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Abstract

Dynamic scene graph generation (SGG) from videos re-
quires not only a comprehensive understanding of objects
across scenes but also a method to capture the temporal
motions and interactions with different objects. Moreover,
the long-tailed distribution of visual relationships is a cru-
cial bottleneck for most dynamic SGG methods. This is
because many of them focus on capturing spatio-temporal
context using complex architectures, leading to the gener-
ation of biased scene graphs. To address these challenges,
we propose FLOCODE: Flow-aware Temporal Consistency
and Correlation Debiasing with uncertainty attenuation for
unbiased dynamic scene graphs. FLOCODE employs fea-
ture warping using flow to detect temporally consistent ob-
jects across frames. To address the long-tail issue of visual
relationships, we propose correlation debiasing and a la-
bel correlation-based loss to learn unbiased relation rep-
resentations for long-tailed classes. Specifically, we pro-
pose to incorporate label correlations using contrastive loss
to capture commonly co-occurring relations, which aids
in learning robust representations for long-tailed classes.
Further, we adopt the uncertainty attenuation-based clas-
sifier framework to handle noisy annotations in the SGG
data. Extensive experimental evaluation shows a perfor-
mance gain as high as 4.1%, demonstrating the superiority
of generating more unbiased scene graphs.

1. Introduction
Scene graph generation for videos (VidSGG) aims to repre-
sent the video in the form of a dynamic graph that is able
to capture the temporal evolution of the relationships be-
tween pairs of objects. VidSGG has direct applications for
various downstream tasks, such as visual question answer-
ing [1, 43, 52], video captioning [53], and video retrieval
[9, 39, 50], etc. VidSGG is considered more challenging
compared to its image-based counterpart, as the relations
between identified object pairs are dynamic along the tem-
poral dimension, making it a multi-label problem. At the
current stage, VidSGG is still in its nascent phase compared

to SGG (scene graph generation) for static images [8, 22–
24, 27, 30, 41, 56, 57].

Several works [7, 12, 18, 26, 28, 35, 45] have proposed
solutions for VidSGG, mostly employing spatio-temporal
sequence processing with transformers [3, 4, 13, 19, 32, 40,
48]. However, many of these methods focus on building
complex models to effectively aggregate spatio-temporal in-
formation in a video, without adequately addressing data
imbalance in the relation/predicate classes. While their per-
formance is often good in terms of the Recall@K metric,
which is biased towards frequent classes, a more compre-
hensive metric, mean-Recall@K, has been proposed [5, 41]
to assess performance in the presence of low-frequency
classes, providing an overall view of SGG models rather
than considering only high-frequency classes.

Although recent methods [31, 34] have proposed ad-
dressing class imbalance using memory-based debiasing
and uncertainty attenuation for classification, the memory
debiasing approach is based on learnable attention weights,
which carries a risk of bias towards high-frequency classes.
A case of this issue is illustrated in Figure 2 during a qual-
itative comparison with our method. To overcome these
limitations, some works [25, 54] have attempted to address
biased relation predictions. [25] proposed weakening the
false correlation between input data and predicate labels,
while [54] considered biases in a meta-learning paradigm.
Although these approaches mitigate the long-tail problem
to some extent, the performance is still not satisfactory.

Our analysis (see Table 4) pinpoints a significant issue in
existing dynamic Scene Graph Generation (SGG): the inac-
curate detection of objects across video frames. Owing to
this issue, we propose leveraging flow-warped features in
the temporal dimension to handle dynamic fluctuations in
videos. Unlike previous methods [31] that employ learn-
able read from memory, we propose debiasing predicate
embeddings during the generation stage. This is achieved
by ensuring an unbiased correlation between predicates and
objects. Additionally, existing methods [31] overlook la-
bel correlations, which can provide valuable clues dur-
ing relation classification, especially for long-tailed predi-
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cate classes. We propose supervised multi-label contrastive
loss to consider label correlations. This aims to bring to-
gether predicate representations with overlapping classes
and push apart negative samples without shared classes.
Further, we introduce a Mixture of Logit Networks (MLNs)
to calculate aleatoric (data) and epistemic (model) uncer-
tainty1. We propose an uncertainty-aware regularization
method aimed at improving the capacity to comprehend in-
consistent output patterns, spanning both clean and noisy
distributions. This method not only enables robust learn-
ing of the fundamental target distribution but also skill-
fully captures the injected noise patterns inherent in the
data generation process. Combining these elements, our
framework, FLOCODE (Flow-aware Temporal Consistency
and Correlation Debiasing with Uncertainty Attenuation),
makes significant contributions: 1) We propose modeling
both aleatoric and epistemic uncertainty and label corre-
lations for more unbiased scene graphs. 2) Introducing a
novel correlation-guided debiased learning of predicate em-
beddings. 3) Incorporating flow-aware, temporally consis-
tent object detection for precise node classification in scene
graphs. 4) Achieving substantial improvements in mR@K
[41] and R@K, showcasing its superiority in generating un-
biased scene graphs.

