
Understanding the (Extra-)Ordinary: Validating Deep Model Decisions with
Prototypical Concept-based Explanations

— Supplementary Material —

Maximilian Dreyer1, Reduan Achtibat1,
Wojciech Samek1,2,3,†, Sebastian Lapuschkin1,†

1 Fraunhofer Heinrich Hertz Institute, 2 Technical University of Berlin,
3 BIFOLD – Berlin Institute for the Foundations of Learning and Data

†corresponding authors: {wojciech.samek|sebastian.lapuschkin}@hhi.fraunhofer.de

Appendix

A. Datasets and Models
In the following, we present all models, datasets and train-
ing procedures relevant for our experiments.

A.1. Models

We use ResNet-18 [4], VGG-16 [18] and EfficientNet-B0
[20] architectures in our experiments.

ResNet-18 The ResNet-18 is a convolutional neural net-
work architecture consisting of four BasicBlock lay-
ers and one fully connected layer. For all experiments,
we collect activation and relevance scores after each
BasicBlock layer.

VGG-16 The VGG-16 is a convolutional neural network
architecture consisting of 13 convolutional layers and
three fully connected layers. The convolutional layers are
given by the identifiers features.0, features.2,
features.5, features.7, features.10,
features.12, features.14, features.17,
features.19, features.21, features.24,
features.26, features.28, and the dense layers by
classifier.0, classifier.3, classifier.6.

EfficientNet-B0 The EfficientNet-B0 is a convolutional
neural network architecture consisting of nine features
layers. For all experiments, we collect activation and rele-
vance scores after each features layer.

A.2. Datasets

For our experiments, we include the datasets of Ima-
geNet [15], CUB-200 [21] and CIFAR-10 [8].

ImageNet ImageNet is a dataset for large scale visual
recognition, consisting of 1,000 object classes, totaling
14,197,122 images. We use the by the authors provided
splits for train and test data. Regarding data process-
ing, we resize images to a size where the smallest edge
is 256 px wide, with an additional center crop resulting
in 224×224 px image size. Finally, images are normal-
ized with mean (0.485, 0.456, 0.406) and standard devia-
tion (0.229, 0.224, 0.225) over the red, green and blue color
channel.

CUB-200 CUB-200 is a visual categorization task dataset
consisting of 11,788 images of 200 subcategories be-
longing to birds, 5,994 for training and 5,794 for test-
ing. Regarding data processing, we resize images to
a size where the smallest edge is 224 px wide, with
an additional center crop resulting in 224×224 px im-
age size. Finally, images are normalized with mean
(0.47473491, 0.48834997, 0.41759949) and standard devi-
ation (0.22798773, 0.22288573, 0.25982403) over the red,
green and blue color channel.

CIFAR-10 The CIFAR-10 dataset consists of 60,000
colour images in 10 object classes, with 6,000 images per
class. There are 50,000 training images and 10,000 test im-
ages in total. Regarding data processing, we resize images
to 32×32 px without further normalization.

A.3. Training

Whereas models on ImageNet are pre-trained and taken
from the PyTorch model zoo, we train models on CUB-
200 and CIFAR-10. Hereby, all models are trained for
100 epochs using the stochastic gradient descent (VGG,
ResNet) or ADAM [6] (EfficientNet) algorithm.

1

CUB-200 For training, we use a batch size of 32. The
initial learning rates are 10−3 for the VGG and ResNet ar-
chitecture, and 5 · 10−4 for the EfficientNet. For data aug-
mentation, Gaussian noise (zero mean, standard deviation
of 0.05), random horizontal flips (probability of 0.5), ran-
dom rotation (up to 10 degrees), random translation (up to
20 % of edge length in all directions) as well as a random
scaling (between 80 and 120 %) is applied.

CIFAR-10 For training, we use a batch size of 512. The
initial learning rates are 10−2 for the VGG and ResNet ar-
chitecture, and 5 · 10−3 for the EfficientNet. The learning
rate is decreased to one tenth after 50 and 75 epochs. For
data augmentation, random horizontal flips (probability of
0.5), as well as a random crop (to 32×32 px, probability 0.5)
after padding images with four pixels of zeros is applied.

B. Alternative Metrics for Sample-to-
Prototype Assignment

In the following, we present details for how to assign a new
prediction with concept relevance vector ν to a prototypical
prediction strategy µk

i (for prototype i of class k).

Gaussian Mixture Model (GMM) The probability den-
sity function of a Gaussian distribution (from the fitted
GMM) is given as

pki (ν) =
1

(2π)
n
2 det(Σk

i)
1
2

e−
1
2 (ν−µ

k
i)

⊤
(Σk

i)
−1
(ν−µk

i)

(B.1)
and serves as a direct means to assign predictions to a pro-
totype. Concretely, we compute the log-likelihood as

Lk
i (ν) = log pki (ν) (B.2)

and assign predictions to the prototype with highest log-
likelihood as

ρ∗(ν) = argmaxk,i log p
k
i (ν) . (B.3)

Note, when the task is to assign any prediction to a class
instead of prototype, we use the probability density pk of
the GMM as given in Equation (2).

Mahalanobis Distance Alternatively, one can also use
the Mahalanobis distance given as

dkMD,i(ν) =

√(
ν − µk

i

)⊤ (
Σk

i

)−1 (
ν − µk

i

)
(B.4)

to assign predictions to prototypes. Concretely, we assign a
prediction to the prototype with the smallest distance as

ρ∗(ν) = argmink,id
k
MD,i(ν) . (B.5)

For assigning a prediction to a class, we assign it to the class
of the closest prototype.

Euclidean Distance As a simple alternative, one can also
use the Euclidean distance given as

dkE,i(ν) =

√(
ν − µk

i

)⊤ (
ν − µk

i

)
. (B.6)

to assign predictions to prototypes. Concretely, we assign a
prediction to the prototype with the smallest distance as

ρ∗(ν) = argmink,id
k
E,i(ν) . (B.7)

For assigning a prediction to a class, we assign it to the
class of the closest prototype. It is to note, that whereas
log-likelihood and Mahalanobis distance are requiring co-
variance matrices, Euclidean distance does not. Thus, Eu-
clidean distance can also be used as a lightweight alter-
native, when prototypes are not computed via GMMs but,
e.g., k-means. However, as experiments show, e.g., Sec-
tion 4.3.2, covariance information is beneficial for better
modeling of underlying distributions. Then, as shown in
Figure 2b, Mahalanobis or log-likelihood are more accurate
in assigning predictions to the true class.

C. Evaluating and Inspecting Prototypes
In this section, we provide additional details and results for
the experiments regarding the evaluation and inspection of
prototypes, e.g., Sections 4.1 and 4.2.

C.1. Choice of the Attribution Method

For the results in Table 1, where we evaluate prototypes
based on concept relevance scores from different attribu-
tion methods, we provide Standard Error (SE) values in
Table C.1. For faithfulness, we compute the Area Under
the Curve (AUC) on eight subsets of the data (totaling 300
samples) to estimate the SE of the mean. Regarding sta-
bility and sparseness, we collect all individual values and
compute the SE of the mean. For coverage, we compute
the accuracy in assigning test samples to known eight sub-
strategies. For estimating the sub-strategies, we use half of
the training set from ImageNet, and the other half for the
test set. Then, for each of the seven animal families (listed
in Appendix C.4), we chose eight random classes (each cor-
responding to a sub-strategy) seven times. Thus, we com-
pute the SE of the mean over 49 coverage scores. Lastly,
for outlier detection, we compute the AUC for differenti-
ating between predictions of eight known sub-stragies and
five other classes of the same family. Again, for each of
the seven animal families, we chose eight random classes
(each corresponding to a sub-strategy) and five random out-
lier classes seven times. In total, we compute the SE of the
mean over 49 scores.

C.2. Increasing the Number of Prototypes

In the following, we provide more results for the evalua-
tion of the number of prototypes w.r.t. the metrics defined

Table C.1. Standard Errors for the results reported in Table 1 regarding the evaluation of different attribution methods for concept relevance
scores used for prototypes. We report values for ImageNet with 20 classes using (VGG |ResNet |EfficientNet) architectures averaged over
all layers.

Faithfulness Stability Sparseness Coverage Outlier Detection

LRP (ε-rule) [2] 0.07 | 0.11 | 0.03 0.01 | 0.01 | 0.01 0.8 | 1.2 | 2.5 0.3 | 0.5 | 0.3 0.2 | 0.4 | 0.2
Input×Gradient [17] 0.07 | 0.11 | 0.03 0.01 | 0.01 | 0.03 0.8 | 1.2 | 1.9 0.3 | 0.5 | 0.3 0.2 | 0.4 | 0.2
LRP (composite) [13] 0.07 | 0.12 | 0.03 0.01 | 0.01 | 0.01 0.6 | 0.2 | 0.1 0.2 | 0.5 | 0.3 0.2 | 0.4 | 0.3
GuidedBackProp [19] 0.07 | 0.11 | 0.02 0.01 | 0.01 | 0.04 0.2 | 0.2 | 1.4 0.2 | 0.4 | 0.3 0.2 | 0.4 | 0.2
Activation (max) 0.07 | 0.10 | 0.03 0.01 | 0.01 | 0.01 0.2 | 0.1 | 0.2 0.2 | 0.4 | 0.2 0.2 | 0.5 | 0.3
Activation (mean) 0.06 | 0.11 | 0.03 0.01 | 0.01 | 0.01 0.2 | 0.2 | 0.4 0.2 | 0.5 | 0.3 0.2 | 0.5 | 0.3

Figure C.1. Effect of increasing the number of prototypes per class
on the evaluation metrics. We show the relative change compared
to one prototype for all architectures on 20 ImageNet classes using
LRP-ε for attributions. For better understanding, we report the
actual values for the coverage metric.

in Section 4.2. The change in metrics when increasing the
prototype number is shown in Figure C.1. Here, we can see
that stability decreases for higher numbers of prototypes.
Sparseness, outlier detection and coverage scores however
increase. Faithfulness scores do not significantly change, as
described in more detail in the following.

