
VideoSAGE: Video Summarization with Graph Representation Learning

Jose M. Rojas Chaves
Intel Corporation

jose.rojas.chaves@intel.com

Subarna Tripathi
Intel Labs

subarna.tripathi@intel.com

Abstract

We propose a graph-based representation learning
framework for video summarization. First, we convert an
input video to a graph where nodes correspond to each of
the video frames. Then, we impose sparsity on the graph
by connecting only those pairs of nodes that are within a
specified temporal distance. We then formulate the video
summarization task as a binary node classification problem,
precisely classifying video frames whether they should be-
long to the output summary video. A graph constructed this
way aims to capture long-range interactions among video
frames, and the sparsity ensures the model trains without
hitting the memory and compute bottleneck. Experiments
on two datasets(SumMe and TVSum) demonstrate the effec-
tiveness of the proposed nimble model compared to exist-
ing state-of-the-art summarization approaches while being
one order of magnitude more efficient in compute time and
memory.

1. Introduction
The landscape of video creation and consumption has been
drastically changed in the last decade thanks to the afford-
able video capturing devices and the wide spread use of the
Internet. Recent years have seen significant surge of social
networks and video streaming, causing prevalence of user-
created videos. Quick video browsing among massive video
contents thus become essential. Video summarization is a
way to facilitate quick grasping of video content by squeez-
ing the most salient content from a long video to a short
one.

To retain the most informative information of a video
to its summarized version, we propose a framework lever-
aging short-range and long-range correlation among video
segments. Our framework takes an input video and inter-
nally converts it to a graph. We impose sparsity constraints
on the graph, so the internal representations remains man-
ageable in a standard compute system, as well as retain its
power of expressivity while learning from short-range and
long-range correlations among different temporal segments.

To this end, we propose VideoSAGE, where each of the
video frames become nodes of a graph and a subset of node
pairs are connected to each other. We then learn parameters
for graph convolutional networks on the internal graph rep-
resentations and optimize our model for binary node clas-
sification signifying informative vs non-informative nodes
for generating the video summary. Figure 1 demonstrates
the framework pictorially. Please note that there is no
ground truth graph. We can only compare our summariza-
tion model based on the end performance measured by sum-
marization and correlation metrics, and can not objectively
assess the graph construction otherwise.

Long input video

+

+

+ - - - - +
+ + +

+

Summarized output video

Graph construction

Binary node
classification

Figure 1. VideoSAGE constructs a graph from the input video,
where each node corresponds to a video frame. Only those pairs
of nodes are connected to each other who are within a temporal
distance. Video summarization is thus formulated as a binary node
classification problem for that graph. Our constructed graph has
forward, backward and bidirectional edges. For visual clarity, we
only show bi-directional edges in this figure. From top row to
bottom row, the figure shows how regular input video is converted
to a sparse graph, followed by binary node classification on nodes
leading to summarized output video.

We perform experiments on two popular summarization
datasets, namely TVSum and SumMe, and show the effi-
cacy of our proposed method by the objective scores such
as correlation metrics and F-1 scores. We also demonstrate

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2527

the qualitative results of the generated summarized videos.
Most importantly, comparing with the existing state-of-the-
art methods, VideoSAGE provides an order of magnitude
faster inference time, smaller model size; 3× savings in
peak memory footprint.

Our implementation is based on an open sourced library
and the source code of our method is available on GitHub:
https://github.com/IntelLabs/GraVi-T.

The novelty of our approach is in formulating the video
summarization problem as a node classification on a graph.
We construct the graph such that it enables interactions
only between relevant nodes over time. The graph remains
sparse enough such that the long-range context aggregation
can be accommodated within a comparatively smaller mem-
ory and computation budget.

