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Supplementary Material

A. Method
In the upcoming section, we explore further details and
derivations of our methods. Appendix A.1 provides the
derivation of multi-artifact P-ClArC, as per Eq. (2). Ap-
pendix A.2 includes pseudocode for both P-ClArC and
R-ClArC. Lastly, in Appendix A.3, we introduce a 3D toy
experiment to illustrate the transformations induced by P-
and R-ClArCs.

A.1. Derivation for multi-artifact P-ClArC
Let C0 ✓ C represent a subset of artifacts with a size
|C0| = k, 1  k  n. Let VC0 = [vi]ci2C0 be the ma-
trix comprised of the respective CAVs as column vectors.
Let Z�

C0 =
T

ci2C0 X�
i be the intersection of negative ex-

amples, and z�C0 = 1
|Z�

C0 |

P
z2Z�

C0
a(z). Let ax = a(x) and

px = h̃(ax, C0) be the P-ClArC transformation. Our objec-
tive function can be then formalized as follows:

min
px

||px � ax||2

s.t. V T
C0 (px � z�C0) = 0.

(6)

The corresponding Lagrangian function is as follows:

L =
1

2
||px � ax||2 + �TV T

C0 (px � z�C0). (7)

Applying the Karush-Kuhn-Tucker conditions, we get:

px � ax + VC0� = 0;

V T
C0 (px � z�C0) = 0.

(8)

Solving for � we get:

V T
C0 px � V T

C0 ax + V T
C0VC0� = 0 ()

V T
C0 z�C0 � V T

C0 ax + V T
C0VC0� = 0 ()

� = (V T
C0VC0)�1V T

C0 (ax � z�C0).

(9)

Inserting the resulting � into the first KKT condition we
get:

px � x+ VC0(V T
C0VC0)�1V T

C0 (ax � z�C0) = 0 ()
px = x� VC0(V T

C0VC0)�1V T
C0 (ax � z�C0).

(10)

Thus, we acquire px = h̃(x) as the P-ClArC transforma-
tion for multiple artifacts, as described in Eq. (2).

A.2. Pseudocode for P-ClArC and R-ClArC
A detailed Algorithm for both P-ClArC and R-ClArC
shown in Algorithm 1 under the common name of Class
Artifact Compensation.

Algorithm 1: Class Artifact Compensation
Data: Sample x;
Model f with accessible layer l (and subnetwork
fl);
For each artifact in C, sets of positive examples
X+ = {X+

1 , X+
2 , . . . , X+

n } and negative examples
X� = {X�

1 , X�
2 , . . . , X�

n };
For each artifact in C, sets of activations of positive
examples A+ = {A+

1 , A
+
2 , . . . , A

+
n } and activations

of negative examples A� = {A�
1 , A

�
2 , . . . , A

�
n } in

layer l;
Set of layer-l CAVs V l for each artifact in C.
Result: output for x according to a modified

predictor f 0 desensitized to artifacts C
/* deactivate the use of C in f */

1 if P-ClArC then
2 Z� = mean of intersection(A�);
3 hl

c = backward artifact model(V l, Z�);
4 else if R-ClArC then
5 C0 = condition generating function(x);
6 V l

C0 = subset by concept(V l, C0);
7 A�

C0 = subset by concept(A�, C0);
8 Z�

C0 = mean of intersection(A�
C0);

9 hl
c = backward artifact model(V l

C0 , Z�
C0);

10 ax = fL(x);
11 fl0(ax) := hl

c(ax);
12 f 0 = fL � · · · � fl+1 � fl0 � fl � · · · � f1(x);
13 return f 0(x)

A.3. 3D Toy Model
We construct a three-dimensional toy dataset comprising
two classes. In Class 1, two artifacts are present. For Class 1
(red circles), we generate 500 clean samples distributed nor-
mally, with a mean at coordinates (0, 8, 0) and a covariance
matrix equal I , where I represents the 3⇥3 identity matrix.
Additionally, 500 samples are created for Artifact 1 (blue
diamonds), centered at (1, 8, 8), with covariance matrix I .
Analogously, another set of 500 samples is generated for
Artifact 2 (blue diamonds), with a mean at (1, 1, 8) and co-



