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Abstract

We propose SAM-Road, an adaptation of the Segment
Anything Model (SAM) [27] for extracting large-scale, vec-
torized road network graphs from satellite imagery. To
predict graph geometry, we formulate it as a dense se-
mantic segmentation task, leveraging the inherent strengths
of SAM. The image encoder of SAM is fine-tuned to pro-
duce probability masks for roads and intersections, from
which the graph vertices are extracted via simple non-
maximum suppression. To predict graph topology, we de-
signed a lightweight transformer-based graph neural net-
work, which leverages the SAM image embeddings to esti-
mate the edge existence probabilities between vertices. Our
approach directly predicts the graph vertices and edges
for large regions without expensive and complex post-
processing heuristics and is capable of building complete
road network graphs spanning multiple square kilometers
in a matter of seconds. With its simple, straightforward,
and minimalist design, SAM-Road achieves comparable ac-
curacy with the state-of-the-art method RNGDet++[57],
while being 40 times faster on the City-scale dataset. We
thus demonstrate the power of a foundational vision model
when applied to a graph learning task. The code is avail-
able at https://github.com/htcr/sam_road.

1. Introduction
Road network graphs are spatial representations of the
structure and layout of road networks. They are typically
stored in a vectorized format [20], consisting of vertices
and edges. The vertices may represent intersections, and
edges could stand for road segments. Large-scale road net-
work graphs are vital for various applications: they enable
navigation systems like Google Maps to determine opti-
mal routes, assist in path planning for autonomous vehicles
[18, 63], and help city planners in traffic analysis and op-

Figure 1. SAM-Road effectively predicts accurate road network
graphs for dense urban regions, including roads with complex and
irregular shapes, bridges, and multi-lane freeways. The corre-
sponding segmentation masks are sharp and clear.

timization [4], to name a few. These applications call for
accurate and efficient methods to automatically create such
graphs, as they require scaling to huge regions and even
near-continuous updating [10], which are astoundingly ex-
pensive when manually done. Therefore, systems for auto-
matically generating such maps have tremendous applica-
tion value and are under active research.

Recently, the rapid growth of foundational models [2,
44, 45, 50] showcased their impressive capabilities. These
models, which leverage flexible, high-capacity, and scal-
able architectures such as Transformers [51], are pre-trained
through effective self-supervision [22] methods and un-
precedentedly large datasets. This endows them with robust
semantic reasoning and generalization. Segment Anything
Model (SAM) [27] is such a foundational vision model.
Trained with millions of images and billions of masks, it
demonstrates unparalleled semantic segmentation capabil-
ities. This raises intriguing questions: How can SAM be

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2556



applied to the prediction of road network graphs from satel-
lite images, and how good can it be?

In this work, we answer these questions by introducing
the SAM-Road model, which adapts the SAM for gener-
ating large-scale, vectorized road network graphs. Incorpo-
rating domain knowledge from previous research in satellite
mapping, we divide the problem into two main components:
geometry prediction and topology reasoning.

We model graph geometry with a set of 2D vertices that,
when densely sampled, accurately reflect the graph’s over-
all shape. The SAM-Road model first predicts dense seg-
mentation masks to indicate the likelihood of road elements
such as lane segments and intersections, then it employs
simple non-maximum suppression to convert the pixels into
vertices of the desired density. Leveraging the inherent se-
mantic segmentation capabilities of SAM, this method can
effectively capture highly complex shapes (see Figure 1),
which are common in dense urban areas.

A notable challenge for segmentation-based mapping ap-
proaches is the difficulty of inferring topology from dense
imagery. This branch of methods often relied on slow, com-
plex and error-prone post-processing heuristics. Inspired by
recent advances in graph learning [14, 48], we developed a
transformer-based graph neural network as the second stage
of our model. This network focuses on predicting the local
subgraph around each vertex and determining connectivity
with nearby vertices to establish the overall graph topology.
It utilizes relative vertex positions and image embeddings
from the SAM backbone to guide its predictions.