2. Related Work
Video summarization
Various machine-learning techniques have been employed
for video summarization. These approaches can be
categorized into two main groups: supervised [1, 3, 5, 7–
9, 12, 21, 31, 32, 34, 35] and unsupervised [2, 10, 32, 33]
methods. We primarily focus on the supervised learning
methods in this section.
Numerous models in supervised learning have utilized
annotated video datasets such as TVSum [25] and
SumMe [14] for video summarization. One notable
example of these models is A2Summ [7], which proposed
a multimodal transformer-based model that aligns and
attends multiple inputs (e.g., video, text, and sound) to
select their most important parts. PGL-SUM [1] combined
global and local multi-head attention mechanisms with
a regressor network to select keyframes. CLIP-it [12]
used a language-guided multi-head attention mechanism
in addition to a multimodal transformer to generate sum-
maries based on natural language queries. iPTNet [9]
proposed an importance propagation based Teaching Net-
work consisting of two separate collaborative modules that
conducted video summarization and moment localization.
In general, many other supervised learning methods rely
also on self-attention mechanisms [3, 5, 8, 34] or LSTM
networks [8, 31, 34] for frame importance prediction. Most
state-of-the-art (SOTA) methods either use multimodality
or a combination of multiple neural network techniques,
making these methods relatively more complex. On the
other hand, our proposed method achieves comparable
results with a only fraction of memory and compute cost.

Graph-based video representation

While transformer models have recently took center
stage in the research field of video understanding, in recent
times, graph neural networks operated on explicit graph

based representation are emerging for their complementary
traits, including long-form reasoning thanks to the inher-
ent low memory and compute requirements. Applications
of specialized GNN based models in video understanding
includes:visual relationship forecasting [13], dialog mod-
elling [4], video retrieval [28], emotion recognition [24],
action detection [30], video summarization [21], and oth-
ers [15, 16, 19, 22].

Only a few methods utilize Graph Neural Networks
(GNNs) for video summarization. RR-STG [35] built spa-
tial and temporal graphs over which it performed relational
reasoning with graph convolutional networks (GCNs) and
extracted spatial-temporal representations for importance
score prediction and key shot selection. RSGN [32] con-
tained a summary generator and a video reconstructor. The
first layer of the generator is a bidirectional LSTM that en-
codes the frame sequence in each shot, and the second layer
is a graph model to explore the dependencies among differ-
ent shots. And SumGraph [21]proposed a recursive graph
modeling network consisting of 3 GCN layers plus another
GCN working as a summarization layer. Unfortunately, no
source code was found for any of these graph-based meth-
ods for results replication.
With only some exceptions [5, 21, 31, 32], most of these
methods concentrated on keyframe predictions (including
our proposal), and simply relied on using the knapsack al-
gorithm, over predefined segments built with kernel tempo-
ral segmentation (KTS) and its respective predicted impor-
tance scores, for creating the final video summaries. The
above context will be relevant while discussing the evalua-
tion methods in section 4.2.

Our approach VideoSAGE is distinguished from the lit-
erature in the way of formulating the video summarization
problem as a node classification on a graph constructed
from the input videos. Our constructed graphs are sparse
enough such that the long-range context aggregation can be
accommodated within a comparatively smaller memory and
computation budget, while capable of modeling short-range
and long-range context aggregation.

3. Methodology
Figure 1 illustrates how VideoSAGE constructs a graph
from an input video where each node corresponds to a frame
of the video. This graph is able to reason over long temporal
contexts over all nodes inspite of being not fully-connected.
This is an important design choice to reduce memory and
computation overheads [17, 18]. The edges in the graph are
only between relevant nodes needed for message passing,
leading to a sparse graph that can be accommodated within
a small memory and computation budget.

We cast the video summarization problem as a node clas-
sification problem. To that end, we train a lightweight GNN
to perform binary node classification on this graph. Inspired

2528

Figure 2. An illustration of utilized Bi-directional (a.k.a. Bi-dir) GNN model for video summarization. Here, we have three separate GNN
modules for the forward, backward, and undirected graph, respectively. Each module has three layers where the weight of the second layer
is shared by all three graph modules. The second layer is placed inside a solid-lined box to indicate the weight sharing while for the first
and the third layer we use dotted-lines. E-CONV and S-CONV are shorthand for EDGECONV and SAGE-CONV, respectively.

by [18], our model utilizes three separate GNN modules for
the forward, backward, and undirected graph, respectively.
Each module has three layers where the weight of the sec-
ond layer is shared across all the above three modules.