Faithfulness When increasing the number of prototypes,
we can not measure a significant increase in faithfulness as
reported in Section 4.2.2 and shown again in Figure C.2
(left). Notably, however, when we remove only 10 % of
the most relevant concepts (instead of all), we can mea-
sure a significant effect on faithfulness when increasing the

flipping 100% flipping 10%
Faithfulness evaluation

Figure C.2. The change in the faithfulness metric when increasing
the number of prototypes, as measured in Section 4.2.2. (left): For
evaluating faithfulness, all concepts are removed successively. No
significant effect w.r.t. the number of prototypes is visible. (right):
When only 10 % of all concepts are removed, we can observe a
stronger increase in faithfulness.

number of prototypes (faithfulness increases), as shown in
Figure C.2 (right). The higher the number of prototypes,
the more likely it is that a prototype is close to any test
prediction point. Thus, it could be assumed, that remov-
ing concepts according to the closest prototype is leading
to a higher faithfulness with a higher number of prototypes.
This is however only true for the first removed concepts, as
shown in Figure C.2 (right). Here, a low number of pro-
totypes (e.g., more global prototypes) seem to be favorable
when a high number of concepts are removed.

C.3. Evaluating Clustering Algorithms

In Section 4.2.3, we compare the k-means algorithm against
GMMs for modeling sub-strategies of a model. Concretely,
using k-means, we first find prototype centroids, and there-
after, we fit a GMM using the k-means centroids as a start-
ing point. Compared to k-means, GMMs are thus based on
updated centroids and covariance information.

In order to assign test samples, we use the Euclidean

Table C.2. Effect of different clustering algorithms on the cover-
age and outlier detection scores using Layer-wise Relevance Prop-
agation (LRP) (ε-rule) concept attributions. We report values for
ImageNet with 20 classes using (VGG |ResNet |EfficientNet) ar-
chitectures averaged over all layers. (Euc.: Euclidean distance is
used instead of log-likelihood.)

Coverage Outlier Detection

k-means (Euc.) 55.7 | 62.8 | 66.9 69.0 | 76.7 | 77.6
GMM (Euc.) 56.1 | 63.9 | 68.6 69.0 | 77.0 | 77.7
GMM 56.4|66.5|71.3 70.9|78.8|82.8

distance for k-means, and the log-likelihood for GMMs.
Specifically, for coverage scores, we assign a prediction to
the closest prototype centroid, as in Equation (5) for GMM
and use Equation (B.7) for Euclidean distances. For out-
lier detection, we compute the log-likelihood on the class-
level using Equation (4) for GMMs and measure the small-
est distance to any prototype for Euclidean distance using
Equation B.7. As an additional baseline, we use the updated
centroids from the GMM together with Euclidean distance.
This way, we can decouple the effects of updated centroids
and covariance information.

The resulting coverage and outlier detection scores using
LRP (ε-rule) concept attributions are reported in Table C.2.
Here, it becomes apparent, that both the updated centroids
and covariance information are beneficial for finding cor-
rect sub-strategies and detecting outliers. We further show
layer-wise scores for all models and for different number of
prototypes in Figures C.3 (coverage) and C.4 (object detec-
tion). It is visible, that covariance information is especially
useful for detecting outliers when the prototype number is
low.

C.4. ImageNet species

For the coverage and outlier detection evaluation, we per-
form experiments over animal classes of the same family.
The families and classes/species are as follows:

“terrier”: [“Staffordshire bullterrier”, “American
Staffordshire terrier”, “Bedlington terrier”, “Border ter-
rier”, “Kerry blue terrier”, “Irish terrier”, “Norfolk terrier”,
“Norwich terrier”, “Yorkshire terrier”, “wire-haired fox ter-
rier”, “Lakeland terrier”, “Sealyham terrier”, “Airedale”,
“cairn”, “Australian terrier”, “Dandie Dinmont”, “Boston
bull”, “miniature schnauzer”, “giant schnauzer”, “standard
schnauzer”, “Scotch terrier”, “Tibetan terrier”, “silky ter-
rier”, “soft-coated wheaten terrier”, “West Highland white
terrier”, “Lhasa”]

“working dog”: [“kuvasz”, “schipperke”, “groenen-
dael”, “malinois”, “briard”, “kelpie”, “komondor”, “Old
English sheepdog”, “Shetland sheepdog”, “collie”, “Bor-
der collie”, “Bouvier des Flandres”, “Rottweiler”, “German

shepherd”, “Doberman”, “miniature pinscher”, “Greater
Swiss Mountain dog”, “Bernese mountain dog”, “Appen-
zeller”, “EntleBucher”, “boxer”, “bull mastiff”, “Tibetan
mastiff”, “French bulldog”, “Great Dane”, “Saint Bernard”,
“Eskimo dog”, “malamute”, “Siberian husky”, “affenpin-
scher”]

“bird”: [“cock”, “hen”, “ostrich”, “brambling”,
“goldfinch”, “house finch”, “junco”, “indigo bunting”,
“robin”, “bulbul”, “jay”, “magpie”, “chickadee”, “water
ouzel”, “kite”, “bald eagle”, “vulture”, “great grey owl”]

“fish”: [“tench”, “goldfish”, “great white shark”, “tiger
shark”, “hammerhead”, “electric ray”, “stingray”, “barra-
couta”, “eel”, “coho”, “rock beauty”, “anemone fish”, “stur-
geon”, “gar”, “lionfish”, “puffer”]

“primate”: [“orangutan”, “gorilla”, “chimpanzee”,
“gibbon”, “siamang”, “guenon”, “patas”, “baboon”,
“macaque”, “langur”, “colobus”, “proboscis monkey”,
“marmoset”, “capuchin”, “howler monkey”, “titi”, “spider
monkey”, “squirrel monkey”, “Madagascar cat”, “indri”]

“feline, felid”: [“tabby”, “tiger cat”, “Persian cat”,
“Siamese cat”, “Egyptian cat”, “cougar”, “lynx”, “leopard”,
“snow leopard”, “jaguar”, “lion”, “tiger”, “cheetah”]

“snake, serpent, ophidian”: [“thunder snake”, “ring-
neck snake”, “hognose snake”, “green snake”, “king
snake”, “garter snake”, “water snake”, “vine snake”, “night
snake”, “boa constrictor”, “rock python”, “Indian cobra”,
“green mamba”, “sea snake”, “horned viper”, “diamond-
back”, “sidewinder”]

C.5. Methods for Concept Attribution Computation

In the following, we provide details on how we compute
concept attribution scores using activations and local eX-
plainable Artificial Intelligence (XAI) methods, including
LRP, Input×Gradient and GuidedBackprop. For simplic-
ity, we assume that each neuron in a layer corresponds to a
concept. Therefore, no transformation between latent fea-
ture and space and concept space is required, as described
by Equation (1) in the main manuscript.

Activation In each convolutional layer (with n channels
of spacial dimension w×h), we collect the activations A ∈
Rn×w×h. We then either perform max- or sum-pooling to
compute concept attribution vectors ν ∈ Rn, i.e.,

νi = max
uv

Aiuv or νi =
∑
uv

Aiuv, (C.1)

respectively.

Input×Gradient We define the function g : Rn×w×h →
Y , corresponding the part of the model architecture that
maps latent activations A ∈ Rn×w×h to the model output

1 3 5 7 9

20

40

60

80

100

E
ffi

c
ie

n
tN

e
t-

B
0

co
ve

ra
ge

(%
)

k-Means

prototypes
1

2

3

5

8

10

1 3 5 7 9

20

40

60

80

100

GMM (Euclidean)

1 3 5 7 9

20

40

60

80

100

GMM (likelihood)

1 2 3

20

40

60

80

100

R
e
sN

e
t-

1
8

co
ve

ra
ge

(%
)

1 2 3

20

40

60

80

100

1 2 3

20

40

60

80

100

1 3 5 7 9 11 13

convolutional layer/block

20

40

60

80

100

V
G

G
-1

6
co

ve
ra

g
e

(%
)

1 3 5 7 9 11 13

convolutional layer/block

20

40

60

80

100

1 3 5 7 9 11 13

convolutional layer/block

20

40

60

80

100

Figure C.3. Effect of different clustering algorithms on the coverage scores using LRP (ε-rule) concept attributions over all model layers
for different numbers of prototypes.

yk of class k. Then, concept relevance scores are given by

νi =
∑
uv

Aiuv
∂gk(A)

∂Aiuv
, (C.2)

multiplying latent gradients with concept activations.

GuidedBackprop GuidedBackprop is based on the idea
of Input×Gradient, using Equation (C.2) to compute con-
cept relevance scores. However, the work of [19] further
proposes to prevent the backward flow of negative gradi-
ents through ReLU activation functions by setting negative
entries of the top gradient to zero.

LRP Regarding our latent predictor g with L layers

g(A) = fL ◦ · · · ◦ f1(x) , (C.3)

LRP follows the flow of activations computed during the
forward pass through the model in opposite direction, from
the final layer fL back to the latent layer f1.