Despite its straightforward design, SAM-Road achieves
accuracy comparable to more complex state-of-the-art sys-
tems on two widely recognized satellite mapping datasets:
City-scale [23] and SpaceNet [17]. Moreover, for large spa-
tial areas spanning multi-square kilometers, its architecture
supports high degrees of parallelism and rapid GPU infer-
ence, achieving speeds up to 80 times faster than existing
methods. We hope that this work will inspire further explo-
ration of foundational vision models in remote sensing and
graph learning tasks.

2. Related Works

2.1. SAM and Its Applications

In 2023, Segment Anything Model [27] was proposed as
a foundational model for image segmentation, showcas-
ing impressive zero-shot and generalization capabilities.
Through fine-tuning or direct adoption, SAM has been used
in object detection [34], image inpainting [59], segmenta-
tion of medical images [26, 37, 53, 61], and remote sensing
tasks [11]. Existing adaptations of SAM in remote sensing
have focused more on simple segmentation and have not yet
been applied to the production of road network graphs.

2.2. Road Network Graph Prediction

Research on road network graph detection dates back to
2010 [40]. Representative methods fall into two categories:
segmentation-based and graph-based approaches.

Segmentation-based methods [6, 23, 38] treat the task as
a dense mask prediction. They represent the road network
graph structure through one or more images, each detailing
aspects such as road existence, intersections, orientation [6],
and connectivity [23]. Post-processing heuristics, such as
thinning [13, 62] and path-finding [28], are then employed
to extract the vectorized graph structure. Benefits of this ap-
proach include 1) the ability of segmentation masks to rep-
resent complex geometries as a bottom-up volumetric repre-
sentation [47], and 2) ease of parallel patch-wise inference
for large areas, and subsequent result aggregation for refine-
ment. However, the challenge of topology prediction per-
sists: handcrafted heuristics often fail with poor mask qual-
ity; even with high-quality masks, deriving topology from
them remains ill-formed. There exist no universal heuris-
tics for all complex road structures, like multi-way intersec-
tions, multi-lane highways, and overpasses. Moreover, the
heuristic tends to rely on CPU-intensive logic, which often
becomes the inference speed bottleneck.

Graph-based methods have gained popularity recently,
offering a more end-to-end approach. Unlike methods
that use intermediate representations like mask images,
they directly predict graph nodes and edges in vector-
ized form. Leading examples include RoadTracer [5],
RNGDet [56], and RNGDet++ [57], with similar advance-
ments in high-definition map generation for autonomous
vehicles[33, 35, 39]. These methods reduce dependence
on handcrafted graph generation rules, largely leveraging
DETR-like[9, 33, 35, 60] techniques for geometric element
prediction or adopting an autoregressive [5, 39, 56, 57] ap-
proach for incremental graph construction. Despite their
strengths and contributions to the state-of-the-art [57], lim-
itations exist: 1) DETR-like methods struggle with more
than a few dozen entities due to the O(N2) computational
complexity of transformer layers, limiting their applicabil-
ity to city-scale road network graphs with potentially thou-
sands of nodes and edges, and 2) autoregressive methods
are difficult to parallelize as they rely on the outcomes of
previous steps, significantly slowing down the process.

Our method combines the advantages of segmentation-
based and graph-based approaches. It harnesses the ex-
ceptional capabilities of SAM to generate a high-quality
mask for geometry prediction, and uses a transformer-based
graph neural network to directly produce graph structures
without handcrafted post-processing heuristics.

