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A. Preliminary Study

As a preliminary study, we evaluate the performance of five

frequently used models dealing with domain shifts in the

initial experiments, in which the models are first trained

only on the source dataset Ds and directly run inference on

the target dataset DT without any adaptation and inference

configuration changes. The evaluation results can be found

in Tab. 6, where we observe significant performance degra-

dation across all the models. It is especially challenging for

the setup where the model is previously trained on a less

challenging setup, e.g., on TuSimple dataset, where we can

observe a performance disparity of about 50% even with the

best performing model measured by F1 score.

B. Implementation Details

We conduct the experiment based on the LaneDet frame-

work [60]. We utilize the ImageNet pre-trained weights

from Hugging Face and TorchVision. For all the experi-

ments with EMA, we choose the smoothing coefficient hy-

perparameter α = 0.99. During the experiments, we first

train the base networks on the source datasets according to

the implementations from LaneDet. We always apply an

identical set of hyperparameters for all network architec-

tures for each domain adaptation task, e.g., from CULane

to TuSimple. When evaluating the domain generalization

performance, we run experiments with evenly spaced test

confidence threshold over an interval of 0.1 up to 0.9 and

select the best threshold measured by the F1-score. We also

follow this principle to determine the pseudo label thresh-

olds δ, avoiding unfair comparison between unsupervised

and weakly-supervised domain adaptation. For the weights

ω for the different loss terms, we refer to the training con-

figs from LaneATT and CLRNet on respective datasets with

ωnum. = 1.0. It is worth noting that we also strictly fol-

low the evaluation scheme from [55] for the results of the

CurveLanes dataset, which is similar to the CULane eval-

uation. For simplicity and fairness, we do not employ any

handcrafted crop size for the images from the CurveLanes

dataset as source dataset during training and evaluation.

During training of the models, we apply heavy data aug-

mentation for the student model with the setup shown in

Tab. 7.

C. Ablation Segmentation Task

From Tab. 8, it is apparent that the inclusion of the lane

segmentation task provides only marginal improvement in

the source domain CULane for both CLRNet and LaneATT.

There is no notable distinction between binary segmenta-

tion and instance segmentation. Tab. 9 shows the results of

models on the target domain TuSimple: The enhancement

in the adaptability of detectors through the lane segmen-

tation task becomes evident. Binary segmentation consis-

tently outperforms instance segmentation in DG and WS-

DAL setup. With the effect of the lane segmentation task

on the performance of the model on both source and target

domains, we conclude that incorporating a suitable auxil-

iary task during lane detector training in the source domain

is an effective strategy to enhance adaptability.

D. Ablation Teacher-Student Network

In order to obtain more accurate pseudo labels, we refer

to the method proposed in [36] and introduce the teacher–

student network in the WSDAL framework. Following the

method in Sec. 3, the unaugmented images are fed into the

teacher network to obtain more accurate pseudo lane la-

bels, which are then used to supervise the lane predictions

generated in the student network. The results of the ab-

lation experiment are shown in Tab. 10. Without teacher-

student network, performance improvement on the target

domain TuSimple can still be achieved through the weak

label NoL and the lane segmentation task. This further

demonstrates the rationale for adding these two domain

adaptation tasks. Upon integrating the teacher–student net-

work, CLRNet achieves an even stronger performance gain

on the target domain by utilizing more accurate pseudo-

labels generated by the teacher network. Training with the

teacher–student network does not increase the model’s size

at deployment, so adopting this training strategy for perfor-

mance enhancement is entirely desirable.

E. Complete WSDAL Results

As mentioned in Sec. 4 and Sec. 5.1, we also validate the

proposed WSDAL framework utilizing three different back-

bones including DLA34 [57], ConvNext-atto [54] and the

ERFNet [32] encoder besides the ResNet-18 backbone. In

this section, we show the complete comparison table in-

cluding the results from all four backbones and two net-

work architectures. We report the performance of the mod-

els that are adapted to TuSimple dataset in Tab. 11. The

results correspond to the analysis in the Sec. 4.3, as all

backbones, despite their difference in the architecture and

training setup, improve their performance on the target do-

main data. The backbones with higher learning capacity

demonstrate their advantage in reusing the feature repre-

sentations learned from the source domain. For instance,



Table 6. Domain generalization evaluation on two datasets. Models that trained directly on target domain in (bold)