The LRP method distributes relevance quantities Rl+1
j

(corresponding to neuron j in layer l + 1) towards a lower
layer l proportionally to the relative contributions zij of
lower-layer neuron i to the (pre-)activation zj as

R
(l, l+1)
i←j =

zij
zj

Rl+1
j , (C.4)

where the pre-activation zj of neuron j for a linear layer
operation is given by zj =

∑
i zij . Then, lower neuron

relevance is obtained by losslessly aggregating all incoming
relevance messages Ri←j as

Rl
i =

∑
j

R
(l, l+1)
i←j . (C.5)

1 3 5 7 9
50

60

70

80

90

100

E
ffi

c
ie

n
tN

e
t-

B
0

o
u

tl
ie

r
d

et
ec

ti
o
n

A
U

C

k-Means

prototypes
1

2

3

5

8

10

1 3 5 7 9
50

60

70

80

90

100

GMM (Euclidean)

1 3 5 7 9
50

60

70

80

90

100

GMM (likelihood)

1 2 3
50

60

70

80

90

100

R
e
sN

e
t-

1
8

o
u

tl
ie

r
d

et
ec

ti
on

A
U

C

1 2 3
50

60

70

80

90

100

1 2 3
50

60

70

80

90

100

1 3 5 7 9 11 13

convolutional layer

50

60

70

80

90

100

V
G

G
-1

6
o
u

tl
ie

r
d

et
ec

ti
on

A
U

C

1 3 5 7 9 11 13

convolutional layer

50

60

70

80

90

100

1 3 5 7 9 11 13

convolutional layer

50

60

70

80

90

100

Figure C.4. Effect of different clustering algorithms on the object detection scores using LRP (ε-rule) concept attributions over all model
layers for different numbers of prototypes.

For convolutional layers, we have to include the spatial
dimensions of latent feature maps resulting in

R
(l, l+1)
(iuv)←(pqr) =

z(uvi)(pqr)

zpqr
Rl+1

pqr . (C.6)

Then, the latent relevance of neuron i is computed as

Rl
i =

∑
uv

∑
pqr

R
(l, l+1)
(iuv)←(pqr). (C.7)

Note, that final concept relevance scores are then given
when we reach the input level, i.e., l = 1.

LRP ε-rule: To ensure numerical stability, the LRP ε-
rule is introduced and defined as

R
(l, l+1)
i←j =

zij
zj + ε · sign(zj)

Rl+1
j . (C.8)

Note that for the purpose of numerical stability, the defini-
tion of the sign function is altered such that sign(0) = 1.
The ε-rule is in ReLU networks highly similar to the multi-
plication of the input times its gradient w.r.t. the output [7].
However, due to its similarity to gradient-based attribution
computation, the LRP ε-rule may result in noisy attributions
in very deep models, where gradient shattering and noisy
gradients appear [3].

LRP composite: An alternative approach is to com-
bine multiple propagation rules, so-called rule composites,
which result in attributions that are less influenced by a
noisy gradient: the LRP εz+-rule is an established best
practice [7, 13] to keep LRP attribution maps informative,
readable and representative while combating gradient shat-
tering effects. The LRP z+-rule operates on the convolu-
tional layers and LRP ε-rule is utilized in standard dense

layers. The LRP z+-rule is given as

R
(l, l+1)
i←j =

(zij)
+

z+j
Rl+1

j (C.9)

by only taking into account positive contributions z+j =∑
i(zij)

+ with (·)+ = max(0, ·).

Normalization of Concept Relevance Scores Please
note, that in order to be interpretable as percentage scores,
we normalize concept relevances to an absolute sum of one,
i.e.,

∑
i ν
′
i = 1 with ν′i =

νi∑
j |νj | .

Other Attribution Methods We refrain from using other
popular attribution methods such as SHAP [11], LIME [14],
and GradCAM [16] due to their infeasibility or inappli-
cability. Concretely, SHAP and LIME require perturba-
tion of features, resulting in a multitude of separate for-
ward passes that need to be performed. Further, compared
to perturbation-based methods, the backpropagation-based
feature attribution methods previously presented provide
concept relevances for all layers in a single backward pass.
GradCAM [16] provides input heatmaps that localize im-
portant features by up-sampling latent feature maps. As
such, GradCAM can only be utilized for spatial localization
of concepts, but not to compute latent feature scores.

C.6. Investigating Data Quality

In the following, we present examples for Section 4.1 on
how prototypes enable an understanding of the data itself
(and how the model uses the data).

C.6.1 Discovering Model (Sub-)Strategies

We begin with four examples on how prototypes reveal
sub-populations in the data (corresponding to learned sub-
strategies) in Figures C.5 and C.6. Here we present for
the ImageNet classes “hen”, “ice bear”, “bald eagle” and
“buckeye” eight prototypes of different models, with six
example images shown corresponding to data points that
are closest to a prototype. For the class “hen”, the model
(EfficientNet-b0, last features block) has learned to
distinguish hen of different color, e.g., brown, white and
black. Regarding the “ice bear” class, the model (VGG-
16, layer features.28) has learned to perceive ice bears
in different environments, e.g., on ice, in water or with
gray background. For the “bald eagle” class, the model
(ResNet-18, last BasicBlock layer) has learned to dif-
ferentiate between eagles in various environments, e.g., fly-
ing over water or sitting on branches. Lastly, regarding the
class of “buckeye” (chestnut), the model (VGG-16, layer
features.28) has learned to perceive buckeyes in dif-
ferent age stages (including the full tree form), e.g., with

green hull or partly visible. In the figures, we provide addi-
tional information on how many samples a prototype “cov-
ers”, measured by the number of instances closest to the
prototype in the training set, and how similar they are to the
overall mean (concept relevance vector) in terms of cosine
similarity.

C.6.2 Identifying Mislabeled Instances via Prototypes

By studying prototypes, we found several classes, where
wrong objects are included unintendedly, thus receiving a
wrong label. As ImageNet is a collection of images gen-
erated through keyword search (the class labels) of image
databases, ambiguous class labels might result in the re-
trieval of unwanted or wrong images. For example, we
found instances where pictures of Leopard Lacewing but-
terflies were mistakenly assigned to the “lacewing” class, a
completely different insect species, as shown in Figure C.7
(top). Similarly, we found tigers in the “Tiger Cat” class, as
depicted in Figure C.7 (bottom). More examples are shown
in Figure C.8 where cars and buses are included in the “pas-
senger (railroad) car” class, and Blue Lynx Ragdoll cats for
the “lynx, catamount” class. In these two figures, we show
eight prototypes for VGG, ResNet and EfficientNet models,
with an additional UMAP [12] embedding illustrating the
distribution of prediction strategies, i.e., concept relevance
vectors.

C.6.3 Spotting Correlating Features

Another noteworthy set of data artifacts are correlating fea-
tures found within the ImageNet training dataset. These fea-
tures include white wolfs behind fences (Figure C.9), dogs
with tennis balls (Figure C.10), and cats in cartons or buck-
ets (Figures C.11 and C.12, respectively). By being able
to understand the concepts that are relevant (characteris-
tic) for each prototype, we can further validate our observa-
tions. We thus show for all prototypes the concept relevance
scores for the set of most relevant concepts (according to a
VGG-16 in layer features.28). Concretely, the set of
concepts is given by retrieving the top-2 concepts for each
prototype. Further, concepts are visualized using reference
samples as given by the RelMax technique [1]. With Rel-
Max, we visualize concepts with samples, where the con-
cept was most relevant w.r.t. the prediction outcome, illus-
trating how the concept is used by the model. To improve
clarity, each reference sample is cropped to the for the con-
cept relevant part, and all irrelevant parts are masked by a
semi-transparent black mask.

C.6.4 Diagnosing for Poor Data Quality

By studying prototypes and their characteristic concepts we
further were able to reveal issues of poor data quality. This

Prototype 0
covers 12%
sim. 0.98

Prototype 1
covers 17%
sim. 0.96

Prototype 2
covers 16%
sim. 0.95

Prototype 3
covers 11%
sim. 0.95

Prototype 4
covers 14%
sim. 0.97

Prototype 5
covers 9%
sim. 0.91

Prototype 6
covers 13%
sim. 0.94

Prototype 7
covers 8%
sim. 0.91

Prototype 0
covers 14%
sim. 0.96

Prototype 1
covers 9%
sim. 0.88

Prototype 2
covers 11%
sim. 0.76

Prototype 3
covers 9%
sim. 0.94

Prototype 4
covers 13%
sim. 0.97

Prototype 5
covers 16%
sim. 0.95

Prototype 6
covers 12%
sim. 0.93

Prototype 7
covers 17%
sim. 0.96

Figure C.5. Understanding model sub-strategies using (eight) prototypes. We provide information on how many samples a prototype
“covers”, measured by the number of instances closest to the prototype in training set, and how similar they are to the overall mean in terms
of cosine similarity. (left): For the ImageNet class “hen” (EfficientNet-b0, last features block), the model has learned to perceive hen
of different color, e.g., brown, white and black. (right): For the ImageNet class “ice bear” (VGG-16, layer features.28), the model
has learned to perceive ice bears in different environments, e.g., on ice, in water or with gray background.