2.3. Graph Representation and Learning

Graph representation and learning [21] involves mapping
data to graph structures and applying learning algorithms
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to understand complex relationships within. Significant ad-
vancements have been made in this area with the devel-
opment of Graph Neural Networks (GNNs) [54], Graph
Convolutional Networks (GCNs) [29], and Transformers
adapted for graph data [14]. Entities with rich structures can
be represented as graphs and predicted by deep nets, such
as scene graphs [19], human keypoints [32, 55], meshes
[41], and in our case, road networks. The goal is to pre-
dict whether a graph edge (road segment) exists between a
pair of nodes (vertices). For this type of task, GCN is a suit-
able architecture choice, as they offer powerful mechanisms
for aggregating local subgraph information and understand-
ing node relationships. With multiple layers, long-range de-
pendencies can be captured too. In SAM-Road, we adopt
Transformers as a special form of GCN: their self-attention
mechanism has a simple form and can automatically select
the most relevant context [3, 18, 49, 51] without any preset
structure.

3. Method
3.1. Overall Architecture

The overall structure of SAM-Road is shown in Figure 2.
It contains an image encoder taken from the pre-trained
SAM [27], a geometry decoder, and a topology decoder.
The model takes as input an RGB satellite imagery. First,
the image encoder produces the image feature embeddings.
Then, the geometry decoder predicts the per-pixel existence
probability, for both roads and intersections. The set of
graph vertices V{vi ∈ R2} representing 2D locations is
extracted from these masks with a simple non-maximum
suppression process, detailed in Algorithm 1. Given the
predicted vertices, the topology decoder goes over each of
them and determines whether it should connect to its nearby
vertices within a given radius Rnbr , given its local context.
For an edge (vi, vj), it predicts the probability that it exists.
One edge may be predicted more than once, its final score
will be the average. Eventually, the road network graph G is
predicted as the sets of vertex V and edges E .

3.2. Image Encoder

The image encoder is taken from a pre-trained Segment
Anything Model. We use the smallest ViT-B variant, which
has around 80M trainable parameters. It uses a ViT [16] ar-
chitecture adapted for high-resolution images, as described
in ViTDet [30]. The image encoder converts an (Himg ,
Wimg , 3) RGB image into a (Himg /16, Wimg /16, Dfeat )
feature map, for the decoders to consume. The image is
first divided into 16×16 non-overlapping patches, then each
patch is encoded into an embedding vector, producing an
(Himg /16, Wimg /16, Dfeat ) tensor. A stack of 12 multi-head
self-attention layers processes this tensor to the final feature
map, alternating between windowed [36] and global self-

attention. The feature size stays constant along the way.
During training, we fine-tune the entire image encoder with
0.1× base learning rate to adapt it to satellite imagery.

3.3. Geometry Decoder

The graph geometry prediction is formulated as a dense
semantic segmentation task. There are two main benefits:
First, this formulation leverages the extraordinary power of
SAM; Second, per-pixel bottom-up representation can han-
dle arbitrarily complex road structures.

The mask decoder has a minimalist design: it’s simply 4
transposed convolution layers with 3× 3 kernels and stride
2, each doubling the spatial feature resolution and decreas-
ing the channel number. Eventually, it produces two proba-
bility maps as an (Himg , Wimg , 2) tensor, with the same size
as the input image, representing the existence probability of
intersection points and roads. This mask decoder contains
about 170K trainable parameters.

After acquiring the masks, the graph vertices are ex-
tracted from them. This process converts the dense mask
images into a set of sparse vertices, with roughly the same
interval dv in between. dv is selected to be sparse while not
hurting geometry accuracy. It’s implemented with simple
non-maximum suppression: we first drop the pixels under
a probability threshold t, then traverse them by a descend-
ing order of their probability. Pixels within a dv radius of
the current one are removed. The (x, y) locations of the re-
maining pixels form the graph vertices V{vi ∈ R2} . See
Algorithm 1.

