-
Net follows its default settings by scaling the input image to
800 ⇥ 320 and using the AdamW optimizer using the co-
sine annealing learning rate strategy. We trained the models
from pre-trained ImageNet-1k weights.

In the case of domain adaptation, we first train the model
on the source datasets and the weights are used as starting
point for the domain adaptation. We repeat our experiments
three times using different seeds. We primarily choose
ResNet18 as the encoder. For the data augmentation, we
use horizontal flip, channel shuffle, color jitter, motion blur,
median blur, random rotation and random scaling for the
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student model. We utilize the binary segmentation task as
an auxiliary task for the detection network. For TSUDA, we
empirically utilize a lower pseudo label threshold �c = 0.2
to guarantee that enough labels can be generated, while for
WSDAL we can employ a higher threshold �c = 0.5. For
segmentation tasks, we take the threshold ↵c = 0.8. Further
implementation details are in Appendix B. For ablation, we
report the results by deactivating the NoL loss to perform
only the unsupervised domain adaptation without using any
information from the target domain except the images. We
compare this variant, noted as Teacher–Student Unsuper-
vised Domain Adaptation (TSUDA) together with Domain
Generalization (DG) without utilizing any adaptation meth-
ods with our proposed method.

4.3. Target Dataset TuSimple

We start our investigation with TuSimple as the target
dataset, which focuses on highway driving scenarios. The
comparison of the domain adaptation performance is shown
in Tab. 1. As introduced in Sec. 4.2, we evaluate two
different base detectors. The proposed weakly-supervised
method significantly boosts performance from the CULane

dataset, as lower FPRs and FNRs can be observed while F1-
score and accuracy increase compared with unsupervised
method and without adaptation. If the network was pre-
viously trained on a more challenging dataset like Curve-

Lanes, the model’s ability to detect lanes can be observed
by the high F1-score even if the model does not have
any domain adaptation methods applied. Similar to the
CULane dataset as source dataset, the proposed WSDAL
achieves better detection performance on the target domain
with CurveLanes. Compared with the upper bound of the
model’s capacity, namely the model trained on target dataset
TuSimple only, the model shows an average F1-score differ-
ence of only 4% without needing labels on the target do-
main that are indispensable for fully supervised learning.
It shows that the model can still re-use the learned feature
representations from the complex source domain since it is
trained on data that include many object occlusions. With
the help of the generated pseudo labels and the number of
lanes constraint for the model’s output, the model is able
to comprehend the priority of the lane candidates to the ex-
plicit lane markings and to suppress the structures that may
be considered false positives, for instance, road boundaries
and road surface shifts. We provide further in-depth analy-
sis and qualitative results in Appendices E and G.

4.4. Target Dataset CULane

When we consider adapting from the TuSimple dataset, we
observe as shown in Tab. 2 that the models suffer from the
shifted lighting condition from daytime only to also include
night driving scenarios. Besides that, the model also needs
to cope with typical urban driving situations where the lanes

Table 1. Comparison of the LaneATT and CLRNet models which
are trained on CULane and CurveLanes datasets and adapt to
TuSimple. We report average score in % according to three runs.