Prototype 0
covers 14%
sim. 0.98

Prototype 1
covers 17%
sim. 0.98

Prototype 2
covers 10%
sim. 0.95

Prototype 3
covers 8%
sim. 0.95

Prototype 4
covers 19%
sim. 0.98

Prototype 5
covers 12%
sim. 0.98

Prototype 6
covers 5%
sim. 0.88

Prototype 7
covers 17%
sim. 0.99

Prototype 0
covers 17%
sim. 0.92

Prototype 1
covers 28%
sim. 0.95

Prototype 2
covers 19%
sim. 0.95

Prototype 3
covers 6%
sim. 0.45

Prototype 4
covers 10%
sim. 0.88

Prototype 5
covers 8%
sim. 0.62

Prototype 6
covers 1%
sim. 0.27

Prototype 7
covers 10%
sim. 0.77

Figure C.6. Understanding model sub-strategies using (eight) prototypes. We provide information on how many samples a prototype
“covers”, measured by the number of instances closest to the prototype in the train set, and how similar they are to the overall mean
in terms of cosine similarity. (left): For the ImageNet class “bald eagle” (ResNet-18, last BasicBlock layer), the model has learned
to perceive eagles in different environments, e.g., flying over water or sitting on branches. (right): For the ImageNet class “buckeye”
(VGG-16, layer features.28), the model has learned to perceive buckeyes in different age stages, e.g., with green hull or partly visible.
Prototype 6 for “buckeye” shows not the fruit, but the whole tree, which raises the question whether corresponding samples (not showing
the fruit) should be excluded from the training data set. Alternatively, predicted samples close to the prototype could be labeled with a
“warning” note.

includes, e.g., prototypes where a “blur” artifact is rele-
vant, as found in the ImageNet classes of “red-breasted mer-
ganser” (birds), “milk can” and “Windsor tie”, as shown in
Figures C.13, C.14 and C.15 for VGG-16 and ResNet mod-
els. This dedicated “blur” concepts result from a large set
of training images having poor resolution.

Further, in the class of “pickelhaube” we found that the
model has learned to detect the class object not only be-
cause of the pickelhaube, but also in the absence of the ob-
ject because of the uniform or face features, as shown in
Figure C.16. Here, prototype 6 captures military men in
uniform where the head (and thus also the pickelhaube) is

Prototype 0
covers 17%
sim. 0.95

Prototype 1
covers 4%
sim. 0.64

Prototype 2
covers 16%
sim. 0.95

Prototype 3
covers 7%
sim. 0.94

Prototype 4
covers 9%
sim. 0.94

Prototype 5
covers 14%
sim. 0.96

Prototype 6
covers 10%
sim. 0.92

Prototype 7
covers 23%
sim. 0.96

UMAP embedding

Prototype 0
covers 14%
sim. 0.98

Prototype 1
covers 12%
sim. 0.94

Prototype 2
covers 15%
sim. 0.99

Prototype 3
covers 11%
sim. 0.96

Prototype 4
covers 8%
sim. 0.95

Prototype 5
covers 23%
sim. 0.98

Prototype 6
covers 10%
sim. 0.94

Prototype 7
covers 6%
sim. 0.96

UMAP embedding

Figure C.7. Revealing wrong object samples in the ImageNet dataset using (eight) prototypes. Besides example images for each prototype,
we also show a UMAP embedding. We further provide information on how many samples a prototype “covers”, measured by the number
of instances closest to the prototype in training set, and how similar they are to the overall mean in terms of cosine similarity. (top): For the
ImageNet class “lacewing” (VGG-16, layer features.28), there are also samples of Leopard Lacewing butterflies in the training data.
(bottom): For the ImageNet class “tiger cat” (ResNet-18, last BasicBlock layer), there are also samples of tigers in the training data.

cropped out, leading the model to use also alternative fea-
tures. This illustrates the effect data augmentation tech-
niques (including, e.g., random cropping) can have on the
model behavior.

Prototype 0
covers 19%
sim. 0.94

Prototype 1
covers 3%
sim. 0.40

Prototype 2
covers 11%
sim. 0.95

Prototype 3
covers 18%
sim. 0.76

Prototype 4
covers 13%
sim. 0.95

Prototype 5
covers 8%
sim. 0.90

Prototype 6
covers 13%
sim. 0.91

Prototype 7
covers 14%
sim. 0.95

UMAP embedding

Prototype 0
covers 13%
sim. 0.94

Prototype 1
covers 17%
sim. 0.95

Prototype 2
covers 12%
sim. 0.96

Prototype 3
covers 14%
sim. 0.95

Prototype 4
covers 12%
sim. 0.93

Prototype 5
covers 15%
sim. 0.97

Prototype 6
covers 7%
sim. 0.87

Prototype 7
covers 10%
sim. 0.82

UMAP embedding

Figure C.8. Revealing wrong object samples in the ImageNet dataset using (eight) prototypes. We further provide information on how
many samples a prototype “covers”, measured by the number of instances closest to the prototype in training set, and how similar they are
to the overall mean in terms of cosine similarity. Besides example images for each prototype, we also show a UMAP embedding. (top):
For the ImageNet class “passenger (railroad) car” (VGG-16, layer features.28), there are also samples of buses and cars in the training
data. (bottom): For the ImageNet class “lynx, catamount” (EfficientNet-b0, last features block), there are also samples of Blue Lynx
Ragdoll cats (prototype 7) in the training data. Note the distinct cluster for catamounts (prototype 6) compared to lynx.

prototype 0
covers 134

(10%)

prototype 1
covers 201

(15%)

prototype 2
covers 48

(4%)

prototype 3
covers 228

(18%)

prototype 4
covers 202

(16%)

prototype 5
covers 182

(14%)

prototype 6
covers 246

(19%)

prototype 7
covers 59

(5%)

co
n

ce
p

t
1
51

3.3 3.2 2.2 3.6 6.3 3.4 5.6 5.2

co
n

ce
p

t
27

4

5.3 3.3 1.2 1.7 1.1 0.9 1.0 2.3

co
n

ce
p

t
21

9

0.3 0.4 4.8 0.6 0.3 0.7 0.5 0.2

co
n

ce
p

t
3
28

1.4 2.6 1.3 2.4 1.9 1.7 3.3 4.3

co
n

ce
p

t
60

2.0 2.8 0.8 3.8 1.6 1.3 4.0 1.6

co
n

ce
p

t
21

7

0.0 0.0 3.0 0.1 0.1 0.1 0.0 0.1

co
n

ce
p

t
18

4

1.3 1.5 2.2 1.7 1.9 2.8 1.8 0.4

Figure C.9. Revealing correlating features in the ImageNet dataset using (eight) prototypes of a VGG-16 in layer features.28. For
each prototype, we show relevant concepts and their corresponding relevance scores (%). We further provide information on how many
samples a prototype “covers”, measured by the number of instances closest to the prototype in training set. For the class “white wolf”,
prototype 2 deviates from the other prototypes by a high relevance on “fence” concepts.

prototype 0
covers 267

(21%)

prototype 1
covers 75

(6%)

prototype 2
covers 164

(13%)

prototype 3
covers 229

(18%)

prototype 4
covers 99

(8%)

prototype 5
covers 124

(10%)

prototype 6
covers 101

(8%)

prototype 7
covers 241

(19%)

co
n

ce
p

t
21

3

2.4 3.2 1.6 0.9 5.5 0.6 0.7 3.0

co
n

ce
p

t
41

2

3.2 1.8 1.0 2.2 2.7 0.4 0.7 2.0

co
n

ce
p

t
2
81

2.4 1.0 0.7 2.8 1.9 0.3 0.2 1.4

co
n

ce
p

t
4
99

1.6 1.9 1.6 1.1 2.4 1.0 1.2 1.8

co
n

ce
p

t
31

7

0.2 2.1 0.1 0.1 0.5 0.0 0.9 0.1

co
n

ce
p

t
47

4

0.8 -0.0 0.0 1.9 0.3 0.0 -0.1 0.3

co
n

ce
p

t
12

7

0.8 0.9 1.7 0.6 0.7 0.9 0.3 0.8

co
n

ce
p

t
78

0.2 0.3 0.0 0.1 0.1 0.0 1.6 0.2

co
n

ce
p

t
27

0

0.6 1.0 0.5 0.2 1.0 0.3 1.5 0.7

co
n

ce
p

t
46

6

0.0 0.4 -0.0 -0.0 0.0 0.1 1.4 0.1

co
n

ce
p

t
39

9

0.6 0.5 1.1 0.5 0.5 0.8 0.3 0.6

Figure C.10. Revealing correlating features in the ImageNet dataset using (eight) prototypes of a VGG-16 in layer features.26. For
each prototype, we show relevant concepts and their corresponding relevance scores (%). We further provide information on how many
samples a prototype “covers”, measured by the number of instances closest to the prototype in training set. For the class “tennis ball”,
prototype 2 (and 5) deviate from the other prototypes by relevances on “dog” concepts. Notably prototype 6 also deviates, with a focus on
concepts related to persons.

prototype 0
covers 138

(11%)

prototype 1
covers 103

(8%)

prototype 2
covers 159

(12%)

prototype 3
covers 233

(18%)

prototype 4
covers 258

(20%)

prototype 5
covers 203

(16%)

prototype 6
covers 154

(12%)

prototype 7
covers 52

(4%)

co
n

ce
p

t
27

1

2.9 9.3 3.3 1.8 6.1 7.5 1.3 0.7

co
n

ce
p

t
49

1

3.3 1.4 3.3 1.8 6.1 3.1 6.6 2.6

co
n

ce
p

t
32

8

0.4 0.0 0.1 0.2 0.1 0.4 0.1 5.0

co
n

ce
p

t
22

4

3.6 3.8 3.9 1.2 4.4 3.6 4.0 1.6

co
n

ce
p

t
38

3.8 1.6 1.6 1.2 2.2 3.5 2.0 0.8

co
n

ce
p

t
46

9

3.6 1.3 1.4 1.4 3.8 3.2 2.8 0.6

Figure C.11. Revealing correlating features in the ImageNet dataset using (eight) prototypes of a VGG-16 in layer features.28. For
each prototype, we show relevant concepts and their corresponding relevance scores (%). We further provide information on how many
samples a prototype “covers”, measured by the number of instances closest to the prototype in training set. For the class “carton”, prototype
7 deviates from the other prototypes by a high relevance on “cat” concepts. Note, that concept 328 refers to spider webs (thin lines), which
is likely to be triggered for the writings on the outside of cartons, or the overlaid watermark seen in, e.g., prototype 4.