Algorithm 1 Non-Maximum Suppression of Vertices
1: V← ∅
2: t← threshold value
3: dv ← radius for non-maximum suppression
4: for each pixel in the image do
5: if pixel value > t then
6: Add pixel coordinates (x, y) to V
7: end if
8: end for
9: Sort V by pixel values in descending order

10: for each (x, y) in V do
11: for each (x′, y′) after (x, y) do
12: d← distance between (x′, y′) and (x, y)
13: if d < dv then
14: Remove (x′, y′) from V
15: end if
16: end for
17: end for

We predict masks for both intersections and roads for
more accurate graph structures at intersections. If only the
road mask existed, there would be no guarantee that the cen-
ter point of an intersection would be kept, producing error
patterns like Figure 6. To mitigate this: 1) Vertices are ex-
tracted from both masks with the same NMS algorithm. 2)
The two sets of vertices are joined, with all intersection ver-
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Figure 2. The architecture of our approach, SAM-Road. It contains an image encoder taken from the pre-trained SAM [27], a geometry
decoder, and a topology decoder. It directly predicts vectorized graph vertices (yellow) and edges (orange) from an input RGB satellite
imagery. Better zoom-in and view in color.

(a) Topology label example (b) Actual topology samples

Figure 3. Illustrating the definition of topology labels. In (a), the
white dashed circle represents Rnbr ; the large dot is the source
node, and the smaller yellow dots are the target nodes. Orange
lines are connected pairs. In (b), a few real topology samples used
for training are shown. The query for one source node is shown in
the same color. White lines are positive labels and pairs without
lines are negative.

tices assigned a higher score than any road vertices. 3) The
joined set is then NMS-processed again to produce the final
result. This ensures intersection points are kept as much as
possible.

3.4. Topology Decoder

The topology decoder ”wires up” the predicted graph ver-
tices into the correct structure. It is a transformer-based
graph neural network that predicts the existence of edges.
It predicts the edge existence probability in small local sub-
graphs around each vertex. Specifically, for a given source
vertex, up to Nnbr nearest vertices are found within a radius
of Rnbr . These form the target vertices. The topology de-
coder then predicts whether the source vertex shall connect
with each of the targets, based on their spatial layout and
image context.

The connection here is defined as ”whether two vertices
are immediate neighbors on the graph”. That is, imagine
a breadth-first-search on the road network graph from the

source vertex, which stops expanding whenever a) it hits a
target vertex or b) the depth (search radius) exceeds Rnbr - a
target vertex is only connected to the source if it is visited
by the search. This is further illustrated in Figure 3.

We formulate the topology prediction task as a binary
classification problem on the (vsrc, vtgt) vertex pairs, con-
ditioned on the image context. The input of the de-
coder is a sequence of high-dimensional feature vectors
{(f src, f tgt

k , d⃗k) | 0 ≤ k < Nnbr} where f src and f tgt
k are

the vertex features. They are image embedding vectors ac-
quired by bilinear sampling from the SAM image feature
map at the source and target vertex locations. d⃗k is the off-
set from the source to the k-th target, encoding the rela-
tive spatial layout of the vertices of interest. These vec-
tors are concatenated to a tensor shaped (Nnbr , 2Dfeat + 2),
then projected to a (Nnbr , Dfeat ) feature tensor. We treat
the Nnbr dimension as sequence length and pass it through
3 multi-head self-attention layers with ReLU activations
for message-passing to understand the multi-hop structures.
The interacted feature sequence shaped (Nnbr , Dfeat ) is fed
into a linear layer to get the Nnbr binary classification log-
its. A sigmoid layer turns these into (0, 1) probabilities,
indicating how likely the edge exists.

3.5. Label Generation

Mask Labels. For road mask labels, we rasterize the ground-
truth road lines, by drawing each edge as a line segment,
with a width of 3 pixels. The pixels covered by the line
segments are set to 1, and others are 0. For intersection
labels, we find all the graph vertices with a degree not equal
to 2 and render them as circles with a radius of 3 pixels.
This is partially inspired by the OpenPose [8] work which
represents human keypoint graphs as heatmaps.