Model
Ds CULane → DT TuSimple Ds TuSimple → DT CULane

F1 ↑ FPR ↓ FNR ↓ Accuracy ↑ F1 ↑ Precision ↑ Recall ↑

CondLaneNet [21] 70.2 (97.0) 17.4 (2.2) 52.6 (3.8) 58.7 (95.5) 12.7 (77.7) 22.8 (83.1) 8.8 (73.1)

CLRNet [62] 70.3 (95.3) 32.6 (5.5) 26.3 (3.8) 85.9 (95.1) 23.0 (78.8) 50.9 (84.5) 14.8 (73.8)

LaneATT [41] 54.9 (95.1) 49.6 (5.9) 39.4 (3.7) 81.3 (94.9) 23.4 (76.0) 67.3 (82.7) 14.1 (70.4)

GANet [49] 74.0 (97.8) 24.0 (1.6) 29.4 (2.9) 82.0 (95.8) 21.9 (78.5) 54.3 (85.4) 13.7 (72.6)

CLRerNet [9] 69.9 (97.6) 24.7 (1.7) 40.2 (3.1) 73.2 (96.5) 31.1 (81.1) 38.0 (88.1) 26.4 (75.2)

Table 7. Data augmentation setup for training

Method p parameters

HorizontalFlip 0.5

ChannelShuffle 0.1

MultiplyAndAddToBrightness 0.6 mul=(0.85, 1.15), add=(-10, 10)

AddToHueAndSaturation 0.5 value=(-10, 10)

GammaContrast 0.5 gamma=(0.5, 2.0)

MotionBlur or MedianBlur 0.5 k=(3, 5)

Affine 0.7 translate=(x=(-0.1, 0.1), y=(-0.1, 0.1)), rotate=(-10, 10),

scale=(0.8, 1.2))

Table 8. The LaneATT and CLRNet models with segmentation

tasks in the source domain CULane. All values in %.

Model Segmentation F1 Precision Recall

CLRNet 77.8 84.6 72.0

CLRNet Instance 78.5 85.9 72.3

CLRNet Binary 78.8 84.5 73.8

LaneATT 75.5 82.2 69.8

LaneATT Instance 76.3 82.8 70.7

LaneATT Binary 76.0 82.7 70.4

Table 9. The CLRNet and LaneATT models with segmentation

tasks are trained on CULane and adapted to the target domain

TuSimple. All values in %.

Model Segmentation Method F1 FPR FNR Accuracy

CLRNet DG 70.4 32.6 26.3 85.9

CLRNet Instance DG 71.0 33.1 24.3 87.6

CLRNet Binary DG 73.4 28.3 24.7 86.9

CLRNet WSDAL 80.2 16.5 22.8 85.1

CLRNet Instance WSDAL 83.2 14.5 19.0 86.5

CLRNet Binary WSDAL 86.9 11.5 15.2 89.0

LaneATT DG 55.0 49.7 39.4 81.3

LaneATT Instance DG 58.9 42.8 39.2 80.5

LaneATT Binary DG 60.0 43.0 36.7 81.2

LaneATT WSDAL 76.0 25.5 22.5 87.3

LaneATT Instance WSDAL 79.8 20.4 19.9 87.7

LaneATT Binary WSDAL 81.7 18.8 17.5 88.8

the ResNet-18 backbone and DLA34 backbone, indepen-

dent from the source dataset, show a significant advantage

after domain adaptation as the difference between the ora-

cle and adaptation model is much smaller than those with

fewer parameters. When trained with a dataset that consists

Table 10. Effects of adding a teacher–student network (TS) in the

task CULane → Tusimple when CLRNet has different segmenta-

tion tasks. All values in %.