prototype 0
covers 33

(3%)

prototype 1
covers 166

(13%)

prototype 2
covers 183

(14%)

prototype 3
covers 245

(19%)

prototype 4
covers 143

(11%)

prototype 5
covers 284

(22%)

prototype 6
covers 76

(6%)

prototype 7
covers 170

(13%)

co
n

ce
p

t
3
30

4.1 9.9 7.9 5.3 4.3 4.3 5.4 1.9

co
n

ce
p

t
2
00

0.5 1.4 0.8 4.2 0.5 1.3 1.7 0.5

co
n

ce
p

t
30

6

0.4 0.3 0.4 0.4 0.3 0.2 3.9 0.3

co
n

ce
p

t
32

8

3.2 0.2 0.0 0.1 0.0 0.1 0.0 0.1

co
n

ce
p

t
95

0.6 1.3 0.4 1.0 0.5 2.6 0.5 0.4

co
n

ce
p

t
25

8

1.0 2.0 0.6 2.3 0.3 1.0 1.1 0.1

co
n

ce
p

t
51

0

0.6 0.6 2.2 0.5 2.0 0.4 1.5 0.4

co
n

ce
p

t
47

9

1.5 1.0 1.3 0.9 1.0 1.2 0.7 1.8

Figure C.12. Revealing correlating features in the ImageNet dataset using (eight) prototypes of a VGG-16 in layer features.28. For
each prototype, we show relevant concepts and their corresponding relevance scores (%). We further provide information on how many
samples a prototype “covers”, measured by the number of instances closest to the prototype in training set. For the class “bucket”, prototype
0 deviates from the other prototypes by a high relevance on “cat” concepts. Further note prototype 6 and the Chinese watermark artifact on
the example images.

prototype 0
covers 127

(11%)

prototype 1
covers 76

(7%)

prototype 2
covers 314

(28%)

prototype 3
covers 149

(13%)

prototype 4
covers 194

(17%)

prototype 5
covers 42

(4%)

prototype 6
covers 111

(10%)

prototype 7
covers 128

(11%)

co
n

ce
p

t
2
06

0.4 1.2 0.8 7.5 0.6 0.3 0.3 1.7

co
n

ce
p

t
28

3

4.3 1.9 2.9 5.7 3.7 4.9 2.2 5.0

co
n

ce
p

t
11

5

3.3 3.6 4.5 3.3 2.9 1.3 2.7 3.2

co
n

ce
p

t
1
35

1.5 0.9 1.0 1.0 1.1 3.3 1.5 1.2

co
n

ce
p

t
45

5

1.0 1.3 2.4 1.1 3.2 1.0 2.1 1.6

co
n

ce
p

t
28

2

1.7 1.3 3.2 1.2 2.0 1.4 1.8 2.1

co
n

ce
p

t
26

0

2.3 2.5 1.2 1.7 1.2 1.4 1.6 1.5

Figure C.13. Revealing correlating features in the ImageNet dataset using (eight) prototypes of a VGG-16 in layer features.28. For
each prototype, we show relevant concepts and their corresponding relevance scores (%). We further provide information on how many
samples a prototype “covers”, i.e., are closest to the prototype in training set. For the class “red-breasted merganser”, prototype 3 deviates
from the other prototypes by a high relevance on “blur” concepts.

prototype 0
covers 118

(11%)

prototype 1
covers 224

(20%)

prototype 2
covers 83

(8%)

prototype 3
covers 202

(18%)

prototype 4
covers 161

(15%)

prototype 5
covers 92

(8%)

prototype 6
covers 163

(15%)

prototype 7
covers 54

(5%)

co
n

ce
p

t
11

7

0.6 0.5 2.1 0.6 0.4 3.5 0.5 8.4

co
n

ce
p

t
71

2.4 3.4 3.8 1.4 2.4 4.1 5.6 3.2

co
n

ce
p

t
63

4.2 3.0 5.5 2.9 4.5 3.8 4.7 3.3

co
n

ce
p

t
46

3

4.1 2.6 3.7 1.7 3.4 2.5 2.7 2.4

co
n

ce
p

t
30

2

1.9 3.4 2.6 1.4 2.0 3.1 2.5 2.6

co
n

ce
p

t
20

8

2.3 2.9 1.6 2.0 2.6 1.3 1.9 0.5

Figure C.14. Revealing data quality issues in the ImageNet dataset using (eight) prototypes of a ResNet-18 in the last BasicBlock layer.
For each prototype, we show relevant concepts and their corresponding relevance scores (%). We further provide information on how many
samples a prototype “covers”, i.e., are closest to the prototype in training set. For the class “milk can”, prototypes 5 and 7 deviate from the
other prototypes by a high relevance on a “blur” concept (concept 117).

prototype 0
covers 113

(9%)

prototype 1
covers 96

(8%)

prototype 2
covers 191

(16%)

prototype 3
covers 320

(26%)

prototype 4
covers 251

(21%)

prototype 5
covers 144

(12%)

prototype 6
covers 77

(6%)

prototype 7
covers 21

(2%)

co
n

ce
p

t
2
06

2.9 3.6 12.1 1.5 6.7 2.7 17.8 1.8

co
n

ce
p

t
4
18

2.1 1.0 2.1 3.2 2.8 7.7 3.1 0.2

co
n

ce
p

t
50

8

0.2 1.0 0.1 0.3 0.2 0.1 0.0 6.6

co
n

ce
p

t
43

8

4.4 0.3 1.1 0.4 0.7 1.1 1.6 0.1

co
n

ce
p

t
13

3

1.0 3.3 1.7 2.6 2.2 0.8 0.6 3.6

co
n

ce
p

t
7

3.1 2.3 1.1 1.8 1.3 3.4 0.8 2.2

co
n

ce
p

t
31

4

1.0 1.2 1.6 3.3 2.4 1.7 0.8 0.4

co
n

ce
p

t
42

5

2.5 2.8 2.4 1.7 2.6 2.3 2.1 1.2

Figure C.15. Revealing data quality issues in the ImageNet dataset using (eight) prototypes of a VGG-16 in layer features.28. For
each prototype, we show relevant concepts and their corresponding relevance scores (%). We further provide information on how many
samples a prototype “covers”, i.e., are closest to the prototype in training set. For the class “Windsor tie”, prototype 2 and 6 deviate from
the other prototypes by a high relevance on “blur” concepts.

prototype 0
covers 82

(6%)

prototype 1
covers 278

(21%)

prototype 2
covers 56

(4%)

prototype 3
covers 291

(22%)

prototype 4
covers 182

(14%)

prototype 5
covers 180

(14%)

prototype 6
covers 122

(9%)

prototype 7
covers 109

(8%)

co
n

ce
p

t
26

8

4.9 0.7 6.2 0.5 0.6 0.6 5.8 1.0

co
n

ce
p

t
6

4.9 5.1 4.1 5.3 6.1 3.2 4.3 3.2

co
n

ce
p

t
30

1

1.4 2.2 5.6 3.7 4.1 2.0 3.2 1.4

co
n

ce
p

t
41

5

0.9 2.5 0.5 4.6 3.5 3.8 0.3 1.6

co
n

ce
p

t
73

1.1 3.7 0.3 3.5 2.7 3.4 0.1 1.6

co
n

ce
p

t
30

9

2.8 1.4 2.7 1.5 1.3 1.3 3.1 1.8

Figure C.16. Revealing data quality issues in the ImageNet dataset using (eight) prototypes of a ResNet-18 in the last BasicBlock layer.
For each prototype, we show relevant concepts and their corresponding relevance scores (%). We further provide information on how many
samples a prototype “covers”, i.e., are closest to the prototype in training set. For the class “pickelhaube”, prototype 6 deviates from the
norm by a high relevance on “uniform” concepts, instead of the pickelhaube. Notably, concept 73 has also (almost) no relevance, which
corresponds to a dome-like form (corresponding to the shape of the pickelhaube). This is also sensible as in the example images, the heads
are cropped out — due to data augmentation. Also prototype 2, which corresponds to group pictures, is associated with high relevances
on uniform concepts. It is further to note that prototypes 0, 2 and 6 show a high relevances on a “gray color” concept, indicating that the
model has learned to detect gray-scale pictures.

D. Model (Prediction) Validation
In this section, we present additional examples and clarifica-
tions regarding the use of prototypes for model (prediction)
validation.

D.1. Covariance Matrix Understanding

A high likelihood of a prediction with concept relevance
vector ν belonging to prototype i of class k is given for a
high probability density value pki (ν), i.e.,

pki (ν) =
1

(2π)
n
2 det(Σk

i)
1
2

e−
1
2 (ν−µ

k
i)

⊤
(Σk

i)
−1
(ν−µk

i) .

(D.1)
Here, the probability density pki (ν) depends on the term

δki (ν) =
(
ν − µk

i

)⊤ (
Σk

i

)−1 (
ν − µk

i

)
. (D.2)

For simplicity, we assume that we choose one prototype
and one class, simplifying notation to

δ = (ν − µ)
⊤
Σ−1 (ν − µ) = ∆⊤Σ−1∆ (D.3)

with ∆ = ν − µ. Then, we have

δ = ∆1Σ
−1
11 ∆1+∆1Σ

−1
12 ∆2+ · · ·+∆mΣ−1mm∆m . (D.4)

Here, contributions result from intra-concept deviations,
i.e., ∆iΣ

−1
ii ∆i ≥ 0 (as Σ−1ii ≥ 0, because Σ and Σ−1

are positive semi-definite matrices), and inter-concept devi-
ations ∆iΣ

−1
ij ∆j (with i ̸= j). Contrary to only examining

the difference vector ∆ = ν − µ, δ also includes infor-
mation from the covariance matrix and allows to investigate
contributions from inter-concept deviations.