Topology Labels. During training, we don’t run the ver-
tex extraction process. The topology decoder is trained in a
teacher-forcing [52] manner, where the vertices being asked
are not from model prediction, but sampled from ground-
truth road network graphs to emulate the predictions. This
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Figure 4. SAM-Road can predict the entire road network graph for
arbitrarily large regions by operating in a sliding-window manner.
0-3 represent 4 overlapping windows. It first extracts the global
nodes, caches the per-window embeddings, and then aggregates
the per-window edge predictions.

is done by first subdividing the ground-truth graph and then
running the same NMS procedure as the inference stage.
To emulate various NMS results, a uniform random score is
assigned to each subdivision vertex.

Having the emulated vertex predictions, we randomly
sample Nsample source vertices and apply the rules described
in section 3.4 to find its targets and connectivity labels. Fur-
ther, a small random Gaussian perturbation is applied to the
vertex coordinates to emulate the prediction noise for better
generalization.

The satellite imagery in the datasets used covers large
square areas up to 4 square kilometers [23], therefore we
randomly crop the RGB image, ground-truth masks, and
graphs into smaller patches to get more training samples
and keep memory consumption manageable.

3.6. Sliding-window Inference for Large Regions

SAM-Road can predict the entire road network graph for
arbitrarily large regions by operating in a sliding-window
manner, as shown in Figure 4. The predictions within each
window can be aggregated to improve accuracy. Fusing
multiple observations is a common practice in vision ap-
plications [15, 28, 31, 43] to effectively suppress noise. For
SAM-Road, this applies to both geometry and topology.

For geometry, the per-window masks are fused to a large
mask before vertex extraction, where each pixel value is the
sum of all observed probabilities divided by the time it is
observed. The NMS process is run on the fused global mask
to get the global graph vertices.

For topology, when it comes to large regions, the topol-
ogy decoder is run in a second pass after extracting the
global vertices. The per-window image feature maps are
cached, and for each window, the topology decoder infers
the graph edges for the global vertices within that window,
based on its image feature map. Since the vertices here are
global, each edge prediction within each window can vote
towards an edge in the global graph. The final edge proba-
bility in the global graph is the average of all observations
similar to the mask.

It’s also worth noting that the per-window inferences are
completely independent of each other and can be done fully
in parallel. This enables SAM-Road to be significantly
faster (See Table 2) than the state-of-the-art RNGDet++
[57] that reconstructs the graph in an auto-regressive man-
ner. The ease of multi-window aggregation for quality re-
finement, akin to dense semantic segmentation, is also un-
common for typical graph-based methods. SAM-Road can
flexibly trade-off between speed and accuracy, by varying
the stride size in sliding-window inference, as shown in Ta-
ble 3.

4. Experiments

4.1. Datasets

We conduct our experiments on two datasets: City-scale
[23] and SpaceNet [17]. The City-scale dataset includes
180 satellite images of 20 U.S. cities, each image has
2048 × 2048 pixels, and 29 are for testing. The SpaceNet
dataset contains 2549 images of 400 × 400 pixels of cities
around the world including Shanghai, Las Vegas, and more.
382 of them are for testing.

Both datasets have a 1 meter/pixel resolution. The
ground-truth vector graphs of the road network are supplied.
The two datasets feature diverse environments and road net-
work patterns, facilitating conclusive experiments.

4.2. Metrics

We employ TOPO [7], an evaluation metric tailored for road
network graphs. TOPO randomly samples candidate ver-
tices in the ground truth and finds its correspondence in the
prediction. It then compares the similarity of reachable sub-
graphs from the same vertex of the two graphs in terms of
precision, recall, and F1. It focuses on geometric accuracy
with a heavy penalty for incorrect disconnections.

We also utilize APLS (Average Path Length Similarity)
[17] to evaluate the topological correctness. For a random
vertex pair (v1, v2) on the ground truth and their correspon-
dences in the prediction (v̂1, v̂2), we evaluate the model by
comparing the shortest distance between (v1, v2) and be-
tween (v̂1, v̂2). Smaller distance difference indicates high
topological similarity.