2. Related Work

Image Scene Graph Generation: Image-based scene
graph generation (ImgSGG) refers to the task of generating
a structured graph summary that represents objects as nodes
and their relationships (formally known as predicates) as
edges within an image. Extensive efforts have been dedi-
cated to ImgSGG, particularly in comparison to the Visual
Genome (VG) benchmark [22]. Previous research has fo-
cused on developing efficient approaches for aggregating
spatial context [24, 27, 30, 56, 57]. Concurrently, recent
studies [41, 42, 51] have concentrated on addressing foun-
dational challenges, such as mitigating biased scene graphs
resulting from long-tailed predicate distributions and deal-
ing with noisy annotations in datasets.
Video Scene Graph Generation (VidSGG): Researchers
have made significant strides in understanding spatial con-
text within images, prompting an exploration of spatial con-
text and temporal correlations between objects in videos.
In the realm of video scene graph generation (VidSGG),
challenges akin to those in image-based scene graph gen-
eration persist, including long-tailed predicates and noisy
annotations. Action Genome [17], a prominent VidSGG
benchmark, introduces an additional hurdle of addressing

1Aleatoric uncertainty pertains to the intrinsic and unavoidable aspects
of uncertainty within the data generation process, such as measurement
noise. Conversely, epistemic uncertainty encompasses the uncertainty as-
sociated with the model itself, and this type of uncertainty may diminish
with an increase in the amount of training data available.

temporal fluctuations across frames. Various approaches
[28, 35, 45, 47, 58] have employed object-tracking mech-
anisms to manage temporal fluctuations, but these models
often come with high computational costs, memory con-
sumption, and performance issues due to information accu-
mulation from irrelevant frames. STTran [7] offers a robust
baseline, using a spatial encoder and a temporal decoder
to implicitly extract spatial-temporal contexts. Other works
[26, 49] focus on extracting temporal correlations, ensur-
ing temporal continuity through co-occurrence patterns or
proposing pre-training paradigms. Building on the suc-
cess of transformer-based models [3, 32, 40, 48], which
excel in sequence processing for spatio-temporal context,
there remains a challenge of bias towards high-frequency
classes. TEMPURA [31] addresses long-tail bias with an
uncertainty-guided loss function. In our contribution, we
extend this by exploring label correlation to further enhance
predictive accuracy in VidSGG.

3. Method
Problem Statement: Given a video V =
{I1, I2, I3, ..., IT }, the goal of dynamic SGG is to
generate scene graphs denoted as G = {Gt}Tt=1 of video
V consisting of T frames. Gt = {Vt, Et} is the scene
graph of frame It, where Vt is the set of nodes and Et

is the set of edges representing relations between nodes
in Vt. Nodes in Vt are connected to each other using
predicates in Et, forming multiple <subject-predicate-
object> triplets. The sets of object and predicate classes
are referred to as Yo = {yo1, yo2, yo3, ..., yoco} and
Yr = {yr1, yr2, yr3, ..., yrcr} respectively.
Object Detection and Relation Representation: With the
use of an off-the-shelf object detector (Faster-RCNN [36]),
we obtain the set of objects Ot = {oti}

N(t)
i=1 , where N(t) is

the number of objects detected in frame It. Each object in
a tth frame is denoted as oti = {bti, vti , ctoi} where bti ∈ R4

being the bounding box, vti ∈ R2048 the RoIAligned
[15] proposal feature of oti and ctoi is its predicted class.
However, the object class ctoi fluctuates across the frames
and is not coherent even for the same object. Existing
works [45] address this by incorporating object tracking
algorithms; opposed to this, our strategy compensates for
these dynamic fluctuations using flow-warped features and
ensures temporal coherence. Specifically, we extracted the
base features ft, t ∈ [1, T ] and ROIs from Faster R-CNN
using ResNet-101 [14]. We warp these base features using
the temporal flow and compute the RoIAligned warped
object features vt→t′

i (t′ represents the immediate previous
frame that contains the ith object) using the predicted ROIs.