3.1. Notations

Let G = (V,E) be a graph with the node set V and edge set
E. For any v ∈ V , we define Nv to be the set of neighbors
of v in G. We assume the graph has self-loops, i.e., v ∈ Nv .
Let X denote the set of given node features {xv}v∈V where
xv ∈ Rd is the feature vector associated with the node v.
We can now define a k-layer GNN as a set of functions F =
{fi}i∈[k] for i ≥ 1 where each fi : V → Rm (m will
depend on layer index i). All fi is parameterized by a set
of learnable parameters. Furthermore, Xi

V = {xv}v∈V is
the set of features at layer i where xv = fi(v). Here, we
assume that fi has access to the graph G and the feature set
from the last layer Xi−1

V .
• SAGE-CONV aggregation: This aggregation[6] is one of

the widely used GCN type and has a computationally ef-
ficient form. Given a d-dimensional feature set Xi−1

V , the
function fi : V → Rm is defined for i ≥ 1 as follows:

f(v) = σ
(∑

w∈Nv

Mixw

)

where xw ∈ Xi−1
V , Mi ∈ Rm×d is a learnable linear

transformation, and σ : R → R is a non-linear activation
function applied point-wise.

• EDGE-CONV aggregation: EDGE-CONV [29] mod-
els global and local-structures by applying channel-wise
symmetric aggregation operations on the edge features as-
sociated with all the outgoing edges of each node. The

aggregation function fi : V → Rm can be defined as:

fi(v) = σ
(∑

w∈Nv

gi
(
xv ◦ xw

))
where ◦ denotes concatenation and gi : R2d → Rm is a
learnable transformation. Usually, gi is implemented by
Multilayer perceptrons (MLPs). The number of parame-
ters for EDGE-CONV is larger than SAGE-CONV. This
gives the EDGE-CONV layer more expressive power at
a cost of higher complexity. For our model, we set gi to
be an MLP with two layers of linear transformation and a
non-linearity.

3.2. Video as a graph

We represent a video as a graph that is suitable for the task
of summarization. In our implementation, the entire video
is represented by a single graph i.e.if the video has n frames
in it, the graph will have n nodes. We construct one graph
for each video in the set.

The node set of G = (V,E) is V = [n], and for any
(i, j) ∈ [n] × [n], we have (i, j) ∈ E if the following
two condition is satisfied: |Time(i)-Time(j)| ≤ T where
Time is the time-stamp of each video frame and T is a
hyperparameter for the maximum time difference between
any connected node pairs. In other words, we connect
two nodes (video frames) if they are temporally near by.
Thus, the interactions between different video frames be-
yond just consecutive frames can be be modeled. To pose
the video summarization task as a node classification prob-
lem, we also need to specify the feature vectors for each
node v ∈ V . As done in several other SOTA methods such
as [1, 14], we also use GoogLeNet [26] as the visual fea-
tures for each video frame. By notation, a feature vector
of node v is defined to be xv = [vvisual] where vvisual is the

2529

GoogLeNet feature of the video frame v. Finally, we can
write G = (V,E,X) where X is the set of the node fea-
tures.

3.3. Video summarization as a node classification
task

In the previous sub-section, we have described our graph
construction procedure that converts a video into a graph
G = (V,E,X) where each node has its own visual feature
vector. During the training process, we have access to the
ground-truth labels of all video frames indicating whether
they belong to the summarized output or not. Therefore,
the task of video summarization can be naturally posed as a
binary node classification problem in the above mentioned
graph G, whether a node belongs to the output summary or
not. Specifically, we train a three-layer GNN for this clas-
sification task (See Figure 2). The first layer in the network
uses EDGE-CONV aggregation to learn pair-wise interac-
tions between the nodes. For the last two layers, we observe
that using SAGE-CONV aggregation provides better perfor-
mance than EDGE-CONV, possibly due to EDGE-CONV’s
tendency to overfit.