4.3. Implementation Details

For both datasets, dv is 16 pixels (meters), Rnbr is 64 pix-
els (meters), Nnbr is 16, Dfeat is 128. At training time, For
City-scale, we sample image patches of 512 × 512 pixel,
the batch size is 16 and we sample 512 source points for
topology query per image patch. For SpaceNet, the batch
size is 64 due to using image patches 256 × 256 pixel. We
sample 128 source points per patch. When there are fewer
than Nnbr available target nodes to query, we use attention
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masking to ensure the interaction only happens between the
valid vertices.

We applied simple augmentations to boost data diversity.
1) Rotational: we randomly rotate the patch by the multi-
ple of 90 degrees. 2) Translational: different from previous
works that usually pre-crops the patches by a fixed grid and
stores them to disk, we load the entire dataset in memory,
and randomly sample patches in continuous spatial coordi-
nates. This can be seen as a random-translation augmenta-
tion.

Masks and topology prediction are essentially binary
classifications. We use the vanilla binary cross entropy loss
for all of them and don’t apply any loss re-weighting in this
work. We take the mean loss of all valid entries. The three
sub-tasks have equal loss weight, and the total loss is just
adding them together.

We use the Adam optimizer with base LR of 0.001,
which applies to the randomly initialized mask decoder and
topology decoder. We use the default weight initialization
of PyTorch. The image encoder is fine-tuned with 0.1×
base LR. LR is constant during training, with no schedul-
ing tricks applied. We train SAM-Road on the two datasets
respectively till validation metrics plateaus.

At inference time, we use 16x16 sliding window infer-
ence for the main results. To determine the threshold for
the binary classifiers (intersection, road, edge connection),
we find the threshold that gives the highest F1 score on the
validation set. Note that this is just for isolating away the
effect of threshold choice in the experiments, and is not crit-
ical for SAM-Road performance, as evidenced by the result
that just uses 0.5 for everything in Table 4 (A vs H).

All experiments are conducted on one RTX 4090 GPU.

4.4. Evaluating Road Network Prediction

Qualitative results of SAM-Road predicting large-scale
road network graphs can be found in Figure 5. The results
are shown side-by-side with two baselines and the ground-
truths. Some error examples can be found in Figure 7. Over-
all, SAM-Road predicts highly accurate road networks even
under very challenging circumstances, e.g. many blocks
and intersections in dense urban areas, curvy roads with ir-
regular shapes, overpasses, and multi-lane highways.

We benchmark SAM-Road on City-scale and SpaceNet
benchmarks against other methods, quantitative results are
shown in Table 1. We compare several baselines, in-
cluding segmentation-based (Seg-UNet, Seg-DRM, Seg-
Improved, Seg-DLA, Sat2Graph) and graph-based (Road-
Tracer, RNGDet, RNGDet++). The TOPO metric, which
evaluates local graph structure similarity, is on par with
state-of-the-art, RNGDet++, despite that SAM-Road has a
much simpler structure. The APLS metric of SAM-Road
achieves a new state-of-the-art. APLS captures long-range
topological and geometrical structure - this indicates the ef-

fectiveness of our transformer-based topology decoder and
graph representation.

Such performance should largely be attributed to SAM,
the powerful foundational vision model. As shown in Fig-
ure 1, the predicted masks are sharp and clear, enabling
precise geometry prediction. The SAM image features are
also informative vertex embeddings containing rich seman-
tic meanings, as evident in the accurate topology predic-
tions.

4.5. Speed and Accuracy Trade-off

SAM-Road is also highly efficient, thanks to its parallelized
inference and that it doesn’t require complex CPU-heavy
post-processing heuristics. We measure the inference time
to produce the complete graphs for the test sets of both
datasets. The main results use 16× 16 windows and are al-
ready 40× faster than RNGDet++ on the City-scale dataset,
and 10× faster on the SpaceNet dataset, as shown in Table
2. As mentioned in Section 3.6, SAM-Road can trade ac-
curacy for more speed by sparsifying the sliding windows.
Table 3 shows the result such trade-off. Using fewer win-
dows can further provide 2× to 4× speed-up, with a minor
accuracy drop.