3.1. Temporal Flow-Aware Object Detection

Object detectors trained on static images are prone to mis-
classify the same object in different frames. Existing meth-
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ods [7, 18, 26, 49] either use ctoi obtained from object detec-
tion in each frame or use object features to classify objects.
However, these methods do not compensate for temporal
fluctuations in the videos. Inspired by FGFA[59], which
uses flow-guided feature aggregation for object detection in
videos, we propose to leverage flow-warped features and
temporal processing for consistent object detection across
frames. We introduce Temporal Flow-Aware Object Detec-
tion (TFoD), which utilises transformer encoder [48] with
masked self-attention (TEnc) to process the set of temporal
object sequences OV , which is constructed as follows:

OV = {O1
t1,k1

,O2
t2,k2

, ...,OĈo

tĈo
,kĈo

}, where

Oj
tj ,kj

= {vtji , v
tj+1
i , ......, v

kj

i } (1)

Each entry of Oj
tj ,kj

corresponds to an object of the same

detected class coj , here 1 ≤ tj , kj ≤ T and Ĉo ≤ Co de-
noting all the detected classes in a video V . However, the
detected class labels can be noisy since they are based only
on frame-level predictions; hence, we use the flow-warped
feature vt→t′

i instead of vti before feeding it to the trans-
former encoder. The flow-warped feature is computed as:

ft→t′ = W(ft,F(It′ , It)) (2)

where W is a bilinear warping function [59, 60] applied on
all the locations for each channel in the feature maps and
flow field F(It′ , It) is computed from the pre-trained Flow-
Net [10], where t′ is the index of the immediate frame pre-
vious to the tth frame having the same object as depicted in
the object sequences OV . Using ft→t′ and predicted ROIs,
we obtained warped RoIAligned feature, Oj

tj ,kj
is given as:

Oj
tj ,kj

= {vtji , v
tj+1→tj
i , ......, v

kj

i } (3)

Each of Oj
tj ,kj

is zero-padded to prepare functional input
tensor. Tenc uses masked multi-head self-attention instead
of multi-head self-attention in transformer encoder [48].
Mask is introduced to learn the temporal dependencies in
a unidirectional manner so that the object at frame index t
can only attend to objects in previous frames. For any input
X, the single head masked attention A is given as:

A(Q,K,V) = softmax

(
mask(QKT )√

DK

)
V (4)

where DK is the dimension of K, and Q,K,V
are the query, key, and value vectors, respec-
tively. Here, Q = K = V = X, the multi-
head attention is concat(a1, a2, ...aH)WH ,
where ai = A(XWQi,XWKi,XWV i) where
WQi,WKi,WV i and WH are the learnable weight
matrices. The rest of the components, like residual con-
nection, normalisation, and FFN (feed-forward network),

remain the same as in the transformer encoder [48]. The
output of n-layered TEnc is given as:

X
(n)
out = TEnc(X

(n−1)
out ), X

(0)
out = ÔV (5)

where ÔV = OV + PT
o , where PT

o are the fixed positional
embeddings injecting the temporal position of objects. In-
spired by the properties of neural collapse [33] we prefixed
the classifier weights (forming Equiangular Tight Frame
(ETF)) for each object class to induce the maximal sepa-
rable classifier even under the class imbalance setting. The
pre-fixed classifier weights WETF are given as:

WETF =

√
Co

Co − 1
U

(
ICo

− 1

Co
1Co

1T
Co

)
(6)

where WETF = [w1,w2, .....wCo ] ∈ Rd×Co , U ∈ Rd×Co ,
satisfies UTU = ICo

, ICo
is the identity matrix, and 1Co

is
an all-ones vector. The object classification loss:

Lo(xoi ,WETF ) =
1

2

(
wT

coi
x̂oi − 1

)
(7)

where x̂oi = xoi/||xoi || and xoi ∈ X
(n)
out and wcoi

is the
fixed prototype in WETF for object class coi and we have
||wcoi

|| = 1. Finally, the converged features will be aligned
with WETF , and thus the ETF structure instructed by neu-
ral collapse is attained. The theoretical construction of the
loss has been proved in [55].