Using the criterion: |Time(i) − Time(j)| ≤ T for con-
necting the nodes, the resultant graph renders undirected.
In order to incorporate additional temporal ordering, we ex-
plicitly incorporate temporal direction as specified in [18].
The undirected GNN is augmented with two other parallel
networks; one for going forward in time and another for go-
ing backward in time.

Specifically, in addition to the undirected graph, we cre-
ate a forward graph where we connect (i, j) if and only if
0 ≥ Time(i) − Time(j) ≥ −T . Similarly, (i, j) is con-
nected in a backward graph if and only if 0 ≤ Time(i) −
Time(j) ≤ T . This gives us three separate graphs where
each of the graphs can model different temporal relation-
ships between the nodes. Additionally, the weights of the
second layer of each graph is shared across the three graphs.
This weight sharing technique can enforce the temporal
consistencies among the different information modeled by
the three graphs as well as reduce the number of parame-
ters.

4. Experiments and Evaluation
4.1. Experimental set up

Datasets
We use two bench-marking datasets to evaluate the
performance of our proposed VideoSAGE model. A
copy of these datasets are downloaded from PGL-SUM’s
repository1. The SumMe [14] dataset is composed of 25
raw videos (1 to 6.5 minutes duration) covering holidays,
events, and sports. And the TVSum [25] dataset consists of

1https://github.com/e-apostolidis/PGL-SUM/tree/master/data

50 YouTube videos (2 to 10 minutes duration) covering 10
categories selected from the TRECVid Multimedia Event
Detection dataset [23]. Both datasets were originally
evaluated by 15-20 different human users. And video
summaries were built from each user evaluation by using
the knapsack algorithm. Additionally, every video was
down-sampled to 2 fps and provided with sampled-level
importance scores (averaged from all users’ inputs) and
features (Size D = 1024) extracted from GooLeNet’s [27]
Pool 5 layer.

Experiments
To prepare the data inputs for our experiments, we create
graph representations from each video in the datasets
where each node corresponds to a frame within a temporal
window of that video. This is done using GraVi-T2 so
the graph can reason over long temporal contexts for all
nodes without being fully connected. Edges in the graphs
are formed between temporally nearby nodes, up to 10
adjacent (backward and forward) frames for TVSum and
20 frames for SumMe, creating a sparse graph.
Each dataset was arranged into 5 splits following PGL-
SUM’s [1] approach. For each split, 20% of the videos
were randomly selected for the validation set with the
remaining 80% being used for training. Then, we train a
lightweight GNN to perform binary node classification on
each video graph, running 40 (SumMe) or 50 (TVSum)
epochs over one split, the final model for one split is taken
from the epoch with the lowest validation loss. Finally,
evaluation metrics are gathered by running that model onto
its validation set. This process is repeated over each split
and the final evaluation results are the averages from all the
splits.
To find a good set of hyper-parameters we follow an itera-
tive process and utilize on RayTune’s [11] grid search tool
for exploration. The focus of the process is on finding stable
learning curves and maximizing the Kendall’s τ correlation
result. The selected learning rate and weight decay values
for SumMe were 0.001 and 0.003 respectively. For TVSum
they were 0.002 and 0.0001 respectively. Batch size and
dropout rate for both cases were 1 and 0.5 respectively.

4.2. Evaluation Metrics

Most existing SOTA methods have used the F1-Score and
sometimes correlation metrics as well, to evaluate their
models. The F1-Score is calculated as the maximum
(SumMe) or the average (TVSum) value by comparing the
predicted summary against each provided user summary
from a given video, and then averaged from all videos in
the validation set (as in [1, 7]). As pointed out in section
2, in most cases these summaries are created by running
the Knapsack algorithm over predefined segments obtained

2https://github.com/IntelLabs/GraVi-T

2530

Table 1. Comparison of results from uniformly randomly gen-
erated importance scores and results from perfect predictions
(ground truth) using three evaluation methods on TVSum [25]:
F1-Score, Otani et al [20], and our proposed method. * denotes
reproduced results.

