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1. Introduction
We provide in this material the contents promised in the
main paper and additional results: Sec. 2 comparison be-
tween different uncertainty measures, ablation study on
Gaussian smoothing and different hinge values, and addi-
tional qualitative results on HLW task (cf Sec. 3.4, Sec. 4.1,
Sec. 4.2 and Sec. 4.3 in the main paper).

2. Ablation study and additional results
2.1. Comparison between different uncertainty

measures

The variance, uσ , is a common uncertainty measure for re-
gression problems [2]:

uσ(p̂y) =
∑
k

k2p̂y[k]−

(∑
k

kp̂y[k]

)2

(1)

The main disadvantage of (1) is that it can easily be dom-
inated by secondary modes that are far from the dominant
mode. Another possible choice is the inverse of the maxi-
mum bin value, defined as in

uM (p̂y) =
1

p̂y[k∗]
, k∗ = argmax

k
(p̂y[k]) . (2)

As the number of modes increases, the maximum mode will
also drop, indicating larger uncertainty. In Sec. 2.4 we show
the effect on AUSE of these three uncertainty measures.

We show AUSE of varying hinge values for the stereo
disparity task in Tab. 1 with three different uncertainty mea-
sures. All entries use the softplus activation and L1 nor-
malization as the final layer. Among the three measures,
variance uσ in Eq. (1) achieves the smallest AUSE, which
is desired for sorting predictions by uncertainty. We still re-
port entropy-based AUSE in the main paper to be consistent

Table 1. Stereo disparity. Comparison of the effect on AUSE for
three different uncertainty measures, entropy, the inverse of the
max bin value, and distribution variance described in Sec. 2.1.

Settings entropy MAX variance

hinge-W, γW = 0 17.8 20.03 16.13
hinge-W, γW = 0.0025 17.1 18.66 16.00
hinge-W, γW = 0.005 15.9 17.40 15.07
hinge-W, γW = 0.0075 15.9 17.37 14.87
hinge-W, γW = 0.01 17.1 18.80 15.13
hinge-W, γW = 0.0125 17.5 19.46 14.90
hinge-W, γW = 0.015 17.3 19.43 15.33

with other tasks. uM in Eq. (2) has a slightly larger AUSE
but shares the same trend, that the AUSE initially optimizes
towards an optimal value, and then gets worse as the hinge
increases. All three different uncertainty measures achieve
the optimal AUSE at hinge, γW = 0.0075. This shows that
the improvement on AUSE from our proposed hinge-W1 is
robust to various uncertainty measures.

Furthermore, the validity of the entropy as the scalar un-
certainty measure is assessed using kernel density estima-
tion (KDE) plots on the two test sets. This is done for the
entropy of the slope and offset distributions, i.e., uH(p̂α),
uH(p̂ρ). Ideally, the mode of the uncertainty measure dis-
tribution on the one-line test set should be lower and well
separated from the one on the two-line test set.

Fig. 1 shows KDE plots for the one- and two-line test
sets. Using the NLL loss (green) leads to a small magni-
tude of uncertainty for the two-line test set overlapping the
peak of one-line test set. Using the plain Wasserstein loss
(blue) the network cannot distinguish ambiguous images
with higher aleatoric uncertainty from others. The hinge-
W1 loss (orange) improves the separation of the modes for
the two distributions. Thus, we conclude that hinge-W1
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Figure 1. Entropy distribution of predictions for different losses.
The models are trained with unimodal annotations. Top: KDE
plots for α entropy; Bottom: KDE plots for ρ entropy; 1 line, 2
line in the legend denotes two test sets in Sec. 4.1 in the main
paper. On the 2-line test set, the entropy distribution is expected to
be higher than on the 1-line test set.

generates better aleatoric uncertainty estimates.

Table 2. Test results on Horizon Lines in the Wild. For hinge-W1

and plain Wasserstein, Gaussian smoothed (σ = 4) training target
apply. Both metrics are multiplied by 100.