Model Method Segmentation NoL TS F1 FPR FNR Accuracy

CLRNet DG 70.4 32.6 26.4 85.9

CLRNet WSDAL X 69.1 29.4 32.3 82.4

CLRNet WSDAL X X 80.2 16.5 22.8 85.1

CLRNet DG Instance 71.0 33.1 24.3 87.6

CLRNet WSDAL Instance X 77.1 20.6 25.1 84.5

CLRNet WSDAL Instance X X 83.2 14.5 19.0 86.5

CLRNet DG Binary 73.4 28.3 24.7 86.9

CLRNet WSDAL Binary X 82.7 15.1 19.4 90.2

CLRNet WSDAL Binary X X 86.9 11.5 15.2 89.0

of complex driving scenarios, e.g., with the CurveLanes

dataset, all backbones show an advantage in their target do-

main after domain adaptation. In Tab. 12 the comparison

of the lane detection performance on the target dataset CU-

Lane is shown, which is also corresponding to the results

and analyses from Sec. 4.4, where we see in addition to

the disparity of unsupervised domain adaptation methods

and our weakly-supervised method caused by the quality–

quantity dilemma of the generated pseudo-labels. The pro-

posed WSDAL reduces the gap to oracle models by an av-

erage of around 5 % absolute value with the CurveLanes

dataset. Tab. 13 depicts the comparison of four different

backbones adapting from CULane to CurveLanes, where

the label distribution shifts significantly as the lane curva-

ture and lane structure are noticeably different. We observe

a similar trend as mentioned in Sec. 4.5 where unsupervised

methods only bring performance improvements to a limited

extent while WSDAL boosts the performance substantially

by significantly increased recall, especially when a higher

tolerance of positional shift is granted due to divergent la-

beling policies in the two datasets.

F. Unreliable Labels

In this section, we further discuss the impact of utilizing

unreliable NoL labels during the adaptation process men-

tioned in Sec. 5.3. In Fig. 4 we compare the difference of

adapting a model which is previously trained with CULane

dataset to the same architecture that was trained on Curve-

Lanes before. We observe that the network that was previ-

ously trained on CULane dataset suffers more from the un-



Table 11. Comparison of the LaneATT and CLRNet models which

are trained on CULane and CurveLanes datasets and adapt to

TuSimple. We report average score in % according to three runs.