D.2. Increasing the Number of Prototypes

We in the following provide qualitative examples of result-
ing prototypes when increasing their number (used to fit the
GMM). The first example is shown in Figure D.1, where we
visualize the emerging prototypes for ImageNet class “fire-
boat” setting the prototype number to one, two and four.
Whereas one prototype only visualizes fireboats spraying
water, we reveal that the model has learned to differenti-
ate between fireboats spraying and not spraying water by
increasing prototype numbers.

A second example is shown in Figure D.2, where we vi-
sualize the emerging prototypes for ImageNet class “Amer-
ican eagle” when varying the prototype number. Whereas
one prototype visualizes eagles sitting on a branch or fly-
ing, we reveal that the model has learned to differentiate
between flying eagles, sitting eagles and eagle heads by
increasing prototype numbers. A third example is shown
in Figure D.3, where we visualize the emerging prototypes

54%

46%

42%

49%

9%

18%

82%

Figure D.1. Qualitative example for changing the number of pro-
totypes to one (left), two (middle) and four (right). We show the
prototypes for the ImageNet class “fireboat” resulting for a VGG-
16 model and layer features.28. Whereas the single proto-
type depicts fireboats spraying (little) water, increasing the number
leads to more distinct prototypes, e.g., fireboats with and without
water fountains of varying strength. Note that we also depict the
amount of samples (closest to a prototype) that transfer from one
prototype to the other.

for ImageNet class “space shuttle” when varying the proto-
type number. By increasing prototype numbers, we reveal
that the model has learned to differentiate between starting
space ships (with dust clouds and fire), flying space ships
and space ships in a halls.

D.3. Revealing Spurious Behavior

In Section 4.3.1, we found a cluster for the ImageNet “car-
ton” class, in which cats were depicted sitting in cartons.
As shown in Figure D.4, predictions in the cat cluster also
have a high softmax probability score for the “carton” class.
Thus, not only are cat features highly relevant (w.r.t. “car-
ton”) for these samples (as shown in Figure 5), the “carton”
output probability score is high as well.

D.4. Out-of-Distribution Detection

We present additional results for the Out Of Distribution
(OOD) detection experiment in Section 4.3.2. Concretely,
the results for all models trained on CIFAR-10 are shown
in Table D.1 and for CUB-200 in Table D.2. Again we
compare the methods of MSP [5], Energy [10] and Ma-
halanobis [9] with variants of Prototypical Concept-based
Explanations (PCX) based on the log-likelihood measure
as defined in Equation (4), and Euclidean distance. For

77%

23%

26%

29%

44%

5%

4%

91%

Figure D.2. Qualitative example for changing the number of pro-
totypes to one (left), two (middle) and four (right). We show the
prototypes for the ImageNet class “American eagle” resulting for
a VGG-16 model and layer features.28. Whereas the single
prototype depicts eagles flying and sitting on branches, increas-
ing the number leads to more distinct prototypes, e.g., close-ups,
flying and sitting. Note that we also depict the amount of sam-
ples (closest to a prototype) that transfer from one prototype to the
other.

ImageNet, we perform OOD detection on the first 50 of
the 1000 ImageNet classes. Note, that for PCX, we only
compute GMMs with one prototype, and leave optimization
w.r.t. prototype number and feature layer for future work.

D.5. Studying (Dis-)Similarities Across Classes

In our experiments, prototypes emerge as tools for explor-
ing both similarities and distinctions in concept utilization
across various classes.

For a global understanding of the model, we present ma-
trices depicting inter-class similarities (using cosine similar-
ity between prototypes) for a VGG-16 trained on CUB-200
(Figure D.8), CIFAR-10 (Figure D.5), ResNet on ImageNet
(Figure D.7) and EfficientNet on ImageNet (Figure D.6).

Moreover, we delve into detailed analyses of layer
features.28 for a VGG-16 model. Here, we illustrate
the similarities and differences between classes by choosing
three characteristic concepts. For instance, when comparing
the ImageNet classes “hen” and “rooster” as in Figure D.9
(top), we observe an equal reliance on the “eye” concept.
However, the rooster places greater importance on the “red
color” compared to the hen, where the brown-gray color is
more significant.

Similarly, when comparing between the ImageNet

48%

52%

45%

55%

42%

6%

52%

Figure D.3. Qualitative example for changing the number of pro-
totypes to one (left), two (middle) and four (right). We show the
prototypes for the ImageNet class “space shuttle” resulting for a
VGG-16 model and layer features.28. Whereas the single
prototype depicts various positions of a space shuttle, increasing
the number leads to more distinct prototypes, e.g., launching with
a tail of fire, standing in exhibitions, landing on the landing site.
Note that we also depict the amount of samples (closest to a pro-
totype) that transfer from one prototype to the other.

classes “goldfish” and “House Finch” as shown in Fig-
ure D.9 (middle), both exhibit a reliance on the “scales”
texture. However, the goldfish emphasizes the orange color,
while the House Finch uniquely employs the “animal on
branch” concept.

In another instance, when comparing CUB-200 classes
“Lazuli Bunting” and “Gray-crowned Rosy-Finch”, both
prioritize “brown color”. However, the Finch places greater
importance on “black-white wings with brown color”,
whereas a “blue color” concept plays a significant role
(only) for the Lazuli Bunting.

D.6. Comparing Single Predictions with Prototypes

As detailed in Section 4.3 and Figure 1, we can compare
a single prediction and its explanation with a prototype to
understand how ordinary a prediction is in a more objec-
tive manner. Specifically, we can compare differences in
how and which concepts are used. These differences can be
quantitatively measured via the log-likelihood as in Equa-
tion (4), enabling for an automatic detection of outliers, or
to assign predictions to the closest prototypical prediction
strategy.

We present examples for validating single predictions us-
ing prototypes with samples from the ImageNet dataset in

Table D.1. OOD detection results for (VGG|ResNet|EfficientNet) models trained on CIFAR-10. Higher AUC scores are better.

LSUN iSUN Textures SVHN Average

MSP [5] 90.9 | 83.4 | 86.0 87.3 | 79.2 | 87.5 90.9 | 81.9 | 83.1 90.4 | 82.0 | 83.0 85.5
Energy [10] 94.3 | 91.1 | 91.5 91.2 | 84.2 | 92.3 94.0 | 86.2 | 86.2 91.4 | 85.7 | 85.9 89.5
Mahalanobis [9] 49.0 | 43.0 | 76.3 57.1 | 61.2 | 84.5 81.5 | 55.7 | 71.5 68.9 | 53.0 | 74.9 64.7
PCX-E (ours) 88.2 | 76.0 | 81.7 81.7 | 75.9 | 88.4 91.0 | 73.9 | 78.7 89.4 | 65.7 | 80.4 80.9
PCX-GMM (ours) 94.3 | 83.7 | 86.1 88.7 | 80.2 | 91.1 95.8 | 81.6 | 83.0 94.8 | 83.0 | 84.2 87.2

Table D.2. OOD detection results for (VGG|ResNet|EfficientNet) models trained on ImageNet. Higher AUC scores are better.

iSUN Places365 Textures CIFAR-10 Average

MSP [5] 96.3 | 93.2 | 99.1 96.7 | 95.9 | 99.5 96.0 | 95.3 | 99.0 93.5 | 88.9 | 97.4 95.9
Energy [10] 99.9 | 99.9 | 99.8 99.8 | 99.8 | 99.8 99.7 | 99.5 | 99.6 99.6 | 99.3 | 98.6 99.6
Mahalanobis [9] 38.8 | 98.7 | 99.6 88.8 | 94.5 | 98.3 86.3 | 90.5 | 99.2 19.6 | 99.0 | 98.8 84.3
PCX-E (ours) 98.7 | 99.2 | 99.2 98.3 | 98.1 | 98.3 99.3 | 99.0 | 99.7 99.3 | 98.8 | 98.0 98.8
PCX-GMM (ours) 98.3 | 98.9 | 99.5 99.3 | 99.0 | 98.9 99.7 | 99.3 | 99.8 99.1 | 98.7 | 98.6 99.1

Figure D.4. UMAP embeddings of the ImageNet class “car-
ton” using concept relevances of a VGG-16 model and layer
features.28. (top): For each prediction, we plot the class
log-likelihood when modeling the distribution with one Gaussian.
(bottom): For each prediction, we plot the softmax value for the
“carton” class.

Figures D.10, D.11, D.12 and D.13. Here, we show correct
predictions that have a low log-likelihood compared to sam-

0 1 2 3 4 5 6 7 8 9

airplane 0

automobile 1

bird 2

cat 3

deer 4

dog 5

frog 6

horse 7

ship 8

truck 9

0.2

0.4

0.6

0.8

1.0

sim
ilarity

Figure D.5. Class similarity matrix between class prototypes
(one per class) for the CIFAR-10 dataset and VGG-16 on layer
features.28.

ples of the same class in the training set, as illustrated in the
plot in the first column and third row of each figure. Each
sample is compared to the most similar prototype (of six in
total). We further show three concepts that are most relevant
for either prediction or prototype, followed by two concepts
where the differences in terms of concept relevance scores
between sample and prototype are largest.

