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1. Some Mathematical Properties of PIP

The toy examples and the empirical results show that the
proposed PIP nonconformity score behaves similarly to
its baseline Hinge Loss (IP) measure in certain situations,
while in other times its behavior resembles that of the Mar-
gin Score (MS). In fact, there is a direct relationship be-
tween these three scores, namely:

∆PIP(y) = 1− p̂y︸ ︷︷ ︸
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where R(k) is the rank of class k after the estimated proba-
bilities p1, ..., pK have been sorted in decreasing order, and
p̂[r] the probability estimate of the class having rank r, such
that p̂k = p̂[R(k)]. For any y such that R(y) > 1, we have:
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From these relationships, we can study the behavior of
∆PIP(y) in different possible scenarios and derive some up-
per and lower bounds:

1. Assume the case where the class of interest y is the most
“certain” class. That is, p̂y = 1 and for all other classes
p̂k = 0, k ̸= y. In such a situation, the rank R(y) of
y will obviously be 1. In such an optimal scenario, y
should be given the minimal possible score. Indeed:

∆PIP(y) = ∆IP(y) = 1− p̂y = 0

is a lower bound on ∆PIP.

2. Assume the opposite scenario whereby a class k ̸= y is
assigned the maximal probability p̂k = 1, which then
means that p̂y = 0. Such a setting should be maximally
penalized since the base classifier can be considered to
have made a big mistake about class y:

∆PIP(y) = 1 +∆MS(y) +
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(3)

which is an upper bound on ∆PIP.
3. Assume the theoretical scenario where the base classifier

assigns the same probability estimate to all classes. That
is, pk = 1/K, ∀k = 1, 2, ...,K. In this case, the class
of interest y will have the same probability estimate as
all other classes and its PIP score will depend only on its
rank R(y), which can take any value in 1, 2, ...,K:
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Based on this scenario, it is apparent that PIP generally
guarantees assigning a different score to each class since
even in the degenerate (and impossible) case when all
the classes have the same probability estimates, the non-
conformity score of each class will be different.
From these scenarios, we can further observe the “hy-

brid” behavior of PIP. Indeed, from scenario (1) it is ap-
parent that when a class k has a high estimated probability
p̂k (close to 1), it is this probability estimate that plays the
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biggest role in the final score value. When this class k is the
class of interest y, then p̂y will play an important role in at-
tenuating the final score as it will be used in the IP term, i.e.
the first part in Equation 1. However, when k is different
than the class of interest y it will play a role in increasing
the score assigned to y as it will reside in the penalization
component of the PIP score. When the base classifier is
quite “ambivalent”, assigning more or less the same scores
to all classes, then the most important factor impacting the
final score is the rank R(y) of class y but which will have
decreasing importance due to the inverse rank weighting in
the penalization component.

2. WE3DS Data Preparation

The experiments in this article are conducted on the public
WE3DS dataset1 published by Kitzler et al. [1]. Originally
conceived as a dataset of densely annotated RGB-D images
for semantic segmentation with 17 different plant classes
and the soil class, it has been transformed through a simple
procedure into a classification dataset.

Figure 1. Demonstration of how the original WE3DS segmenta-
tion images are divided into smaller classification images.

As shown in Figure 1, after discarding the depth channel,
each original RGB image of size 1600 × 1144 is divided
into non-overlapping smaller images of size 224×224. The
corner regions that do not align with the cropping grid (due
to the original dimensions not being perfectly divisible by
224) are simply discarded. For each smaller image (like
the one highlighted in blue in Figure 1), its corresponding
area is considered in the ground-truth semantic mask. The
number of pixels in each class is counted, then a decision is
taken:
1. If the image contains only pixels of class soil, then soil

is defined as the class label of the resulting classification
image;

1The original dataset can be accessed and downloaded here:
https://zenodo.org/records/5645731

Figure 2. Count of images per class in the resulting classifica-
tion dataset after window cropping from the original larger images.
The soil class overshadows all other classes.

Figure 3. Count of images per class in the final classification
dataset after soil random undersampling and the dropping of the
five rarest classes.

2. If any other class exists in the image, the majority class
is taken to be the true label.

This results in a classification dataset consisting of
89,880 images 18 different classes showing very high im-
balance towards the heavily majoritarian soil class (Fig-
ure 2). In order to curb this imbalance problem, 1,500 im-
ages are randomly sampled from the soil class. Addition-
ally, the five very rare classes (corn spurry, narrow leaved
plantain, common wild oat, red root amaranth and red fin-
gergrass) are removed, resulting in a dataset of 13 classes
and 14,800 images as shown in Figure 3. This is the dataset
used to conduct the experiments in the current work.
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