Figure 8. 3D Toy Model illustrating P-ClArC and R-ClArC transformations. The dataset includes Class 1, Class 2, and two artifacts
belonging to Class 1. A three-layer feed-forward neural network is used for binary classification, with its decision boundary shown in light
blue. P-ClArC shifts Class 2 samples across the decision boundary, resulting in misclassification, while both versions of R-ClArC maintain
accuracy.

variance matrix I . For Class 2 (orange squares), 500 clean
samples are distributed normally with a mean at (6, 1, 1)
and a covariance matrix 1.8 · I . The original distribution of
the datapoints is represented in the “Vanilla” facet of Fig. 8.

We construct a 3-layer feed-forward neural network for
binary classification with an input layer of 3 neurons, a hid-
den layer of 30 neurons, and an output layer of 2 neurons.
The model is trained using the Adam optimizer with a learn-
ing rate of 0.01 for 5000 epochs. The decision boundary
of the trained model is depicted as a light-blue surface in
Fig. 8.

We compute pattern-CAVs and train two linear SVM
classifiers with L2 regularization and squared hinge loss
for the classification of the two artifacts. Subsequently,
we apply three distinct transformations to the original data:
P-ClArC (Eq. (2)), class-conditional R-ClArC (Eq. (3),
Eq. (4)), and artifact-conditional R-ClArC (Eq. (3), Eq. (5)),
where artifact-conditional R-ClArC utilizes the linear SVM
classifier for artifact presence detection. Instead of applying
the transformation to activations, we directly apply them to
the input data. Fig. 8 illustrates these transformations.

In all ClArC transformations, only the data points are
altered, while the decision boundary remains unchanged,
as the model weights remain constant. We observe that
P-ClArC uniformly transforms all samples, resulting in a
significant number of Class 2 data points (orange squares)
crossing the decision boundary and leading to misclassifi-
cation. In contrast, class-conditional R-ClArC preserves
model accuracy by leaving unchanged the data points classi-
fied by the model as Class 2. Artifact-conditional R-ClArC
exclusively transforms data points classified by the SVM
classifiers as Artifact 1, Artifact 2, or both, further preserv-
ing the original data distribution while maintaining accu-
racy.

B. Experimental Details
We outline the details of the two generated datasets for Fun-
nyBirds, as well as the original and poisoned datasets for
ISIC2019, in Appendix B.1. Appendix B.2 provides in-
sights into the training process of Vanilla models. Infor-
mation about the CAV calculation method is covered in
Appendix B.3, while we evaluate CAVs in Appendix B.4.
Lastly, Appendix B.5 outlines the details of the P- and
R-ClArCs model correction methods and their evaluation.

B.1. Datasets
The FunnyBirds framework [19] provides a framework for
the creation of controlled datasets featuring 3D-rendered
birds. Each bird class comprises 5 parts, with multiple op-
tions available for each part (e.g., 4 beaks, 3 eyes, etc.),
which are assembled to form a bird sample. These samples
are then placed within 3D scenes, where parameters such
as camera position, zoom, lighting, and background objects
are randomly selected for each sample.

We generated the backdoor FunnyBirds dataset, which
comprises 2 classes of birds. The defining parts for the two
classes were randomly selected. As a backdoor artifact, we
randomly selected the “green box” background object (see
Fig. 2) and predefined its position relative to the bird’s po-
sition within the 3D scene’s coordinate system. For training
and validation, we created a dataset consisting of 5000 sam-
ples of each of the two classes. 33% of the labels of samples
of class 0 were flipped to encourage learning the backdoor
artifact. A randomly chosen 10% subset was allocated for
validation. Additionally, we constructed a test set compris-
ing 100 correctly labeled birds from each class.