Predictions F1-Score Otani et al [20]* Proposed Method

F1 (↑) τ (↑) ρ(↑) τ (↑) ρ(↑)

Random 54.37 0.00 0.00 −0.006 −0.009
Perfect 62.87 0.37 0.46 1.000 1.000

through KTS. However, as stated by Otani et al. [20], the
F1-Score result is mainly dictated by the video segmenta-
tion and its segment lengths, resulting into the contribution
of the importance scores being completely ignored by the
benchmark tests. This means that many SOTA works have
been evaluating and comparing their models with a method
that give more weight to that step they all have in common
(Knapsack) and that can even ignore the piece they focus
most and try to differentiate for the model.
Otani et al [20] proposes Spearman’s ρ and Kendall’s τ as
correlation coefficients to evaluate models on how close the
predicted scores are to human annotated scores. The cor-
relation score for one video is then obtained by averaging
the results over each individual annotations (20 user anno-
tations on TVSum) and then the final score is obtained by
averaging over the validation set.
An argument provided by Otani et al [20] against using
the F1-Score method is that even using uniformly randomly
generated predictions would result in a relatively high score
(54.37%), comparable to other models at the time. On
the other hand, calculating the respective correlation coeffi-
cients with this method would result in a near zero value,
as one would have expected. See Table 1. However, if
the model were perfect enough to predict its ground truth,
Otani’s method won’t result in near perfect result (∼1.0).
This is because the result is the average over all user anno-
tations, and it is impossible for the model to predict all of
them at the same time. These annotations are subjective and
they differ from user to user. In fact, the maximum value a
model could technically achieve on TVSum is (62.87%).
We agree with Otani et al. about the F1-Score and provide
its result values here only for reference. We choose a more
traditional way of evaluating our model, that is comparing
against the ground truth importance scores. Which we con-
sider as a fairer approach since it was what the model was
trained to predict. A perfect prediction with this method
would give a perfect result (1.0), as seen in Table 1. Provid-
ing a complete [-1,1] range for evaluation and comparison.

4.3. Results

We compare the proposed method VideoSAGE with the
previous SOTA methods on SumMe [14] and TVSum [25]

Table 2. Comparison with SOTA methods on the SumMe [14]
and TVSum [25] datasets. We include the reproduced results of
methods using GoogLeNet [26] features for a fair comparison. *
denotes reproduced results.

Method SumMe [14] TVSum [25]

τ (↑) ρ(↑) F1(↑) τ (↑) ρ(↑) F1(↑)

Random [20] 0.00 0.00 41.0 0.00 0.00 57.0

A2Summ [7]* 0.09 0.12 55.0 0.26 0.38 63.4
PGL-Sum [1]* 0.09 0.12 55.6 0.27 0.39 61.0
VideoSAGE (Ours) 0.12 0.16 46.0 0.30 0.42 58.2

datasets as shown in Table 2. A2Summ [7] and PGL-
Sum [1] are two of the best methods bench-marked on the
above two datasets. For a fair comparison, we have repli-
cated results from these two models to calculate correlation
coefficients by following the method proposed in section
4.2.

Results from table 2 show that even when A2Summ [7]
and PGL-Sum [1] have better F1-Scores, it is VideoSAGE
which predicts the importance scores better. VideoSAGE
beats both the above models, on both datasets, on their
Kendall’s τ and Spearman’s ρ correlation coefficients by 3-
4%, showing its superiority. In the following section (4.4),
we will exemplify why having better F1-Score does not al-
ways mean better prediction or better model.