3.2. Correlation-Aware Predicate Embedding

The relationship between objects is governed by three
types of correlations: a) spatial correlation between pred-
icates, b) temporal correlation between predicates, and c)
predicate-object correlation across the video frames. We
propose to model these correlations using the Vanilla Trans-
former [48]. For each object oi of predicted class coi ob-
tained from object detection (Section 3.1), the input to the
transformer encoder is the set of features describing the re-
lation with each object oj detected in all the frames where
oi is detected. The input is constructed as follows:

rti,j = concat(xcoi
, fu(u

t
ij + fbox(b

t
i,b

t
j)), fI(t)) (8)

where xcoi
∈ X

(n)
out is the feature representation of object

oi belonging to class coi ∈ [1, Co], ut
ij ∈ R256×7×7 is the

feature map of the union box computed by RoIAlign [15].
fu, fI is the FFN based on non-linear projections, and fbox
is the bounding box to feature map projection of [56]. Both
are configured to produce d-dimensional relation features.
fI serves as positional embeddings denoting the frame in-
dex. The single encoder input consists of both spatial and
temporal relation features between object oi and all other
objects o1, o2, ....oj . Specifically, it is denoted as Ri =

rt1i,1, r
t2
i,2, .....r

tj
i,j , where tj are the frame indices in which
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Figure 1. FLOCODE: Each RGB frame is passed to object detector, and the corresponding object proposals are passed to temporal flow-
aware object classification. Finally, we predict relations (with correlation debiasing, Mixture Logit Network for uncertainty estimation,
mixture loss and label correlation loss) from relation representation at the output of transformer decoder to generate unbiased scene graphs

oi and oj are detected simultaneously. The transformer de-
coder leverages masked self-attention, and its input is a set
of object representations, {xco1

,xco2
...,xcoj

}, correspond-
ing to objects {o1, o2, .....oj}, detected in all the frames
where oi is detected. Since the input to the transformer
encoder contains all predicate (relation) features across the
frames, and hence, with multi-head self-attention, it models
both spatial and temporal correlations between predicates.
Similarly, the cross-attention between the encoder and de-
coder models the predicate-object correlation. The predi-
cate embeddings at the output of the transformer decoder
are denoted as r̂ktem = {r̂ti,j}∀k ∈ [1, N(t)], t ∈ [1, T ]. At
transformer decoder, we use the sliding window of size 10
for predicate representation with relating objects.

3.3. Debiased Predicate Embedding
Since the relations between objects are highly imbalanced,
the representation becomes biased towards popular ones.
Therefore, to produce unbiased relation embeddings, we
propose updating correlation matrices as a weighted aver-
age of the correlation matrices across the epochs, where the
weight is determined by the decay factor. For each triplet
{oi, ri,j , oj} the softmax attention scores between the trans-
former encoder and decoder across all the layers are stored.
As some predicates are rare and thus more prone to bias,
updating their correlation using a running average will gen-
erate debiased embeddings. Let’s denote the running aver-
age as the stored correlation matrix between every object
pair for all relations as Me−1 at the end of the previous
epoch e − 1, and the attention matrix (from Transformer
cross-attention) at the current ongoing epoch e as Ae. Dur-
ing training, we update the attention matrix (denoted as Âe)
using decaying factor η as the training progresses, given as:

Âe(oi, ri,j , oj) = η ∗Ae(oi, ri,j , oj)+

(1− η) ∗Me−1(oi, ri,j , oj) (9)

where M0 = A0, Me(oi, ri,j , oj) = Âe(oi, ri,j , oj) at the
end of each epoch. We then use the attention value from Âe

in place of the attention value calculated from QKT ∈ Ae.
This avoids biasing attention weights towards popular pred-
icates. Once the debiased weights are learned during train-
ing, we expect that they will generate debiased embeddings
during the inference phase. Hence, there is no modification
of attention matrices during inference time.