4.6. Ablation Studies

We conduct ablation experiments to study the effects of the
key design choices on the City-scale dataset. The results are
shown in Table 4.

How important is using the pre-trained SAM model?
A vs B proves it is critical. We repeated the experiment
with the same ViT-B architecture with only ImageNet1K
and MAE pre-training [30], and the results were far worse.
This is not surprising, as City-scale and SpaceNet datasets
are quite small in this era, especially when using large patch
sizes (E.g. 512), resembling few-shot learning. The large-
scale pre-training on datasets like SA-1B used by SAM
seems critical for the generalization capability. Maybe it’s
due to this reason that the baseline methods have to rely
on smaller patches for more training examples and adopt
weaker backbones with more inductive bias like CNNs.

We also studied the importance of the topology decoder’s
design choices.

Whether using a transformer. A vs C: we tried remov-
ing it and simply connecting a dense layer directly to the
pair features. This makes the query unaware of other tar-
gets. Both geometry and topology performance drops. This
is understandable: all nodes in the subgraph being asked
shall be visible to the net, otherwise, there are ambiguities
about whether two nodes shall connect given the definition
in Section 3.4.

Whether taking the vertex offsets as input. A vs D
shows a slight performance drop. Without the offset, the
topology decoder no longer has a clear view of the local ge-
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Ground-truth Sat2Graph RNGDet++ SAM-Road

Figure 5. The visualized road network graph predictions of SAM-Road and two baseline methods. Better zoom-in and view in color.
Overall, SAM-Road generates highly accurate predictions. The circles highlight especially challenging spots: in the first area, SAM-Road
correctly predicts the overpass structure. In the second one, SAM-Road gives superior results for the parallel freeways. The third spot
shows an irregular intersection where the two baselines fail.

City-scale Dataset SpaceNet Dataset

Methods Prec.↑ Rec.↑ F1↑ APLS↑ Prec.↑ Rec.↑ F1↑ APLS↑

Seg-UNet [46] 75.34 65.99 70.36 52.50 68.96 66.32 67.61 53.77
Seg-DRM [38] 76.54 71.25 73.80 54.32 82.79 72.56 77.34 62.26
Seg-Improved [6] 75.83 68.90 72.20 55.34 81.56 71.38 76.13 58.82
Seg-DLA [58] 75.59 72.26 73.89 57.22 78.99 69.80 74.11 56.36
RoadTracer [5] 78.00 57.44 66.16 57.29 78.61 62.45 69.90 56.03
Sat2Graph [23] 80.70 72.28 76.26 63.14 85.93 76.55 80.97 64.43
TD-Road [24] 81.94 71.63 76.43 65.74 84.81 77.80 81.15 65.15
RNGDet [56] 85.97 69.78 76.87 65.75 90.91 73.25 81.13 65.61
RNGDet++ [57] 85.65 72.58 78.44 67.76 91.34 75.24 82.51 67.73

SAM-Road 90.47 67.69 77.23 68.37 93.03 70.97 80.52 71.64

Table 1. Comparison with existing methods on different datasets. SAM-Road achieved the highest TOPO precision of 90.47% on City-
scale and 93.03% on SpaceNet. It also shows the highest APLS metric of on both sets. Overall the graph accuracy is among the very
top. SAM-Road leans more towards precision in TOPO metrics, this might be due to the low positive / negative example ratio in its binary
classification tasks.
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Method City-scale Dataset SpaceNet Dataset

Sat2Graph 150.6 min 69.0 min
RNGDet++ 231.0 min 112.8 min
SAM-Road 4.6 min 8.2 min

Table 2. The inference time for the three methods, on both City-
scale and SpaceNet datasets. Ours is within 10 minutes while the
other two methods take 1-2 hours.