Ds Model Backbone Method F1 FPR FNR Accuracy

C
U

La
ne

LaneATT

ResNet-18

DG 54.9 49.6 39.4 81.29
TSUDA 69.9±0.7 32.6±0.7 25.4±0.6 84.7±0.2

WSDAL 81.7±0.3 18.8±1.0 17.5±0.7 88.8±0.4

CLRNet
DG 70.3 32.6 26.35 85.89

TSUDA 84.8±0.3 12.6±0.1 18.9±0.9 85.5±0.7

WSDAL 86.9±0.3 11.5±0.2 15.2±0.5 89.0±0.4

C
ur

ve
La

ne
s

CLRNet

ResNet-18
DG 80.7 8.1 35.8 72.9

TSUDA 84.5±0.2 15.7±0.5 15.3±0.6 86.5±0.4

WSDAL 91.2±0.5 8.1±0.5 9.7±0.5 91.2±0.3

ConvNeXt-atto
DG 82.4 10.7 27.1 80.0

TSUDA 78.0±2.1 23.1±1.9 15.5±1.9 84.2±0.6

WSDAL 88.9±0.7 10.7±0.8 11.6±0.7 90.4±0.4

DT CLRNet ResNet-18 95.3 5.5 3.8 95.1
DT LaneATT ResNet-18 95.1 5.9 3.7 94.9

are often occluded by other traffic participants. That is the
possible reason that the models trained on TuSimple, de-
spite the improvement brought by weakly-supervised do-
main adaptation, still have high disparity compared with the
oracle models. Especially with LaneATT, the use of WS-
DAL can only bring a slight overall performance improve-
ment in the TuSimple to CULane task. However, WSDAL
can be very helpful to improve CLRNet’s performance in
the target domain.

From the models that are previously trained on Curve-

Lanes, we observe – as in Sec. 4.3 – relatively high scores
in the target domain without any adaptation. Besides the
normal F1-score indications that are reported in the eight
splits, we also observe a noticeable decrease of false posi-
tives in the category Cross Roads, where there should be no
lanes detected according to the labeling policy of CULane,
compared with the base model without adaptation. Further-
more, it can be noticed that the unsupervised domain adap-
tation methods do not perform well in this setup. Our expla-
nation is that due to the dilemma in selecting the threshold
�c for pseudo lane label generation, it is tough to balance
the quality and quantity of the lane labels [9]. It is not re-
liable to differentiate the predictions (often more than the
maximum number of lanes in CULane) purely based on the
scores, as the selected pseudo labels may not represent the
label policy of the CULane. With WSDAL, we incorpo-
rate the number of lane loss giving the network hints that
encourage the networks to focus on the most apparent vi-
sual structures available on the target domain, which can be
observed by the improvement in the split night.

4.5. Target Dataset CurveLanes

We investigate the shift CULane ! CurveLanes based on
the CLRNet architecture, as we notice the limitations of
the other architecture and training on datasets that do not
have high variance. Tab. 3 shows the model’s performance
based on various IoU thresholds besides the standard 0.5
during evaluation. Due to the significant changes in data
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Table 2. Comparison of the LaneATT and CLRNet models which are trained on the TuSimple and CurveLanes dataset and adapt to CULane.
We report the average score in % according to three runs.

Ds Model Backbone Method Normal Crowd Dazzle Shadow Noline Arrow Curve Cross Night Total

Tu
Si

m
pl

e CLRNet

ResNet-18

DG 42.0 20.4 11.6 5.6 8.2 28.1 22.3 1950 2.9 23.0
TSUDA 59.9±0.7 40.2±0.5 32.3±1.4 24.9±0.8 26.3±0.8 54.1±0.5 44.6±0.7 4510±388 30.2±1.5 43.0±0.9

WSDAL 65.2±0.4 43.4±0.7 35.6±1.4 28.2±1.5 29.3±0.5 57.5±0.7 48.7±0.2 1975±178 33.4±0.8 47.2±0.6

LaneATT
DG 38.9 18.1 10.9 3.9 6.5 26.1 21.4 569 2.6 21.5

TSUDA 33.6±0.8 19.8±0.4 19.9±0.7 10.8±0.2 13.5±0.3 25.6±0.3 21.3±0.8 7378±250 9.0±0.3 21.4±0.5

WSDAL 49.0±0.9 28.0±0.7 25.2±1.4 15.6±0.9 22.0±0.2 37.3±0.8 36.6±0.3 2560±90 21.6±0.7 32.8±0.6

C
ur

ve
La

ne
s

CLRNet

ResNet-18
DG 82.2 66.0 60.2 70.1 48.0 76.8 72.0 6730 62.9 66.7

TSUDA 68.5±0.5 50.1±0.6 42.4±0.4 48.5±0.7 30.8±0.4 63.6±0.7 56.5±0.3 889±21 51.7±0.5 55.0±0.5

WSDAL 86.2±0.0 68.5±0.2 60.1±0.2 72.7±0.1 47.3±0.1 80.5±0.2 73.0±0.4 2370±15 66.6±0.1 70.9±0.1

ConvNext
DG 78.5 63.6 54.6 66.3 42.4 72.7 69.0 3208 59.3 64.7

TSUDA 49.9±0.4 27.5±0.2 26.1±0.4 40.4±0.8 20.8±0.2 39.6±0.5 47.4±0.2 5803±144 34.5±0.2 35.5±0.2

WSDAL 86.7±0.2 68.2±0.2 62.8±0.3 71.1±0.2 46.7±0.2 81.5±0.3 70.8±0.2 2311±12 67.2±0.3 71.0±0.2

DT CLRNet ResNet-18 93.0 77.5 70.1 77.4 52.7 89.3 68.2 1239 77.5 78.5
DT LaneATT ResNet-18 91.0 73.0 65.6 76.7 48.8 86.7 65.1 1173 70.1 75.5