Ds Model Backbone Method F1 FPR FNR Accuracy

C
U

L
an

e

LaneATT

ResNet-18

DG 54.9 49.6 39.4 81.29

TSUDA 69.9±0.7 32.6±0.7 25.4±0.6 84.7±0.2

WSDAL 81.7±0.3 18.8±1.0 17.5±0.7 88.8±0.4

CLRNet

DG 70.3 32.6 26.35 85.89

TSUDA 84.8±0.3 12.6±0.1 18.9±0.9 85.5±0.7

WSDAL 86.9±0.3 11.5±0.2 15.2±0.5 89.0±0.4

ERFNet

DG 67.7 14.2 67.9 41.8

TSUDA 79.7±0.4 22.8±0.3 16.5±0.6 89.2±0.4

WSDAL 81.5±0.6 19.4±0.7 17.1±0.4 89.5±0.2

ConvNext

DG 69.1 22.8 46.0 66.7

TSUDA 77.7±0.9 26.0±0.9 16.5±1.0 88.9±0.5

WSDAL 81.6±1.0 19.7±1.5 16.6±0.9 89.5±0.5

DLA34

DG 70.4 12.9 60.4 49.1

TSUDA 81.7±0.3 20.3±0.4 15.4±0.4 89.4±0.2

WSDAL 86.3±0.3 13.4±0.3 14.0±0.4 90.8±0.2

C
u
rv

eL
an

es

CLRNet

ResNet-18

DG 80.7 8.1 35.8 72.9

TSUDA 84.5±0.2 15.7±0.5 15.3±0.6 86.5±0.4

WSDAL 91.2±0.5 8.1±0.5 9.7±0.5 91.2±0.3

ERFNet

DG 81.8 17.1 19.7 86.4

TSUDA 82.2±0.0 18.0±0.0 17.5±0.0 86.0±0.0

WSDAL 87.2±0.9 12.4±1.0 13.2±0.9 90.5±0.2

ConvNeXt

DG 82.4 10.7 27.1 80.0

TSUDA 78.0±2.1 23.1±1.9 15.5±1.9 84.2±0.6

WSDAL 88.9±0.7 10.7±0.8 11.6±0.7 90.4±0.4

DLA34

DG 86.6 10.7 17.0 87.2

TSUDA 84.0±0.0 18.1±0.0 13.2±0.0 88.3±0.0

WSDAL 91.0±0.1 8.4±0.1 9.7±0.2 90.4±0.2

DT CLRNet ResNet-18 95.3 5.5 3.8 95.1

DT CLRNet ERFNet 95.2 6.0 3.4 95.5

DT CLRNet ConvNext 95.8 5.6 2.8 95.6

DT CLRNet DLA34 96.3 4.1 3.2 95.6

DT LaneATT ResNet-18 95.1 5.9 3.7 94.9

reliable labels than the one trained on CurveLanes dataset,

which is another indication that sophisticated source dataset

helps the network to learn more robust and generalized fea-

tures. However, as the proportion of the incorrect number of

lane labels increases, the one with CurveLanes pretraining

suffers more from the supervision signal that the unreliable

labels provide.

In addition, we compare two detector architectures that

have the same task from TuSimple to CULane in Fig. 5.

Compared with the transition point that we observe in the

CurveLanes → TuSimple task, the transition point where the

unsupervised adaptation method performs better than the

weakly supervised one shifts to the right, which is an indica-

tion that in this setup the tolerance against unreliable labels

improves. However, as the evaluations show in Sec. 4 and

Appendix E, the LaneATT models perform poorly in com-

parison with the CLRNet models, which is an indication of

limited generalization ability from the detection head.

G. Qualitative Results

In Figs. 6 and 7 we show the qualitative results adapting

from CurveLanes to TuSimple, which shifts from highly

complex urban driving scenario to normal highway driv-
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Figure 4. Comparison of using different datasets CurveLanes and

CULane for the adaptation to TuSimple with incorrect NoL labels

based on CLRNet with ResNet 18 backbone. The dashed lines

show the results from TSUDA.
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Figure 5. Results of two detector architectures adpating from

TuSimple to CULane with incorrect NoL labels. The dashed lines

show the results from TSUDA.

ing in clear weather. In general, WSDAL shows its ad-

vantage in this task by diminishing false positive predic-

tions, which are caused by road boundaries, road material

shifts, and similar lane marking structures on the road, such

as tyre marks. In those cases, where the lane markings are

visible, knowledge distillation from the models helps the

model to identify the blurry markings. At the same time,

it also increases the possibility that structures on the road

which share visual properties with lane markings are more

frequently detected as a false positive. Besides that, the net-

work learns to prioritize detection in case more lanes are

detected with high confidence than they should have.

In addition, we see similar improvement of the networks

adapting from CULane to CurveLanes, which is considered

as domain adaptation to a more challenging driving situa-

tion compared with the source dataset. Figs. 8 to 11 depict

the qualitative results from the domain adaptation result.

We employ a more error tolerant IoU threshold of 0.3 for

the visualization. We see that, after WSDAL, the models are

outputting more predictions with higher confidence scores

compared to the unsupervised model and the model without



Table 12. Comparison of the LaneATT and CLRNet models which are trained on the TuSimple and CurveLanes dataset and adapt to

CULane. We report the average score in % according to three runs.

Ds Model Backbone Method Normal Crowd Dazzle Shadow Noline Arrow Curve Cross Night Total