4.4. Qualitative Results

Two videos were selected to showcase the qualitative re-
sults: Video 16 from TVSum [25] and video 1 from
SumMe [14]. Video 16 was selected as its individual cor-
relation results (Table 3) where near to the general average
(Table 2) on VideoSAGE. On the other hand, Video 1 is
an outstanding case for VideoSAGE, showing significantly
higher performance on its respective correlation metrics.
Following the same reasoning as in section 4.2, we are
comparing PGL-SUM [1] and VideoSAGE against ground
truth scores. In the case of the predicted summaries, we
are comparing against a (GT) summary, generated from the
ground truth scores, as opposed to comparing against all
user provided summaries. Correlation results for Video 16
in Table 3 show how PGL-SUM [1] is slightly better than
VideoSAGE. Such results can be qualitatively validated on
Figure 5 in which PGL-SUM [1] predicts the GT summary
better. In this particular case, better correlation metrics also
produced better F1-Score, however, that’s not always the
case.
Video 1 on Table 3 shows how PGL-SUM [1] have higher
F1-Score than VideoSAGE even though their correla-
tion results are notably lower than those obtained by
VideoSAGE. We see from Figure 4 how PGL-SUM [1]
clearly fails to predict the importance scores on Video 1 and
how the predicted summary does not resemble that of the
ground truth scores. Yet, its F1-Score gets benefited from

2531

averaging over multiple user summaries.

Figure 3. TVSum/Video 16: Snapshots comparing shots from
VideoSAGE (ours) predicted summary (Top) and a GT summary
build from ground truth scores (Bottom).

Figure 4. SumMe/Video 1: Comparison of importance scores
and selected summary segments for VideoSAGE (ours), a ground
truth, and PGL-SUM [1].

Figure 5. TVSum/Video 16: Comparison of importance scores
and selected summary segments for VideoSAGE (ours), a ground
truth, and PGL-SUM [1].

4.5. Parameters Setup

As explained in the Experiments section of Section 4.1 we
utilizeRayTune’s [11] grid search to find a proper set of

Table 3. Comparing results for PGL-SUM [1] and VideoSAGE
on two specific videos from SumMe and TVSum, showing its
F1-Score and its Kendall’s τ and Spearman’s ρ correlation coeffi-
cients. * denotes reproduced results.

Model SumMe/video 1 TVSum/video 16

F1 τ ρ F1 τ ρ

PGL-SUM* 69.69 0.08 0.10 68.54 0.32 0.47
VideoSAGE (ours) 64.43 0.47 0.60 62.16 0.31 0.46

Figure 6. Kendall’s τ correlation results on TVSum [25] for dif-
ferent choices of learning rate and number of graph edges (T) per
node.

hyper-parameters. Figure 6 shows the effect of different
choices of the learning rate (lr) and different T distance val-
ues for the number of T forward and T backward connec-
tions per node in the graph representation on the Kendall’s
τ value for videos from TVSum [25] . These results are the
average of 10 repeated experiments per split, totalling to 50
experiment runs per each combination of parameters.
The graph representation with best results was achieved for
T value of 5. And the best learning rate is between lr=0.02
and lr=0.002. Bigger learning rates than that would result in
a very unstable training. In fact, the standard deviation for
T=5 and lr=0.02 was 0.061 while the standard deviation for
T=5 and lr=0.002 was 0.051. Kendall’s τ in those two con-
figurations is virtually the same, so the learning rate with
more stable results was chosen over the other.

4.6. Profiling

All experiments including PGL-SUM [1], A2Summ [7]
and VideoSAGE were run on an Intel(R) Core (TM) i9-
12900k (3.2 GHz) with 32 GB of memory RAM. The
evaluation experiments were run single threaded (for fair
comparison) and profiled with PyTorch Profiler. Mem-
ory allocation details were extracted by using profiler’s ex-
port memory timeline command. Results on table 4 are the
averages of profiling the inference step during the respec-
tive normal evaluation runs of each models.
In Table 4, we can see how VideoSAGE can do inference
an order of magnitude faster than the SOTA while requiring

2532

Table 4. Comparing profiling results during inference on
A2Summ [7], PGL-SUM [1] and VideoSAGE. * denotes repro-
duced results.

Model Average Parameters’ Max Memory
Inference Time Memory Allocated

(ms) (MB) (MB)

PGL-SUM* 113.79 36.02 55.17
A2Summ* 120.59 9.60 50.56
VideoSAGE (ours) 23.55 3.52 19.27

less than 2/5th of the memory allocated by PGL-SUM [1]
or A2Summ [7].