Table 3. Comparison of task CULane (Ds) ! CurveLanes (DT )
of CLRNet with ResNet-18 based on various IoU thresholds. We
report the average score in % according to three runs.

IoU Threshold Method F1 Precision Recall

0.3

DG 67.6 92.0 53.4
TSUDA 68.8±0.1 92.5±0.1 54.8±0.1

WSDAL 74.2±0.1 83.2±0.2 66.9±0.2

DT 83.3 89.8 77.7

0.5

DG 61.4 82.5 48.5
TSUDA 62.4±0.0 83.9±0.1 49.7±0.1

WSDAL 64.1±0.1 71.9±0.1 57.8±0.2

DT 75.2 81.1 70.1

distribution from CurveLanes dataset, as there are up to 14
annotated lanes and small radius of curvatures have high
presence in the images. In spite of the difficulties with the
proposed weakly-supervised method, improvements can be
observed as the F1-score increases by 2%. Furthermore,
similar to [30], we consider loose evaluation that tolerates
higher positional deviations with IoU threshold 0.3 as the
weak labels do not provide any direct supervision regarding
positions of the lanes to ego vehicle, which are highly vari-
ational according to the annotator. The increasing disparity
between the scores based on different IoU thresholds indi-
cates that the weak labels provide helpful information for
the adaptation to a more challenging dataset. Qualitative re-
sults can be found in Fig. 1. Besides that, the improved F1
score is due to the fact that the recall of the model increases
significantly after applying WSDAL. The decrease in pre-
cision can be explained by the fact that the model increases
the number of predictions on the target domain with possi-
ble positional drifts due to the lack of regression constraint
during adaptation, shown in Fig. 10 of the Appendix.

Table 4. Applying WSDAL with 3 different backbones with CLR-
Net architecture from CurveLanes to TuSimple. Scores in brackets
are the corresponding score trained directly on target domain. We
report the average score in % according to three runs.

Backbone #params F1 FPR FNR Accuracy

ResNet18 11.7M 91.2 (95.3) 8.1 (5.5) 9.7 (3.8) 91.2 (95.1)

DLA34 15.8M 91.0 (96.3) 8.4 (4.1) 9.7 (3.2) 90.4 (95.6)
ConvNext 3.9M 88.9 (95.8) 11.0 (5.6) 11.6 (2.8) 90.6 (95.6)
ERFnet 2.4M 87.2 (95.2) 12.4 (6.0) 13.2 (3.4) 90.5 (95.5)

5. Ablation Study

5.1. Backbones

In order to verify that WSDAL improves the performance
of models with different backbones on the target domain,
we design experiments on CLRNet, as it achieves the best
adaptation results from the previous experiments. For the
ablation study, we choose in addition to ResNet three differ-
ent backbones: DLA34 [57], ConvNextv2-atto [54] and the
ERFNet [32] encoder, as they are representative backbones
that are frequently used in research. Besides the ConvNext
models that we reported in the previous tables, we show
the models’ performance on the task CurveLanes to TuSim-

ple in Tab. 4. All of the proposed backbones improve their
performance on the target domain using WSDAL compared
with their unsupervised counterparts and close the gap to
the upper bound. It is worth noticing that the trade-off be-
tween performance and learning capacity is not significant
as the smallest model has only 15% of the parameters of
the DLA34 model but they can achieve similar accuracy
and 4% F1-score difference. But smaller models struggle to
generate high quality pseudo labels, leading to higher per-
formance disparity to the upper bound. Extensive results
of the experiments on TuSimple, CULane and CurveLanes

with various image encoders can be found in Appendix E.
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Table 5. Ablation study for auxiliary segmentation task CULane

! TuSimple. All values in %.