Loss AUC ↑ α AUSE ↓ ρ AUSE↓
NLL[3] 64.13±0.04 44.30±0.86 51.47±2.56

Ensemble NLL 66.83 39.50 48.00
Plain W1 64.40±0.22 100.40±2.76 153.70±3.33

hinge-W1,γW =0.0100 66.60±0.11 49.88±1.73 78.49±1.61

hinge-W1,γW =0.0125 65.64±0.14 39.75±1.40 64.68±2.27

hinge-W1,γW =0.0150 64.24±0.41 29.18±0.75 69.41±5.18

hinge-W1,γW =0.0175 62.32±0.16 29.05±1.68 37.34±1.15

hinge-W1,γW =0.0200 62.72±0.14 26.97±1.19 30.82±1.92

hinge-W1,γW =0.0225 62.48±0.26 27.80±0.94 38.83±11.14

hinge-W1,γW =0.0250 62.00±0.09 32.45±1.36 31.11±6.11

2.2. Synthetic dataset: ablation on Gaussian
smoothing

In this section, we show that Gaussian smoothing is ben-
eficial for line regression tasks. Tab. 3 shows the re-
sults for training with Dirac ground truth, i.e., no Gaus-
sian smoothing. As the hinge increases, both the regres-
sion performance (in terms of AUC) and uncertainty esti-
mation (in terms of AUSE) improve until the hinge value
(γW = 0.015) is too large to maintain stable training. Com-
pared with Table 1 in the main paper, we notice that Dirac
ground truth has much worse AUC and AUSE at hinge value
(γW = 0.015), indicating that Gaussian smoothing can help
to maintain a stable training at a large hinge value.

2.3. HLW: ablation on different hinge

Tab. 2 shows the ablation study on different hinge values
on HLW. Hinge-Wasserstein with γW = 0.02 achieves the
best quality of uncertainty estimation, but it suffers a small
drop in the regression performance. It is worth noting that
as AUC keeps dropping as γW increases, whereas AUSE

first drops and then increases. This indicates there exists an
optimal value γ∗

W on the HLW dataset. When γW > γ∗
W ,

it will be rather hard to train the neural network, as there
will rarely be any gradients from the loss. We also argue
that γ∗

W depends on the number of bins in the regression
by classification framework. E.g., there are 100 bins for the
horizon line detection task, and thus, γW = 1/100 means
that hinge-Wasserstein allows a random guess.

2.4. Stereo disparity: ablation on different hinge

We report the results of different hinge values for the stereo
disparity task in Tab. 4. As hinge increases, both regression
performance (in terms of EPE) and uncertainty estimation
(in terms of AUSE) improved for both boundary pixels and
all the pixels. This shows our proposed hinge-W1 improves
the challenging multimodal regression.

3. Horizon in the wild: additional qualitative
results

Fig. 2 shows more examples of images and the correspond-
ing predicted densities for α and ρ. The peak shapes are
more clearly defined for α than for ρ. This is a general
trend that we have observed, and it is also consistent with
the more focused curves for alpha at the bottom of Fig. 2.



Table 3. Ablation study on the synthetic dataset. For all results we use unimodal ground truth as a Dirac function. Standard deviation is
computed over five randomly initialized models.

Loss AUC ↑ α AUSE ↓ ρ AUSE↓ α CRPS ↓ ρ CRPS ↓
Plain W1 47.04±0.04 62.73±2.71 56.40±3.71 10.1±0.07 10.8±0.02

hinge-W1 γW = 0.005 47.08±1.70 55.51±11.35 40.85±14.63 8.55±1.79 9.42±1.52

hinge-W1 γW = 0.01 53.44±0.05 57.43±3.51 42.70±3.60 9.55±0.43 9.96±0.04

hinge-W1 γW = 0.015 21.52±0.14 69.43±9.32 58.81±13.42 9.77±6.02 9.45±0.42

Table 4. Stereo disparity results on Scene Flow. Regression performance in terms of EPE, 1PE, and 3PE, and uncertainty evaluation in
terms of entropy-based AUSE. MM denotes multimodal training with k = 5, and standard error is reported over five runs.