The shortcut FunnyBirds dataset comprises 10 different
classes. We incentivized the utilization of the shortcut ar-
tifact by designing classes 0 to 3 to only vary in the beak
part; otherwise, the parts of other classes were randomly
selected. We generated 10 different background object arti-
facts with predetermined positions relative to the bird (as



Figure 9. 10 artifacts included in Class 0 of FunnyBirds shortcut dataset. The positions of the 10 background objects relative to the bird
objects within the scene are fixed.

depicted in Fig. 9), which were inserted into samples of
class 0. Specifically, 50% of class 0 bird samples included
a randomly selected number from 1 to 10 of these arti-
facts. We ensured an equal distribution of the total number
of background artifacts between shortcut and non-shortcut
samples by setting the minimum number of background ob-
jects for each sample to 10. This way, we ensured that the
number of background objects was not used as a spurious
feature. We generated a dataset with 1000 birds of each
class, with 10% of this set allocated for validation. Ad-
ditionally, we constructed a test set comprising 100 birds
from each class.

For both FunnyBirds datasets, we generated binary
masks that precisely localize the artifact object using the
functionality of the FunnyBirds framework. These binary
masks are employed to assess artifact relevance in Sec. 4.4.

Figure 10. Examples of ISIC artifacts band-aid (“NV”), skin
marker (“NV”, “BKL”), and reflection (“BKL”) artifacts.

The ISIC2019 [8, 9, 28] dataset consists of 25,331 sam-
ples of classes “MEL”, “NV”, “BCC”, “AK”, “BKL”, “DF”,
“VASC”, and “SCC”. We used the Reveal2Revise (R2R)
framework [30] to identify three artifacts naturally occur-
ring in the dataset, strongly correlating with class labels:
band-aid (“NV”), skin marker (“NV”, “BKL”), and reflec-
tion (“BKL”) artifacts (examples are provided in Fig. 10).
Following the R2R approach, we identified artifact samples
and computed artifact localization binary masks. Firstly,
we obtained artifact localization heatmaps by generating
Layer-wise Relevance Propagation (LRP) [4] heatmaps for
SVM-CAVs [20] in the features.7 layer of VGG16 trained
on ISIC2019 data (training details of the model were out-

lined in Appendix B.2). The LRP attribution heatmaps are
computed using the ✏z+[-composite [21] with the zennit
library [2]. Secondly, we manually sorted the heatmaps to
exclude those that appeared to have high attributions in re-
gions unrelated to the artifact concept. Thirdly, pixels cor-
responding to positive attributions (larger than ✏ = 0.3) re-
ceived a value of 1 in the binary masks, while others were
assigned a value of 0. These artifact binary localization
masks were subsequently utilized in evaluating artifact rel-
evance (as described in Sec. 4.4). Additionally, we utilized
the CAV heatmaps to isolate the artifacts in the correspond-
ing samples and overlay them onto clean test samples for
the ISIC2019 “poisoned” setting and for the “generated”
CAV datasets Sec. 4.2. Specifically, the artifact sample im-
age was multiplied with its CAV heatmap element-wise and
then added to the clean sample with the pixel values multi-
plied by (1 - attribution) element-wise.

Dataset Model Optimizer LR Epochs

ISIC2019
VGG16 SGD 0.05 150
ResNet18 SGD 0.05 150
EfficientNet-B0 Adam 0.01 150

FunnyBirds
backdoor

VGG16 SGD 0.001 100
ResNet18 Adam 0.001 100
EfficientNet-B0 Adam 0.001 100

FunnyBirds
shortcut

VGG16 SGD 0.001 100
ResNet18 Adam 0.001 100
EfficientNet-B0 Adam 0.001 100

Table 5. Model training details including optimizer, initial learning
Rate (LR), number of epochs.