In the first example in Figure D.10, an ostrich is correctly
predicted by a VGG-16 model. The ostrich’s head and part
of the neck is visible, mimicking the prototype. However,
the test prediction differs in a fence, behind which the os-
trich is depicted. By studying the concept relevance scores,
we can understand that the fence was highly relevant for the

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

tench 0
goldfish 1

great white shark 2
tiger shark 3

hammerhead 4
electric ray 5

stingray 6
cock 7
hen 8

ostrich 9
brambling 10
goldfinch 11

house finch 12
junco 13

indigo bunting 14
robin 15

bulbul 16
jay 17

magpie 18
chickadee 19

0.2

0.4

0.6

0.8

1.0

sim
ilarity

Figure D.6. Class similarity matrix between class prototypes
(one per class) for the ImageNet dataset (first 20 classes) and
EfficientNet-B0 on the last convolutional features block.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

tench 0
goldfish 1

great white shark 2
tiger shark 3

hammerhead 4
electric ray 5

stingray 6
cock 7
hen 8

ostrich 9
brambling 10
goldfinch 11

house finch 12
junco 13

indigo bunting 14
robin 15

bulbul 16
jay 17

magpie 18
chickadee 19

0.0

0.2

0.4

0.6

0.8

1.0

sim
ilarity

Figure D.7. Class similarity matrix between class prototypes (one
per class) for the ImageNet dataset (first 20 classes) and ResNet-
18 on the last convolutional BasicBlock.

prediction, which is not the case for the prototype. Further,
concepts regarding the head’s shape are missing.

A second example is shown in Figure D.11, where a
Tiger Cat is correctly predicted by a ResNet-18 model.
Here, the test sample shows an orange Tiger Cat lying
(sleeping) on a blanket with jaguar fur pattern. Notably,
the most similar prototype is not a Tiger Cat, but a tiger,
as already observed in Figure C.7 (bottom) due to a high
number of tiger samples in the training dataset with class la-
bel “Tiger Cat”. For both sample and prototype, a “stripes-
texture” concept is relevant, however, the test sample devi-
ates in a stronger use of cat- and jaguar-like concepts (con-
cepts 298 and 253). On the other side, underrepresented are

concepts associated with cat eyes and heads (concept 156),
which can be expected, as the eyes of the cat in the test pre-
diction are closed.

The third example is shown in Figure D.12, where a bald
eagle is correctly predicted by a ResNet-18 model. Here the
eagle is depicted as an exhibit hanging in a room, whereas
the prototype shows a close-up picture of an eagle’s head.
While concepts related to the feathers (concepts 245 and
352) are relevant for both, concepts related to the environ-
ment (concept 182) or yellow beak (concept 141) are miss-
ing.

A last example is shown in Figure D.13, where an am-
bulance is correctly predicted by a VGG-16 model. Here,
the test input has very low resolution and shows an ambu-
lance car from the side. The prototype shows an ambilance
car from the side as well, but in higher resolution. By com-
paring the used concepts, we can understand that the model
strongly uses features related to blur (concept 206) for the
outlier prediction, which are not apparent for the prototype.
Further, compared to the prototype, concepts regarding side
of buses with black windows (concept 25) are missing.

B
la
ck

fo
ot

ed
A
lb

at
ro

ss
0

L
ay

sa
n

A
lb

at
ro

ss
1

So
ot

y
A
lb

at
ro

ss
2

G
ro

ov
e
bi

lle
d

A
ni

3

C
re

st
ed

A
uk

le
t
4

L
ea

st
A
uk

le
t
5

P
ar

ak
ee

t
A
uk

le
t
6

R
hi

no
ce

ro
s
A
uk

le
t
7

B
re

w
er

B
la
ck

bi
rd

8

R
ed

w
in

ge
d

B
la
ck

bi
rd

9

R
us

ty
B
la
ck

bi
rd

10

Y
el
lo
w

he
ad

ed
B
la
ck

bi
rd

11

B
ob

ol
in

k
12

In
di

go
B
un

ti
ng

13

L
az

ul
i
B
un

ti
ng

14

P
ai
nt

ed
B
un

ti
ng

15

C
ar

di
na

l
16

Sp
ot

te
d

C
at

bi
rd

17

G
ra

y
C
at

bi
rd

18

Y
el
lo
w

br
ea

st
ed

C
ha

t
19

E
as

te
rn

T
ow

he
e
20

C
hu

ck
w
ill

W
id

ow
21

B
ra

nd
t
C
or

m
or

an
t
22

R
ed

fa
ce

d
C
or

m
or

an
t
23

P
el
ag

ic
C
or

m
or

an
t
24

B
ro

nz
ed

C
ow

bi
rd

25

Sh
in

y
C
ow

bi
rd

26

B
ro

w
n

C
re

ep
er

27

A
m

er
ic
an

C
ro

w
28

F
is
h

C
ro

w
29

B
la
ck

bi
lle

d
C
uc

ko
o

30

M
an

gr
ov

e
C
uc

ko
o

31

Y
el
lo
w

bi
lle

d
C
uc

ko
o

32

G
ra

y
cr

ow
ne

d
R
os

y
F
in

ch
33

P
ur

pl
e
F
in

ch
34

N
or

th
er

n
F
lic

ke
r
35

A
ca

di
an

F
ly

ca
tc

he
r
36

G
re

at
C
re

st
ed

F
ly

ca
tc

he
r
37

L
ea

st
F
ly

ca
tc

he
r
38

O
liv

e
si
de

d
F
ly

ca
tc

he
r
39

Black footed Albatross 0
Laysan Albatross 1

Sooty Albatross 2
Groove billed Ani 3

Crested Auklet 4
Least Auklet 5

Parakeet Auklet 6
Rhinoceros Auklet 7
Brewer Blackbird 8

Red winged Blackbird 9
Rusty Blackbird 10

Yellow headed Blackbird 11
Bobolink 12

Indigo Bunting 13
Lazuli Bunting 14

Painted Bunting 15
Cardinal 16

Spotted Catbird 17
Gray Catbird 18

Yellow breasted Chat 19
Eastern Towhee 20

Chuck will Widow 21
Brandt Cormorant 22

Red faced Cormorant 23
Pelagic Cormorant 24

Bronzed Cowbird 25
Shiny Cowbird 26
Brown Creeper 27
American Crow 28

Fish Crow 29
Black billed Cuckoo 30

Mangrove Cuckoo 31
Yellow billed Cuckoo 32

Gray crowned Rosy Finch 33
Purple Finch 34

Northern Flicker 35
Acadian Flycatcher 36

Great Crested Flycatcher 37
Least Flycatcher 38

Olive sided Flycatcher 39 0.0

0.2

0.4

0.6

0.8

1.0

sim
ilarity

Figure D.8. Class similarity matrix between class prototypes (one per class) for the CUB-200 dataset (first 40 classes) and VGG-16 on
layer features.28.

roosterhen

studying class similarities and differences

2.8%

2.2%

2.0% 2.1%

3.5

0.9%

concept visualizations

house finchgoldfish

5.8%

2.4%

0.4% 3.1%

2.5

1.4%

gray-crowned
rosy-Finch

lazuli bunting

1.7%

2.1%

5.9% -0.1%

2.1%

3.9%

Figure D.9. Studying class (dis-)similarities across classes in
terms of concepts found in layer features.28 for a VGG-16
model. (top): ImageNet “hen” compared to “rooster” prototype.
Whereas the “eye” concept is used for both equally, the “red color”
concept is more important for the rooster class. For the hen, the
brown-gray color is more important. (middle): ImageNet “gold-
fish” compared to “House Finch” prototype. Whereas for both, the
“scales” texture is important, the orange color is much more im-
portant for the goldfish. On the other side, the “animal on branch”
concept is only used for the House Finch. (bottom): CUB-200
“Lazuli Bunting” compared to “Gray-crowned Rosy-Finch” pro-
totype. Wheras for both “brown color” is important, “black-white
wings with brown color” is more relevant for the Finch. A “blue
color” concept is only relevant for the Lazuli Bunting.

input

co
n
ce

p
t

46
1

re
le

va
n
ce

:
6.

8%

¢R = +0.4%

localization concept visualization

co
n
ce

p
t

46
1

re
le

va
n
ce

:
6.

4%

localization prototype

heatmap

co
n
ce

p
t

21
9

re
le

va
n
ce

:
6.

7%

¢R = +5.9%

co
n
ce

p
t

21
9

re
le

va
n
ce

:
0.

8%

heatmap

log-likelihood

d
en

si
ty

class likelihood

sample

co
n
ce

p
t

86
re

le
va

n
ce

:
4.

3%

¢R = +2.3%

co
n
ce

p
t

86
re

le
va

n
ce

:
2.

0%

co
n
ce

p
t

21
7

re
le

va
n
ce

:
4.

0%

¢R = +4.0%

co
n
ce

p
t

21
7

re
le

va
n
ce

:
0.

0%

co
n
ce

p
t

19
0

re
le

va
n
ce

:
0.

7%

¢R = °3.2%

co
n
ce

p
t

19
0

re
le

va
n
ce

:
3.

9%

concepts sorted by |R|
remaining concepts sorted by |¢R|

Figure D.10. Comparing a single prediction (left) with a prototype (right) allows to validate predictions in more objective manner. Here, an
ostrich (ImageNet class “ostrich”) is correctly predicted by a VGG-16 model, but is detected as an outlier based on the likelihood measure
as defined in Equation (4) (illustrated in the plot in the first column and third row). In this example, we compare against the most similar
prototype (of six) based on concept relevance scores R from layer features.28. By comparing the used concepts, we can understand
that the model strongly uses fence features for the outlier prediction, which are not apparent for the prototype. Compared to the prototype,
concepts regarding the head’s shape are missing.

input

co
n
ce

p
t

18
9

re
le

va
n
ce

:
6.

0%

¢R = +2.0%

localization concept visualization

co
n
ce

p
t

18
9

re
le

va
n
ce

:
4.

0%

localization prototype

heatmap

co
n
ce

p
t

15
6

re
le

va
n
ce

:
2.

9%

¢R = °1.2%

co
n
ce

p
t

15
6

re
le

va
n
ce

:
4.