2*Setting 2*Loss All pixels Edge pixels
EPE ↓ 1PE ↓ 3PE ↓ AUSE ↓ EPE ↓ 1PE ↓ 3PE ↓ AUSE ↓

Softmax Plain W1 [1] 0.98±0.01 9.44±0.06 4.04±0.03 19.4±0.37 3.05±0.03 17.4±0.12 10.1±0.10 27.5±0.70

Softmax hinge-W1, γW = 0.0075 (Ours) 1.03±0.02 9.80±0.11 4.19±0.05 18.7±0.29 3.11±0.01 17.8±0.09 10.3±0.05 26.7±0.41

Softmax hinge-W1, γW = 0.01 (Ours) 0.99±0.01 9.62±0.06 4.08±0.03 18.7±0.43 3.05±0.03 17.6±0.12 10.1±0.06 26.4±0.31

Softplus Plain W1 [1] 1.00±0.01 9.74±0.07 4.12±0.03 18.1±0.89 3.05±0.01 17.5±0.09 10.1±0.07 27.2±1.64

Softplus hinge-W1, γW = 0.001 (Ours) 0.97±0.01 9.48±0.05 4.05±0.03 17.4±0.44 3.00±0.02 17.2±0.12 9.91±0.05 26.1±0.59

Softplus hinge-W1, γW = 0.0025 (Ours) 0.97±0.02 9.35±0.16 3.97±0.06 16.5±0.55 2.98±0.03 17.1±0.16 9.80±0.07 23.6±0.63

Softplus hinge-W1, γW = 0.005 (Ours) 0.96±0.01 9.31±0.05 3.96±0.03 16.0±0.39 3.00±0.03 17.1±0.11 9.84±0.12 23.5±0.58

Softplus hinge-W1, γW = 0.0075 (Ours) 1.00±0.01 9.52±0.06 4.06±0.04 15.6±0.33 3.07±0.01 17.4±0.09 10.0±0.07 23.2±0.71

Softplus hinge-W1, γW = 0.01 (Ours) 0.98±0.01 9.48±0.06 4.05±0.03 16.4±0.48 3.04±0.02 17.2±0.16 9.99±0.10 23.1±0.77

Softplus hinge-W1, γW = 0.0125 (Ours) 1.00±0.01 9.60±0.08 4.12±0.05 15.8±0.27 3.06±0.02 17.4±0.08 10.0±0.06 21.7±0.50

Softplus hinge-W1, γW = 0.015 (Ours) 0.97±0.02 9.38±0.13 3.98±0.06 16.1±0.60 3.01±0.03 17.2±0.21 9.88±0.11 22.9±0.80

Softplus hinge-W1, γW = 0.02 (Ours) 0.98±0.01 9.46±0.09 4.04±0.03 15.5±0.19 3.03±0.03 17.2±0.13 9.94±0.09 21.8±0.37

Softplus hinge-W1, γW = 0.04 (Ours) 1.02±0.01 9.75±0.09 4.17±0.05 15.1±0.26 3.13±0.02 17.7±0.14 10.3±0.08 21.3±0.49

Softplus, MM Plain W1 [1] 1.00±0.03 9.61±0.25 4.15±0.16 14.1±1.46 3.15±0.11 17.59±0.38 10.3±0.26 19.8±2.08

Softplus, MM hinge-W1, γW = 0.0075 (Ours) 0.96±0.01 9.27±0.11 3.94±0.03 13.0±0.32 3.00±0.03 17.00±0.17 9.79±0.13 17.2±0.01

Softplus, MM hinge-W1, γW = 0.01 (Ours) 0.97±0.03 9.40±0.21 4.01±0.08 12.6±0.01 3.04±0.03 17.20±0.08 9.98±0.03 16.3±0.90

Figure 2. Horizon line detection should be framed as a probabilistic regression problem due to its inherently stochastic nature. First row:
Images where horizon line detection is easy (red line) and direct regression would work. Second row: Image where horizon line detection is
hard and direct regression would not work. Plots below the images show the output probability distributions for the horizon line parameters
(α, ρ), from the proposed method. Red: ground truth; Blue: predicted density. Images are from the HLW dataset [3].
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