T
u
S

im
p
le CLRNet

ResNet-18

DG 42.0 20.4 11.6 5.6 8.2 28.1 22.3 1950 2.9 23.0

TSUDA 59.9±0.7 40.2±0.5 32.3±1.4 24.9±0.8 26.3±0.8 54.1±0.5 44.6±0.7 4510±388 30.2±1.5 43.0±0.9

WSDAL 65.2±0.4 43.4±0.7 35.6±1.4 28.2±1.5 29.3±0.5 57.5±0.7 48.7±0.2 1975±178 33.4±0.8 47.2±0.6

LaneATT

DG 38.9 18.1 10.9 3.9 6.5 26.1 21.4 569 2.6 21.5

TSUDA 33.6±0.8 19.8±0.4 19.9±0.7 10.8±0.2 13.5±0.3 25.6±0.3 21.3±0.8 7378±250 9.0±0.3 21.4±0.5

WSDAL 49.0±0.9 28.0±0.7 25.2±1.4 15.6±0.9 22.0±0.2 37.3±0.8 36.6±0.3 2560±90 21.6±0.7 32.8±0.6

C
u
rv

eL
an

es

CLRNet

ResNet-18

DG 82.2 66.0 60.2 70.1 48.0 76.8 72.0 6730 62.9 66.7

TSUDA 68.5±0.5 50.1±0.6 42.4±0.4 48.5±0.7 30.8±0.4 63.6±0.7 56.5±0.3 889±21 51.7±0.5 55.0±0.5

WSDAL 86.2±0.0 68.5±0.2 60.1±0.2 72.7±0.1 47.3±0.1 80.5±0.2 73.0±0.4 2370±15 66.6±0.1 70.9±0.1

ERFNet

DG 80.1 65.2 56.6 63.6 44.5 74.0 68.0 4070 61.7 65.9

TSUDA 71.5±0.2 54.6±0.2 44.1±0.3 54.5±0.2 34.2±0.2 67.3±0.0 59.3±0.3 5190±156 53.6±0.2 56.4±0.2

WSDAL 85.8±0.1 68.3±0.1 60.9±0.3 69.5±0.0 46.0±0.2 80.8±0.2 68.5±0.5 2642±59 66.6±0.2 70.4±0.2

ConvNext

DG 78.5 63.6 54.6 66.3 42.4 72.7 69.0 3208 59.3 64.7

TSUDA 49.9±0.4 27.5±0.2 26.1±0.4 40.4±0.8 20.8±0.2 39.6±0.5 47.4±0.2 5803±144 34.5±0.2 35.5±0.2

WSDAL 86.7±0.2 68.2±0.2 62.8±0.3 71.1±0.2 46.7±0.2 81.5±0.3 70.8±0.2 2311±12 67.2±0.3 71.0±0.2

DLA34

DG 83.2 67.8 62.1 71.8 48.7 78.9 73.9 5973 64.8 68.4

TSUDA 67.1±0.4 51.8±0.6 41.5±0.6 58.0±0.2 34.0±0.5 63.9±0.5 58.0±0.1 5142±41 50.8±0.5 53.8±0.4

WSDAL 87.9±0.2 70.9±0.1 64.9±0.3 74.2±0.4 48.6±0.3 84.0±0.2 72.2±0.2 2448±33 68.6±0.3 72.8±0.1

DT CLRNet ResNet-18 93.0 77.5 70.1 77.4 52.7 89.3 68.2 1239 77.5 78.5

DT CLRNet ERFNet 92.0 75.6 69.2 77.4 48.3 88.1 63.4 1030 72.0 77.3

DT CLRNet ConvNext 91.1 73.6 67.9 72.5 48.3 85.5 66.1 1025 71.1 76.1

DT CLRNet DLA34 93.1 77.8 71.4 81.9 52.5 89.6 69.9 1127 74.0 79.1

DT LaneATT ResNet-18 91.0 73.0 65.6 76.7 48.8 86.7 65.1 1173 70.1 75.5

Table 13. Comparison of task CUlane → CurveLanes of CLRNet architectures based on various IoU thresholds. We report the average

score in % according to three runs.