5. Conclusions
We formulate the video summarization task as a binary
node classification problem on graphs constructed from
input videos. We first convert an input video to a graph
where each node corresponds to a video frame and nodes
within a specified temporal distance are connected to
each other. We show that this structured sparsity leads to
comparable or improved results on video summarization
datasets while capable of performing one order of magni-
tude faster inference with only a fraction of the memory
usage comparing with existing methods.

Acknowledgement We thank Kyle Min, who is the devel-
oper of GraVi-T, for his valuable feedback and comments.

References
[1] Evlampios Apostolidis, Georgios Balaouras, Vasileios

Mezaris, and Ioannis Patras. Combining global and local at-
tention with positional encoding for video summarization. In
2021 IEEE International Symposium on Multimedia (ISM),
pages 226–234, 2021. 2, 3, 4, 5, 6, 7

[2] Evlampios Apostolidis, Georgios Balaouras, Vasileios
Mezaris, and Ioannis Patras. Summarizing videos using con-
centrated attention and considering the uniqueness and diver-
sity of the video frames. In Proceedings of the 2022 Interna-
tional Conference on Multimedia Retrieval, page 407–415,
New York, NY, USA, 2022. Association for Computing Ma-
chinery. 2

[3] Jiri Fajtl, Hajar Sadeghi Sokeh, Vasileios Argyriou, Dorothy
Monekosso, and Paolo Remagnino. Summarizing videos
with attention. In Computer Vision – ACCV 2018 Workshops,
pages 39–54, Cham, 2019. Springer International Publish-
ing. 2

[4] Shijie Geng, Peng Gao, Chiori Hori, Jonathan Le Roux, and
Anoop Cherian. Spatio-temporal scene graphs for video di-
alog. arXiv e-prints, pages arXiv–2007, 2020. 2

[5] Junaid Ahmed Ghauri, Sherzod Hakimov, and Ralph Ew-
erth. Supervised video summarization via multiple feature
sets with parallel attention, 2021. 2

[6] William L. Hamilton, Rex Ying, and Jure Leskovec. Induc-
tive representation learning on large graphs, 2018. 3

[7] Bo He, Jun Wang, Jielin Qiu, Trung Bui, Abhinav Shrivas-
tava, and Zhaowen Wang. Align and attend: Multimodal
summarization with dual contrastive losses. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2023. 2, 4, 5, 6, 7

[8] Zhong Ji, Kailin Xiong, Yanwei Pang, and Xuelong Li.
Video summarization with attention-based encoder-decoder
networks, 2018. 2

[9] Hao Jiang and Yadong Mu. Joint video summarization
and moment localization by cross-task sample transfer. In
2022 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 16367–16377, 2022. 2

[10] Yunjae Jung, Donghyeon Cho, Dahun Kim, Sanghyun Woo,
and In-So Kweon. Discriminative feature learning for un-
supervised video summarization. ArXiv, abs/1811.09791,
2018. 2

[11] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz,
Joseph E Gonzalez, and Ion Stoica. Tune: A research plat-
form for distributed model selection and training. arXiv
preprint arXiv:1807.05118, 2018. 4, 6

[12] T. Darrell. M. Narasimhan, A. Rohrbach. Clip-it! language-
guided video summarization. In NeurIPS, 2021. 2

[13] Li Mi, Yangjun Ou, and Zhenzhong Chen. Visual relation-
ship forecasting in videos. arXiv preprint arXiv:2107.01181,
2021. 2

[14] Hayko Riemenschneider & Luc Van Gool Michael Gygli,
Helmut Grabner. Creating summaries from user videos. In
European Conference on Computer Vision(ECCV), 2014. 2,
3, 4, 5

[15] Kyle Min. Intel labs at ego4d challenge 2022: A bet-
ter baseline for audio-visual diarization. arXiv preprint
arXiv:2210.07764, 2022. 2

[16] Kyle Min. Sthg: Spatial-temporal heterogeneous graph
learning for advanced audio-visual diarization. arXiv
preprint arXiv:2306.10608, 2023. 2