1%

heatmap

log-likelihood

d
en

si
ty

class likelihood

sample

co
n
ce

p
t

29
8

re
le

va
n
ce

:
3.

8%

¢R = +2.2%

co
n
ce

p
t

29
8

re
le

va
n
ce

:
1.

6%

co
n
ce

p
t

30
1

re
le

va
n
ce

:
3.

7%

¢R = +2.0%
co

n
ce

p
t

30
1

re
le

va
n
ce

:
1.

7%

co
n
ce

p
t

25
3

re
le

va
n
ce

:
2.

4%

¢R = +1.5%

co
n
ce

p
t

25
3

re
le

va
n
ce

:
0.

9%

concepts sorted by |R|
remaining concepts sorted by |¢R|

Figure D.11. Comparing a single prediction (left) with a prototype (right) allows to validate predictions in more objective manner. Here, a
Tiger Cat (ImageNet class “Tiger Cat”) is correctly predicted by a ResNet-18 model, but is detected as an outlier based on the likelihood
measure as defined in Equation (4) (illustrated in the plot in the first column and third row). In this example, we compare against the most
similar prototype (of six) based on concept relevance scores R from the last BasicBlock. The test sample shows an orange Tiger Cat
lying on a blanket with jaguar fur pattern. Interestingly, the most similar prototype is not a Tiger Cat, but a tiger, as already observed in
Figure C.7 (bottom) due to a high number of tiger samples in the training dataset with class label “Tiger Cat”. By comparing the used
concepts, we can understand that the sample and prototype are similar in a “stripes-texture” concept. However, the sample deviates in a
stronger use of cat- and jaguar-like concepts (concepts 298 and 253). Underrepresented are concepts associated with cat eyes and heads
(concept 156), which is sensible, as the eyes of the cat in the test prediction are closed.

input

co
n
ce

p
t

24
5

re
le

va
n
ce

:
3
.2

%

¢R = °1.3%

localization concept visualization

co
n
ce

p
t

24
5

re
le

va
n
ce

:
4
.5

%

localization prototype

heatmap

co
n
ce

p
t

35
2

re
le

va
n
ce

:
4.

5%

¢R = +1.7%

co
n
ce

p
t

35
2

re
le

va
n
ce

:
2.

8%

heatmap

log-likelihood

d
en

si
ty

class likelihood

sample

co
n
ce

p
t

18
2

re
le

va
n
ce

:
0.

9%

¢R = °2.5%

co
n
ce

p
t

18
2

re
le

va
n
ce

:
3.

4%

co
n
ce

p
t

14
1

re
le

va
n
ce

:
0.

1%

¢R = °2.0%

co
n
ce

p
t

14
1

re
le

va
n
ce

:
2.

1%

co
n
ce

p
t

5
re

le
va

n
ce

:
0.

6%

¢R = °1.6%

co
n
ce

p
t

5
re

le
va

n
ce

:
2.

2%
concepts sorted by |R|

remaining concepts sorted by |¢R|

Figure D.12. Comparing a single prediction (left) with a prototype (right) allows to validate predictions in more objective manner. Here, a
bald eagle (ImageNet class “bald eagle”) is correctly predicted by a ResNet-18 model, but is detected as an outlier based on the likelihood
measure as defined in Equation (4) (illustrated in the plot in the first column and third row). In this example, we compare against the
most similar prototype (of six) based on concept relevance scores R from the last BasicBlock. Whereas concepts related to the feathers
(concepts 245 and 352) are relevant for both, concepts related to the environment (concept 182) or yellow beak (concept 141) are missing.

input

co
n
ce

p
t

20
6

re
le

va
n
ce

:
11

.5
%

¢R = +10.0%

localization concept visualization

co
n
ce

p
t

20
6

re
le

va
n
ce

:
1.

5%

localization prototype

heatmap

co
n
ce

p
t

37
re

le
va

n
ce

:
1.

4%

¢R = °2.3%

co
n
ce

p
t

37
re

le
va

n
ce

:
3.

7%

heatmap

log-likelihood

d
en

si
ty

class likelihood

sample

co
n
ce

p
t

31
8

re
le

va
n
ce

:
1.

9%

¢R = °1.0%

co
n
ce

p
t

31
8

re
le

va
n
ce

:
2.

9%

co
n
ce

p
t

25
re

le
va

n
ce

:
0.

1%

¢R = °2.7%

co
n
ce

p
t

25
re

le
va

n
ce

:
2.

8%

co
n
ce

p
t

11
9

re
le

va
n
ce

:
2.

2%

¢R = +2.1%

co
n
ce

p
t

11
9

re
le

va
n
ce

:
0.

1%

concepts sorted by |R|
remaining concepts sorted by |¢R|

Figure D.13. Comparing a single prediction (left) with a prototype (right) allows to validate predictions in more objective manner. Here,
an ambulance car (ImageNet class “ambulance”) is correctly predicted by a VGG-16 model, but is detected as an outlier based on the
likelihood measure as defined in Equation (4) (illustrated in the plot in the first column and third row). In this example, we compare against
the most similar prototype (of six) based on concept relevance scores R from layer features.28. By comparing the used concepts, we
can understand that the model strongly uses features related to blur (concept 206) for the outlier prediction, which are not apparent for the
prototype. Compared to the prototype, concepts regarding side of buses with black windows (concept 25) are missing.

References
[1] Reduan Achtibat, Maximilian Dreyer, Ilona Eisenbraun,

Sebastian Bosse, Thomas Wiegand, Wojciech Samek,
and Sebastian Lapuschkin. From attribution maps to
human-understandable explanations through concept rele-
vance propagation. Nature Machine Intelligence, 5(9):1006–
1019, 2023. 7

[2] Sebastian Bach, Alexander Binder, Grégoire Montavon,
Frederick Klauschen, Klaus-Robert Müller, and Wojciech
Samek. On pixel-wise explanations for non-linear classi-
fier decisions by layer-wise relevance propagation. PloS one,
10(7):e0130140, 2015. 3

[3] David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis,
Kurt Wan-Duo Ma, and Brian McWilliams. The shattered
gradients problem: If resnets are the answer, then what is the
question? In International Conference on Machine Learn-
ing, pages 342–350. PMLR, 2017. 6

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016. 1

[5] Dan Hendrycks and Kevin Gimpel. A baseline for detect-
ing misclassified and out-of-distribution examples in neural
networks. In International Conference on Learning Repre-
sentations, 2016. 19, 21

[6] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. 1

[7] Maximilian Kohlbrenner, Alexander Bauer, Shinichi Naka-
jima, Alexander Binder, Wojciech Samek, and Sebastian La-
puschkin. Towards best practice in explaining neural net-
work decisions with lrp. In 2020 International Joint Confer-
ence on Neural Networks (IJCNN), pages 1–7. IEEE, 2020.
6

[8] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 1

[9] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A
simple unified framework for detecting out-of-distribution
samples and adversarial attacks. Advances in neural infor-
mation processing systems, 31, 2018. 19, 21

[10] Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan
Li. Energy-based out-of-distribution detection. Advances
in neural information processing systems, 33:21464–21475,
2020. 19, 21

[11] Scott M Lundberg and Su-In Lee. A unified approach to
interpreting model predictions. Advances in neural informa-
tion processing systems, 30, 2017. 7

[12] Leland McInnes, John Healy, Nathaniel Saul, and Lukas
Großberger. Umap: Uniform manifold approximation and
projection. Journal of Open Source Software, 3(29):861,
2018. 7

[13] Grégoire Montavon, Alexander Binder, Sebastian La-
puschkin, Wojciech Samek, and Klaus-Robert Müller.
Layer-wise relevance propagation: an overview. Explainable
AI: interpreting, explaining and visualizing deep learning,
pages 193–209, 2019. 3, 6

[14] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.
”why should i trust you?” explaining the predictions of any
classifier. In Proceedings of the 22nd ACM SIGKDD interna-
tional conference on knowledge discovery and data mining,
pages 1135–1144, 2016. 7

[15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. ImageNet large
scale visual recognition challenge. International Journal of
Computer Vision, 115(3):211–252, 2015. 1

[16] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 618–626,
2017. 7

[17] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje.
Learning important features through propagating activation
differences. In International conference on machine learn-
ing, pages 3145–3153. PMLR, 2017. 3

[18] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition. In In-
ternational Conference on Learning Representations (ICLR),
2015. 1

[19] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas
Brox, and Martin A. Riedmiller. Striving for simplicity: The
all convolutional net. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Workshop Track Proceedings, 2015. 3, 5

[20] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
conference on machine learning, pages 6105–6114. PMLR,
2019. 1

[21] Peter Welinder, Steve Branson, Takeshi Mita, Catherine
Wah, Florian Schroff, Serge Belongie, and Pietro Perona.
Caltech-UCSD birds 200. 2010. 1

	. Datasets and Models
	. Models
	. Datasets
	. Training

	. Alternative Metrics for Sample-to-Prototype Assignment
	. Evaluating and Inspecting Prototypes
	. Choice of the Attribution Method
	. Increasing the Number of Prototypes
	. Evaluating Clustering Algorithms
	. ImageNet species
	. Methods for Concept Attribution Computation
	. Investigating Data Quality
	Discovering Model (Sub-)Strategies
	Identifying Mislabeled Instances via Prototypes
	Spotting Correlating Features
	Diagnosing for Poor Data Quality

	. Model (Prediction) Validation
	. Covariance Matrix Understanding
	. Increasing the Number of Prototypes
	. Revealing Spurious Behavior
	. Out-of-Distribution Detection
	. Studying (Dis-)Similarities Across Classes
	. Comparing Single Predictions with Prototypes