Model Segmentation F1 FPR FNR Accuracy

CLRNet 80.2 16.5 22.8 85.1
CLRNet Instance 83.2 14.5 19.0 86.5
CLRNet Binary 86.9 11.5 15.2 89.0

LaneATT 76.0 25.5 22.5 87.3
LaneATT Instance 79.8 20.4 19.9 87.7
LaneATT Binary 81.7 18.8 17.5 88.8

5.2. Auxiliary Task

In lane detectors, the lane segmentation task can enhance
the model’s performance in the source domain, but its im-
pact on model generalization is less understood. We con-
ducted an ablation study for the lane segmentation task
within the WSDAL framework, with results presented in
Tab. 5. It is evident that both auxiliary segmentation
tasks significantly improve the performance of CLRNet and
LaneATT in the target domain. This noteworthy improve-
ment in the model’s adaptation ability to the target domain
is more encouraging compared to the limited performance
boost observed in the source domain, which is extensively
discussed in Appendix C. Anchor-based lane detection fo-
cuses on leveraging the intrinsic correlations of local infor-
mation to predict overall lane parameters, while the lane
segmentation task emphasizes the model’s ability to identify
semantic information of pixels discretely. The lane segmen-
tation capability acquired through training on the source do-
main assists the model in better discovering lane foreground
points through pixel-wise semantic features in the target do-
main and improving lane prediction accuracy. In both lane
segmentation tasks, binary segmentation possesses greater
universality across different domains and can be less influ-
enced by the lane classification strategy in the source do-
main. This property makes the binary segmentation task
better at enhancing the performance of lane detectors in the
target domain. In addition, we also ablate the necessity of
utilizing teacher–student network and auxiliary segmenta-
tion task for supporting WSDAL in Appendix D.

5.3. Unreliable Labels

As the NoL labels may come from map providers or other
means of inferencing the NoL labels might be inaccurate,
we ablate in this section the impact of utilizing unreliable
NoL labels during weakly-supervised domain adaptation
for lane detection models. We choose CLRNet as the base
architecture for the evaluation. Similar to Sec. 5.1, we uti-
lize various backbones to verify the results. For the exper-
iments, we use an identical training setup to the ones that
we deployed in the previous sections. During domain adap-
tation, instead of providing the correct NoL label from the
image n, we replace the NoL label with a random number
between zero and the known maximum NoL label from the

dataset. We gradually increase the proportion of incorrect
labels up to 100% and repeat the experiment for each error
rate configuration three times using different seeds.

Fig. 3 depicts the F1-score of the model affected by the
incorrect number of weak supervision labels. Overall, the
transition point is located at around 30% error rate, indi-
cating the proposed method outperforms the conventional
UDA methods with suboptimal label quality from the target
domain. In addition, we show in Appendix F that the tran-
sition point is also related to the properties of source and
target datasets and the model architecture.

0 20 40 60 80 100

Proportion of the incorrect number of lane labels (%)
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Figure 3. Results on CurveLanes ! Tusimple with incorrect NoL
labels on various image encoders with CLRNet. The dashed lines
show the results from TSUDA.

6. Conclusion

In this work, we propose a novel Weakly Supervised Do-
main Adaptation framework for Lane Detection (WSDAL).
The WSDAL framework consists of a teacher-student net-
work and involves three tasks: lane detection, lane segmen-
tation, and number of lanes prediction. The teacher network
takes unaugmented images as input, while the student net-
work takes augmented images for self-training. For lane
detection and lane segmentation tasks, the teacher network
can generate relatively accurate predictions, which are then
converted into pseudo-labels to supervise the learning of the
student network in the target domain. The number of lanes
in target domain images serves as weak labels that affect the
loss of the student’s performance on the teacher-generated
pseudo-labels. With an extensive range of experiments, we
show that these weak labels enhance the confidence of lane
predictions, enabling the detector to generate more high-
confidence correct predictions in the target domain. Domain
adaptation through weak supervision can reduce the false
predictions of the model in the case of misaligned label dis-
tributions in the source and target domains. Furthermore,
we show that the proposed method is realistically deploy-
able due to its tolerance to imperfect labels.
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