3.4. Predicate Classification
Following [31], we adopt classifier framework to handle
noisy annotations. Different from [31], we propose: 1)
an uncertainty-aware mixture of attenuated loss 2) super-
vised contrastive learning, which incorporates label corre-
lation to improve predicate classification. Specifically, we
propose the classifier head as a mixture-of-experts model
named mixture logit networks (MLN) and a noise pattern
estimation method utilizing the outputs of the MLN. The
number of mixtures is denoted as K.
Uncertainty-Aware Mixture of Attenuated loss: For a
predicate embedding zi, the aleatoric (σa) and epistemic
uncertainty (σe) are computed as:

σ2
e =

Cr∑
p=1

K∑
k=1

πk
i,p||µk

i,p −
K∑

j=1

πj
i,pµ

j
i,p||

2
2 (10)

σ2
a =

Cr∑
p=1

K∑
k=1

πk
i,pΣ

k
i,p (11)
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where the mean µi,p, variance Σk
i,p, and mixture weights

πk
i,p are the logits of label p in kth mixture. These are esti-

mated as follows:

µk
i = fk

µ(zi),Σ
k
i = σ(fk

Σ(zi)), π
k
i =

ef
k
π (zi)∑K

k=1 e
fk
π (zi)

(12)

where fµ, fΣ, fπ are the FFN projection functions and σ is
the sigmoid non-linearity which ensures Σk

i,p ≥ 0 for the
pth predicate class. During training, zi = r̂item, the mixture
of attenuated loss (LMAL) is given as:

LMAL =
1

N

N∑
i=1

Cr∑
p=1

K∑
k=1

πk
i,p

L(µk
i,p, y

i
rp)

Σk
i,p

(13)

where L(µk
i,p, y

i
rp) is the sigmoidal cross-entropy loss, yirp

is the ground-truth predicate class mapped to zi, µk
i,p is the

logit of label p in the kth mixture. For the corrupted in-
put, it is more likely to make a false prediction; hence, Σk

i,p

will increase to reduce the overall loss function for such in-
stances. This, in turn, prevents over-fitting to the corrupted
instances, making the model more robust.
Uncertainty-aware Supervised Contrastive Learning:
The MAL loss function, which independently classifies la-
bels, presents challenges in capturing correlations among
co-occurring semantic labels. To address this limitation,
we introduce the multi-label contrastive loss, denoted as
LMCL. The primary objective of this loss function is to
minimize the distance between representations of predicates
sharing at least one class with the anchor representation
r̂ntem while maximizing the distance from negative samples
that do not share any classes. Let A(n) = {m ∈ {N \ n} :
Yn
r · Ym

r ̸= 0, represent the positive set, where · denotes
the dot product}. This set comprises samples that share
at least one label with the anchor r̂ntem. Additionally, let
Yr(n,m) = {y{n,m}

rp ∈ Y{n,m}
r s.t. ymrp = ynrp = 1} in-

dicate the indices of samples m that possess at least one
shared label with Yn

r . The loss LMCL is formulated as:

LMCL =
1

N

n=N∑
n=1

−1

|A(n)|
∑

m∈A(n)

J(n,m)

∑
yrp∈Yr(n,m)

(
log

exp(ρn,myrp
/τ)∑

i∈N\n exp(ρn,iyrp
/τ)

)
(14)

where J(n,m) is the Jaccard similarity between labels ymrp
and ynrp , the similarity ρn,iyrp

is given as:

ρn,iyrp
=

 K∏
k=1

(
(Σk

n,p)
2 + (Σk

i,p)
2

2(Σk
n,p)(Σ

k
i,p)

)− 1
2


exp

(
−1

4

K∑
k=1

(µk
n,p − µk

i,p)
2

(Σk
n,p)

2 + (Σk
i,p)

2

)
(15)

Specifically, ρn,iyrp
represents the Bhattacharyya coefficient,

a commonly used metric for evaluating the similarity be-
tween probability distributions in various domains, includ-
ing computer vision, pattern recognition, and statistical
analysis[6, 38].
EMA Teacher: During training, we adopt the EMA weight
update [2, 20, 44, 46] for transformers in Section 3.2. Let’s
say ϕT , θT are the weights of transformers for teacher and
student, respectively. The weight update is then given as:

ϕT,e = α ∗ ϕT,e−1 + (1− α) ∗ θT,e (16)

where e is the training epoch. The EMA teacher effec-
tively an ensemble of student models at different training
steps, which is a most widely used learning strategy in semi-
supervised setting[11, 16].

3.5. Training and Testing

Training: The entire framework is trained end-to-end min-
imizing the loss equation:

L = Lo + LMAL + LMCL − λ1σe + λ2σa (17)

where λ1, λ2 determines the amount of regularization for
aleatoric and epistemic uncertainties respectively. This pre-
vents Σk

i,p to grow indefinitely to minimise LMAL loss. Fur-
ther we regularize with σe to increase epistemic uncertainty,
thereby encouraging the utilization of a more mixtures.