B.2. Model Training

Tab. 5 provides training details for all models and
datasets, including optimizer, initial learning rate (LR),
and number of epochs. The ISIC2019 models were pre-
trained on ImageNet [36] using weights obtained from the
Torchvision library. The learning rate (LR) for the
ISIC2019 model was divided by 10 after epochs 50 and 80
during training. Both FunnyBirds models were trained from
scratch, employing early stopping based on validation set
loss with a patience of 3 epochs.



Model CAV Dataset
FunnyBirds ISIC2019

“green box” “reflection” “band-aid” “skin marker”
Pattern Filter Pattern Filter Pattern Filter Pattern Filter

ResNet18 Generated 0.824 0.101 0.617 0.343 0.406 0.215 0.406 0.166
Data Subset 0.563 0.042 0.469 0.328 0.166 0.156 0.193 0.089

VGG16 Generated 0.779 0.132 0.919 0.180 0.588 0.132 0.608 0.128
Data Subset 0.345 0.119 0.885 0.430 0.482 0.235 0.443 0.121

EfficientNet-B0 Generated 0.859 0.040 0.655 0.093 0.454 0.054 0.440 0.088
Data Subset 0.854 0.002 0.332 0.424 �0.077 0.080 �0.012 0.056

Table 6. Evaluating the alignment of artifact CAVs in terms of cosine similarity with the actual change in activations when the concept
is added in a controlled fashion across various models, the FunnyBirds backdoor dataset, and the ISIC2019 dataset. We compare CAVs
computed on original data subsets, and CAVs computed on pairs of clean and (generated) poisoned samples.

Model
FunnyBirds
backdoor

FunnyBirds
shortcut

ISIC2019

“GB” 0 1 2 3 4 5 6 7 8 9 “R” “BA” “SM”

ResNet18 94.1 96.3 96.2 94.0 95.6 94.9 97.5 96.3 94.9 95.6 96.3 98.4 95.9 100.0
VGG16 90.4 94.4 93.1 94.0 93.1 88.6 95.7 93.9 93.7 93.1 93.2 93.4 100.0 96.7
EfficientNet-B0 90.1 93.8 93.1 93.4 93.8 91.8 94.4 92.6 94.3 94.4 93.8 91.8 95.9 100.0

Table 7. Hold-out set accuracies of linear SVM classifiers across diverse datasets, artifacts, and models. These classifiers serve as artifact-
condition-generating functions in artifact-conditional and combined R-ClArC. “GB” denotes “green box”, “R” represents “reflection”,
“BA” indicates “band-aid”, and “SM” signifies “skin marker”.

B.3. CAV Calculation

For both FunnyBirds datasets, we create respectively addi-
tional 1000 negative samples of class 0 birds, as in both
cases this class is associated with artifacts. In the backdoor

FunnyBirds dataset, we then generate 1000 images with the
“green box” artifact, while for the “shortcut” FunnyBirds
dataset, we produce a set of 1000 positive examples for each
of the 10 artifacts.

To create negative example sets for ISIC2019 for the
generated CAVs, we begin by sampling 1000 non-artifact
images from the classes associated with each artifact. Sub-
sequently, we overlay the cropped-out artifacts onto these
images, following the process outlined in Appendix B.1,
resulting in a set of 1000 positive examples for each arti-
fact. For dataset subset CAVs, we use all available artifact
samples as positive examples and sample negative examples
from the ISIC2019 non-artifact samples. We ensure that the
ratio of positive to negative examples does not exceed 5.

For pattern-based CAV calculation we directly adopt the
approach from [31], while for filter-based CAVs we employ
linear SVMs trained with L2 regularization and squared
hinge loss with class weights inversely proportional to class
frequencies.

B.4. CAV Evaluation
The alignment scores for various CAVs methods were com-
puted following the approach outlined in [31]. We present
the CAV evaluation results for different model architectures,
for the FunnyBirds backdoor “green box” artifact, and all
examined ISIC2019 artifacts in Tab. 6.