IoU0.2 IoU0.3 IoU0.5

Ds Backbone Method F1 Precision Recall F1 Precision Recall F1 Precision Recall

C
U

L
an

e

ResNet 18

DG 69.5 90.1 52.3 67.6 92.0 53.5 61.4 82.5 48.5

TSUDA 70.6±0.1 94.9±0.1 56.2±0.1 68.8±0.1 92.5±0.1 54.8±0.1 62.4±0.0 83.9±0.1 49.7±0.1

WSDAL 77.4±0.1 86.8±0.1 69.8±0.2 74.2±0.1 83.2±0.2 66.9±0.2 64.1±0.1 71.9±0.1 57.8±0.2

ConvNext

DG 67.4 93.8 52.6 65.4 91.1 51.1 58.9 82.0 46.0

TSUDA 66.1±0.2 83.1±1.0 54.9±0.7 63.7±0.1 80.1±1.1 52.9±0.5 53.6±0.4 67.4±1.3 44.5±0.3

WSDAL 74.5±0.1 86.3±0.3 65.5±0.2 70.9±0.0 82.2±0.3 62.4±0.2 59.6±0.1 69.1±0.3 52.5±0.1

ERFNet

DG 70.8 91.6 57.8 68.5 88.5 55.9 61.7 79.7 50.3

TSUDA 69.9±0.0 91.5±0.2 56.5±0.1 67.9±0.0 88.9±0.2 54.9±0.1 61.5±0.0 80.5±0.2 49.7±0.1

WSDAL 76.6±0.0 85.8±0.1 69.1±0.1 73.4±0.0 82.3±0.2 66.3±0.1 63.8±0.1 71.5±0.2 57.6±0.0

DLA34

DG 67.5 95.3 52.3 65.9 93.0 51.1 60.4 85.2 46.8

TSUDA 70.9±0.2 91.7±0.3 57.8±0.4 68.8±0.1 89.0±0.4 56.1±0.3 61.8±0.1 80.0±0.5 50.4±0.2

WSDAL 78.0±0.1 88.7±0.2 69.6±0.0 74.9±0.1 85.2±0.2 66.8±0.0 65.2±0.3 74.1±0.4 58.2±0.2

DT ResNet-18 86.0 92.8 80.2 83.3 89.8 77.7 75.2 81.1 70.1

DT ConvNext 85.5 93.0 79.1 83.0 90.3 76.8 75.4 82.0 69.7

DT ERFNet 85.4 91.6 80.0 82.8 88.7 77.5 74.9 80.3 70.1

DT DLA34 86.0 93.6 79.6 83.6 90.9 77.4 76.1 82.8 70.5

domain adaptation from Fig. 8. Furthermore, Fig. 9 shows

the performance of WSDAL by eliminating false positive

predictions using only the weak supervision signals com-

pared to the baseline. However, we also observe the lim-

itation of utilizing weak labels due to the missing regres-

sion regularization during the adaptation process, which is

shown in Fig. 10. If there is a shift in the annotation policy,

for instance, the width of the ego lane shifts between the

dataset, simple NoL loss does not show advantages during

the adaptation. During the experiment, we notice that in the

target dataset CurveLanes, sometimes the annotation pol-

icy is not consistent concerning the lanes in the ramps and

curbstone, as shown in Fig. 11. An essential prerequisite

for the WSDAL is that the label policy should be consistent

throughout the target dataset. Otherwise, the performance

of the proposed WSDAL may be negatively affected.



Input DG TSUDA WSDAL (Ours)

Figure 6. Qualitative results on the task CurveLanes → TuSimple from CLRNet with ResNet-18 backbone. We show the true positive

predictions in green, false positive predictions in red, and ground truth in blue.



Input DG TSUDA WSDAL (Ours)

Figure 7. Qualitative results on the task CurveLanes → TuSimple from CLRNet with ResNet-18 backbone. We show the true positive

predictions in green, false positive predictions in red, and ground truth in blue.



Input DG TSUDA WSDAL (Ours)

Figure 8. Qualitative results on the task CULane → CurveLanes from CLRNet with ResNet-18 backbone. After WSDAL, the models are

outputting more predictions compared to the baseline. We show the true positive predictions in green, false positive predictions in red, and

ground truth in blue.



Input DG TSUDA WSDAL (Ours)

Figure 9. Qualitative results on the task CULane → CurveLanes from CLRNet with ResNet-18 backbone. We demonstrate the ability to

eliminate the false positive predictions driven by WSDAL. We show the true positive predictions in green, false positive predictions in red,

and ground truth in blue.



Input DG TSUDA WSDAL (Ours)

Figure 10. Qualitative results on the task CULane → CurveLanes from CLRNet with ResNet-18 backbone. These examples demonstrate

the limitations of weakly supervised domain adaptation due to the missing regression constraint during training. We show the true positive

predictions in green, false positive predictions in red, and ground truth in blue.



Input DG TSUDA WSDAL (Ours)

Figure 11. Qualitative results on the task CULane → CurveLanes. We observe that there are also inconsistent annotation policies that may

affect the NoL-based adaptation process. We show the true positive predictions in green, false positive predictions in red, and ground truth

in blue.