Testing: During testing we utilize the EMA teacher ϕT

to generate the predicate embeddings r̂item. The debiasing
of predicate embeddings is only limited to training. These
predicate embeddings are then passed to MLN which out-
puts the predicate confidence scores from all mixture com-
ponents. The combined predicate confidence score ŷirp from
K mixtures is calculated as:

ŷirp =

K∑
k=1

πk
i,p

µk
i,p

Σk
i,p

(18)

4. Experiments
Dataset: Following previous works [7, 31], we also evalu-
ated our method on the most widely used benchmark, Ac-
tion Genome [17]. Action Genome is the largest benchmark
for video SGG; it is built on top of Charades[37]. It contains
476,229 bounding boxes for 35 object classes (without per-
son) and 1,715,568 instances of 26 predicate classes anno-
tated for 234,253 frames. For all experiments, we use the
same training and test split following [7, 26, 31].
Metrics and Evaluation Setup: We evaluated the per-
formance of FLOCODE with popular metrics, namely, re-
call@K (i.e., R@K) and mean-recall@K (i.e., mR@K), for
K = [10, 20, 50]. R@K measures the ratio of correct in-
stances among the top-K predicted instances with the high-
est confidence, but this is biased towards frequent predicate
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classes [41], whereas mR@K averages out the R@K over
all relationships. Hence, mR@K is a more reliable metric
for balanced evaluation across predicates [41].
Tasks: Following previous works [7, 17, 22, 45], we also
evaluated our method on three different experimental tasks:
1) Predicate Classification (PREDCLS): predict the pred-
icate class of object pairs, given the ground-truth bounding
boxes and labels of objects. 2) Scene graph classification
(SGCLS): predict both predicate labels and the category la-
bels of objects given the bounding boxes of objects. 3)
Scene graph detection (SGDET): simultaneously detects
objects appearing in the frame and the predicate labels of
each object pair in a frame. Following, we also evaluated
our method using two setups: a) With Constraint and b)
No Constraints. Later one allows each object pair to have
more than one predicates simultaneously while the former
one restricts to only one predicate.

Implementation details: Following previous works
[7, 17, 22, 31, 45], we adopted Faster R-CNN [36] with
a ResNet-101 [14] backbone as the object detector. The
object detector was trained on the training set of Action
Genome [17], resulting in a 24.6 mAP at 0.5 IoU with CoCo
metrics. To ensure a fair comparison, we utilized this de-
tector across all the baselines. Per-class non-maximal sup-
pression at 0.4 IoU (intersection over union) was applied,
following previous works [7, 17, 22, 31, 45], to reduce re-
gion proposals provided by the Region Proposal Network
(RPN). The parameters of the object detector (excluding the
object classifier) remained fixed during training when train-
ing scene graph generation models. For correlation-aware
predicate embedding, it is necessary to match object pairs
across frames. In cases with multiple objects in the same
category, we use the IoU between the two objects across dif-
ferent images to match the subject-object pair. The IoU be-
tween the bounding box of the object in the previous frame
and the object of the same category in the next frame is cal-
culated. If the IoU is higher than 0.8, they are considered
the same object. In the event of multiple candidates, the one
with the highest IoU is chosen. An AdamW optimizer [29]
is employed with a batch size of 1 and an initial learning
rate of 2e−5. The number of mixture components K is set
to 4 for SGCLS and 6 for PREDCLS and SGDET. The self-
attention and cross-attention layers in our framework have
8 heads with d = 1536, and dropout is set to 0.1. Regu-
larizer hyper-parameters are set as λ1 = 1, λ2 = 1. For
debiased predicate embedding, initial η is small i.e. 0.1 and
we further reduce it with patience of 3. For EMA teacher
update, α = 0.999 is used. All experiments are conducted
on a single NVIDIA RTX-3090.