B.5. Model Correction and Evaluation
We assess artifact relevance using heatmaps computed with
LRP using the ✏z+[-composite [21] with the zennit li-
brary [2]. The procedure for generating binary localization
masks is detailed in Appendix B.1. Artifact relevance is
quantified as the sum of absolute attribution values within
the mask divided by the sum of all absolute attribution val-
ues. To visualize the LRP heatmaps in Fig. 7, we normalize
them by dividing each heatmap by its maximum absolute
value.

Our evaluation encompasses P-ClArC, as well as
R-ClArC with class-conditional and artifact-conditional
condition-generating functions, along with their combina-
tion. Model correction is performed for all models post the
last convolutional layer, utilizing pattern-based “generated”
CAVs. For artifact-conditional and combined R-ClArCs,
our artifact-conditioning function classifies the samples in
the latent space of the last convolutional layer as well. For
this, we employ linear SVMs trained with L2 regularization



and squared hinge loss, with class weights inversely pro-
portional to class frequencies. The training data consists
of all available artifact samples as positive examples and a
subset of negative examples from the dataset, ensuring the
positive-to-negative example ratio does not exceed 5. 20%
of the training set serves as a holdout set to assess classifier
accuracy. The accuracies of the resulting SVM classifiers
are presented in Tab. 7.

C. Further Experiments
In the following section, we present supporting experi-
ments aimed at testing the orthogonality of concepts (Tab. 8,
Fig. 11). Additionally, we provide further heatmaps to fa-
cilitate qualitative evaluation of the R-ClArC method com-
pared to P-ClArC (Fig. 12, Fig. 13, Fig. 14).



(a) “Band-Aid” (b) “Skin Marker”

Figure 11. Histogram illustrating the activations of artifact CAVs for the corresponding artifact samples alongside 500 randomly selected
clean samples for ISIC2019 dataset and ResNet18 model.

Artifacts Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

0 �0.33 0.12 �0.65 0.62 0.40 0.45 0.34 �0.75 0.09 0.19
1 0.59 0.07 0.79 �0.17 �0.78 �0.59 �0.77 0.47 0.48 0.01
2 0.51 �0.15 0.80 �0.53 �0.73 �0.44 �0.64 0.70 0.40 �0.23
3 �0.45 �0.08 �0.78 0.53 0.61 0.62 0.57 �0.60 �0.23 0.01
4 0.13 0.04 0.31 �0.31 �0.46 �0.12 �0.32 0.07 0.62 0.00
5 �0.23 0.37 �0.45 0.54 0.29 0.12 0.20 �0.74 0.09 0.43
6 0.54 0.13 0.77 �0.26 �0.73 �0.57 �0.74 0.49 0.37 0.07
7 �0.27 0.13 �0.03 �0.28 �0.11 0.13 0.05 �0.13 0.33 0.12
8 0.70 �0.27 0.90 �0.44 �0.80 �0.51 �0.76 0.84 0.35 �0.35
9 �0.36 0.43 �0.54 0.49 0.48 0.10 0.33 �0.73 �0.13 0.49

Table 8. Cosine similarity between artifact CAVs and the mean feature direction of each class for the FunnyBirds shortcut dataset and
EfficientNet-B0. The strong relationship between artifact and class direction explains the strong negative impact of ClArC transformations
on model performance. Suppressing the artifact direction results in pushing samples across the decision boundary.



Figure 12. LRP heatmaps depicting samples with pronounced activation of the “reflection” concept for the Vanilla model and models
corrected using P-ClArC and R-ClArC combining class- and artifact-conditional approaches.

Figure 13. LRP heatmaps depicting samples with pronounced activation of the “band-aid” concept for the Vanilla model and models
corrected using P-ClArC and R-ClArC combining class- and artifact-conditional approaches.



Figure 14. LRP heatmaps depicting samples with pronounced activation of the “skin marker” concept for the Vanilla model and models
corrected using P-ClArC and R-ClArC combining class- and artifact-conditional approaches.
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