City-scale Dataset SpaceNet Dataset

Setup Time Cost F1↑ APLS↑ Time Cost F1↑ APLS↑
16× 16 4.6 min 77.23 68.37 8.2 min 80.52 71.64
8× 8 3.3 min 77.20 67.21 3.1 min 80.84 71.12
4× 4 2.9 min 77.00 67.03 1.7 min 80.85 70.88

Table 3. The time cost with different stride sizes in sliding-window
inference, on both datasets.

Variant Opt SAM TFM Offset F-target Itsc F1↑ APLS↑
A ✓ ✓ ✓ ✓ ✓ ✓ 77.23 68.37
B ✓ ✓ ✓ ✓ ✓ 31.79 12.39
C ✓ ✓ ✓ ✓ ✓ 73.75 59.39
D ✓ ✓ ✓ ✓ ✓ 77.36 66.67
E ✓ ✓ ✓ ✓ ✓ 77.42 67.08
F ✓ ✓ ✓ ✓ ✓ 71.94 64.62
G ✓ ✓ ✓ 69.21 63.32
H ✓ ✓ ✓ ✓ ✓ 76.05 67.95

Table 4. The SAM-Road variants compared for ablation studies.
Opt: using optimized score thresholds. SAM: using pre-trained
SAM. TFM: using a transformer for topology prediction. Offset:
taking relative offsets in topology decoder. F-target: topology de-
coder takes target node feature. Itsc: predict intersection masks.

Figure 6. Left: standard SAM-Road. Middle: no intersection
mask. The intersections are noticeably noisier. Right: using an A-
star algorithm for topology prediction, which induces many false
positive connections.

ometrical layout, which may hinder the topology reasoning
and cause false-positive connections and discontinuities.

Whether taking the target vertex feature as input. A
vs E shows a minor performance drop. Interestingly, not us-
ing the target node features doesn’t harm performance too
much. This might be because ViT-B has a sufficiently large
effective field of view due to the transformer architecture,
and the source feature alone contains sufficient image con-
text in the region.

Figure 7. Some error patterns. Left: geometry decoder missed
the road segment in the middle. Middle: topology decoder missed
connections in a complex interchange. Right: an interesting case
where SAM-road predicts the trails in a park which are not part of
the label.

Whether using the learning-based topology decoder.
A vs G shows that it’s critical for SAM-Road’s perfor-
mance. Intuitively, a naive method that might achieve a
similar effect is just to run a pathfinding algorithm between
a pair of vertices, using the road existence map as the cost
field, and see if there’s a sufficiently low-cost path between
the two without passing through other vertices. We imple-
mented such a variant G using an A-star algorithm. Metrics
are much worse, as qualitatively shown in Figure 6. This
approach can mess up intersections, overpasses, and close
parallel roads.

Whether predicting the intersection vertices. This is
answered by A vs F. Predicting intersection points is impor-
tant for building correct intersection structures as shown in
6. Without it, both metrics drop.

5. Limitations and Future Work
One current limitation of SAM-Road is we have not de-
signed specific approaches to more accurately handle over-
passes. There is an ambiguity for the topology decoder at
the exact point where overpassing roads intersect, as the
correct answer depends on which layer is being asked. This
issue is minor though, as most vertices are not at these spots.
Future work could improve this by predicting an overpass
heatmap to suppress vertex formation at these locations.

In addition, in this work, we only used the smallest
Segment Anything model, ViT-B. Larger variants may be
explored as a future work, where we hope to explore
parameter-efficient tuning methods, such as LoRA [25].

We are also interested in exploring the integration of
other state-of-the-art foundational models, such as DINOv2
[42], PaLI [12] and GPT-4V [1] with graph learning.

6. Conclusion
We demonstrate the power of SAM [27], a foundational vi-
sion model on a graph learning task. It reaches state-of-the-
art accuracy with a simple design while being much more
efficient. This indicates a high-capacity model with massive
pre-training can be a strong graph representation learner.
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