4.1. Comparison with state-of-the-art

We compared our method FLOCODE with several state-
of-the-art methods for dynamic SGG, namely TEMPURA

[31], STTran [7], TRACE [45], STTran-TPI [49], APT
[26], and ISGG [21]. Additionally, we compared our
method with ReLDN [57], which is a static method. Per-
formance comparisons in terms of mR@K and R@K for
K = [10, 20, 50] are reported in Tables 1, 2, and 3. These
tables contain comparisons with two experimental setups:
a) With Constraint and b) No Constraints. For the tasks,
i.e., PREDCLS + SGCLS, we presented results for these ex-
perimental setups, specifically reporting mR@K and R@K
in Tables 2 and 3, respectively. Table 1 compares results
for the task SGDET. From the tables, it has been observed
that our method consistently outperforms other methods
across all tasks and for both experimental setups. Specif-
ically, in comparison to the best baselines, we observe im-
provements of 4.1% on SGDET-mR@10, 3.4% on SGCLS-
mR@10, and 1.9% on PREDCLS-mR@10 under the ”With
Constraint” setup. Under the ”No Constraints” setup,
we observe more significant improvements, with 3.9% on
SGDET-mR@10, 1.4% on SGCLS-mR@10, and 1.7% on
PREDCLS-mR@10. This demonstrates the capability of
FLOCODE in generating more unbiased SGG for videos in-
corporating dynamic fluctuations and long-tailed relations.
We further verified this in Figure 3 for With Constraint
and No Constraints. In these figures, we compared our
method on HEAD, BODY, and TAIL classes with mR@10
values. We split the classes into HEAD, BODY, and TAIL
with the same definition as mentioned in [31]. Clearly,
FLOCODE improved the performance across all the classes,
but the improvement for TAIL classes is more confirming
the unbiased predictions. Per-class performance is shown in
Fig. 4, comparing with other methods STTran and TRACE,
showing improvement at the class level. Additionally, our
method outperforms in terms of R@K values, as shown in
Table 3, demonstrating improvements overall compared to
existing methods. This shows that our method has bet-
ter generalization since it performs better on both mR@K
(long-tail) and R@K (overall). Qualitative visualizations
are illustrated in Fig. 2.

4.2. Ablation Studies

We have conducted extensive ablation studies on SGCLS
and SGDET tasks. Specifically, we studied the impact of
MCL (uncertainty-aware contrastive learning), Debiasing
(correlation-aware debiasing), TFoD (flow-aware tempo-
ral consistency), Regularizer (aleatoric and epistemic reg-
ularizer), and EMA Teacher. When all these components
have been removed, FLOCODE boils down to the base-
line STTran [7], where the object proposals and predicate
embeddings are fed to the FFN layers before finally pre-
dicting the predicate class using a classification layer. The
results for these ablation studies are presented in Table 4.
Uncertainty Attenuation and Debiasing: We first dis-
cuss the impact of uncertainty-aware contrastive learning
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Method With Constraint No Constraint

mR@10 mR@20 mR@50 R@10 R@20 R@50 mR@10 mR@20 mR@50 R@10 R@20 R@50

RelDN 3.3 3.3 3.3 9.1 9.1 9.1 7.5 18.8 33.7 13.6 23.0 36.6
HCRD supervised - 8.3 9.1 - 27.9 30.4 - - - - - -
TRACE 8.2 8.2 8.2 13.9 14.5 14.5 22.8 31.3 41.8 26.5 35.6 45.3
ISGG - 19.7 22.9 - 29.2 35.3 - - - - - -
STTran 16.6 20.8 22.2 25.2 34.1 37.0 20.9 29.7 39.2 24.6 36.2 48.8
STTran-TPI 15.6 20.2 21.8 26.2 34.6 37.4 - - - - - -
APT - - - 26.3 36.1 38.3 - - - 25.7 37.9 50.1
TEMPURA 18.5 22.6 23.7 28.1 33.4 34.9 24.7 33.9 43.7 29.8 38.1 46.4
FloCoDe 22.6 24.2 27.9 31.5 38.4 42.4 28.6 35.4 47.2 32.6 43.9 51.6

Table 1. Comparative results for SGDET task, on AG[17] in terms of mean-Recall@K and Recall@K, best results are in bold.