[17] Kyle Min, Sourya Roy, Subarna Tripathi, Tanaya Guha, and
Somdeb Majumdar. Intel labs at activitynet challenge 2022:
Spell for long-term active speaker detection. The ActivityNet
Large-Scale Activity Recognition Challenge, 2022. https:
//research.google.com/ava/2022/S2_SPELL_
ActivityNet_Challenge_2022.pdf. 2

[18] Kyle Min, Sourya Roy, Subarna Tripathi, Tanaya Guha, and
Somdeb Majumdar. Learning long-term spatial-temporal
graphs for active speaker detection. In European Conference
on Computer Vision, pages 371–387. Springer, 2022. 2, 3, 4

[19] Tushar Nagarajan, Yanghao Li, Christoph Feichtenhofer, and
Kristen Grauman. Ego-topo: Environment affordances from
egocentric video. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
163–172, 2020. 2

[20] Mayu Otani, Yuta Nakashima, Esa Rahtu, and Janne
Heikkilä. Rethinking the evaluation of video summaries. In
2019 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 7588–7596, 2019. 5

[21] Jungin Park, Jiyoung Lee, Ig-Jae Kim, and Kwanghoon
Sohn. Sumgraph: Video summarization via recursive graph
modeling. ArXiv, abs/2007.08809, 2020. 2

2533

[22] Mandela Patrick, Yuki M Asano, Bernie Huang, Ishan Misra,
Florian Metze, Joao Henriques, and Andrea Vedaldi. Space-
time crop & attend: Improving cross-modal video represen-
tation learning. arXiv preprint arXiv:2103.10211, 2021. 2

[23] Danila Potapov, Matthijs Douze, Zaid Harchaoui, and
Cordelia Schmid. Category-specific video summarization.
In ECCV 2014 - European Conference on Computer Vision,
2014. 4

[24] Amir Shirian, Subarna Tripathi, and Tanaya Guha. Learn-
able graph inception network for emotion recognition. IEEE
Transactions on Multimedia, 2020. 2

[25] Yale Song, Jordi Vallmitjana, Amanda Stent, and Alejan-
dro Jaimes. Tvsum: Summarizing web videos using titles.
In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5179–5187, 2015. 2, 4, 5, 6

[26] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In 2015 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 1–9, 2015. 3,
5

[27] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1–9, 2015. 4

[28] Reuben Tan, Huijuan Xu, Kate Saenko, and Bryan A Plum-
mer. Logan: Latent graph co-attention network for weakly-
supervised video moment retrieval. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 2083–2092, 2021. 2

[29] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,
Michael M. Bronstein, and Justin M. Solomon. Dynamic
graph cnn for learning on point clouds. ACM Trans. Graph.,
38(5), 2019. 3

[30] Yubo Zhang, Pavel Tokmakov, Martial Hebert, and Cordelia
Schmid. A structured model for action detection. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9975–9984, 2019. 2

[31] Bin Zhao, Xuelong Li, and Xiaoqiang Lu. Hsa-rnn: Hier-
archical structure-adaptive rnn for video summarization. In
2018 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 7405–7414, 2018. 2

[32] Bin Zhao, Haopeng Li, Xiaoqiang Lu, and Xuelong Li. Re-
constructive sequence-graph network for video summariza-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, page 1–1, 2021. 2

[33] Kaiyang Zhou, Yu Qiao, and Tao Xiang. Deep reinforce-
ment learning for unsupervised video summarization with
diversity-representativeness reward, 2018. 2

[34] Wencheng Zhu, Jiwen Lu, Jiahao Li, and Jie Zhou. Dsnet: A
flexible detect-to-summarize network for video summariza-
tion. IEEE Transactions on Image Processing, 30:948–962,
2021. 2

[35] Wencheng Zhu, Yucheng Han, Jiwen Lu, and Jie Zhou. Rela-
tional reasoning over spatial-temporal graphs for video sum-
marization. IEEE Transactions on Image Processing, 31:
3017–3031, 2022. 2

2534