Method
With Constraint No Constraints

PredCLS SGCLS PredCLS SGCLS

mR@10 mR@20 mR@50 mR@10 mR@20 mR@50 mR@10 mR@20 mR@50 mR@10 mR@20 mR@50

RelDN 6.2 6.2 6.2 3.4 3.4 3.4 31.2 63.1 75.5 18.6 36.9 42.6
TRACE 15.2 15.2 15.2 8.9 8.9 8.9 50.9 73.6 82.7 31.9 42.7 46.3
STTran 37.8 40.1 40.2 27.2 28.0 28.0 51.4 67.7 82.7 40.7 50.1 58.8
STTran-TPI 37.3 40.6 40.6 28.3 29.3 29.3 - - - - - -
TEMPURA 42.9 46.3 46.3 34.0 35.2 35.2 61.5 85.1 98.0 48.3 61.1 66.4
FloCoDe 44.8 49.2 49.3 37.4 39.2 39.4 63.2 86.9 98.6 49.7 63.8 69.2

Table 2. Comparative results for PREDCLS and SGCLS task, on AG[17] in terms of mean-Recall@K, best results are in bold.

Method
With Constraint No Constraints

PredCLS SGCLS PredCLS SGCLS

R@10 R@20 R@50 R@10 R@20 R@50 R@10 R@20 R@50 R@10 R@20 R@50

RelDN 20.3 20.3 20.3 11.0 11.0 11.0 44.2 75.4 89.2 25.0 41.9 47.9
TRACE 27.5 27.5 27.5 14.8 14.8 14.8 72.6 91.6 96.4 37.1 46.7 50.5
STTran 68.6 71.8 71.8 46.4 47.5 47.5 77.9 94.2 99.1 54.0 63.7 66.4
STTran-TPI 69.7 72.6 72.6 47.2 48.3 48.3 - - - - - -
APT 69.4 73.8 73.8 47.2 48.9 48.9 78.5 95.1 99.2 55.1 65.1 68.7
TEMPURA 68.8 71.5 71.5 47.2 48.3 48.3 80.4 94.2 99.4 56.3 64.7 67.9
FloCoDe 70.1 74.2 74.2 48.4 51.2 51.2 82.8 97.2 99.9 57.4 66.2 68.8

Table 3. Comparative results for PREDCLS and SGCLS task, on AG[17] in terms of Recall@K, best results are in bold.

Figure 2. Qualitative Comparison with TEMPURA[31] for both With Constraint and No Constraints setup. From left to right: input
video frames, ground truth graphs, graphs generated by FLOCODE, graphs generated by TEMPURA[31]. Incorrect object and predicate
predictions are shown in green and red, respectively.
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Uncertainty-aware
Contrastive Learning

Correlation-aware
Debiasing

Flow-aware
Temporal

Consistency
Regularizer EMA Teacher

With Constraint No Constraints

SGCLS SGDET SGCLS SGDET

mR@10 mR@20 mR@10 mR@20 mR@10 mR@20 mR@10 mR@20

- - - - - 27.2 28.0 16.5 20.8 40.7 50.1 20.9 29.7

✓ - ✓ ✓ ✓ 34.1 33.8 19.6 22.1 46.9 61.1 26.6 32.7
- ✓ ✓ ✓ ✓ 33.6 34.3 19.4 21.8 46.2 60.6 25.8 32.5
✓ ✓ - ✓ ✓ 32.2 33.4 18.1 19.8 45.9 59.1 21.8 31.6
✓ ✓ ✓ - ✓ 35.8 36.6 21.2 22.7 48.3 61.4 27.5 34.4
✓ ✓ ✓ ✓ - 36.7 38.8 22.1 23.8 49.2 62.9 28.3 35.2
✓ ✓ ✓ ✓ ✓ 37.4 39.2 22.6 24.2 49.7 63.8 28.6 35.4

Table 4. Ablation Studies: Importance of MCL, Debiasing, TFoD, Regularizer & EMA Teacher for SGCLS and SGDET.

(a) SGDET (b) SGCLS (c) PREDCLS

(d) SGDET (e) SGCLS (f) PREDCLS

Figure 3. Comparison of mR@10 for the HEAD, BODY and TAIL
classes for ”with constraint”(top) and ”no contraints”(bottom)

Figure 4. Comparative per class performance for PREDCLS task
in R@10 for ”with constraint” setup

Task
K

1 2 4 6 8

PREDCLS 39.8 41.2 43.4 44.8 44.2
SGCLS 30.2 35.5 37.4 36.2 35.8
SGDET 16.1 18.1 21.9 22.6 22.1

Table 5. Results (in mR@10) with varying number of mixtures K
for With Constraint setup

and correlation-aware debiasing. First, we remove the loss
LMCL to study the improvement on top of LMAL. In the sec-
ond case, we remove the correlation-aware debiasing during
training. The results for these are shown in Table 4, rows
1 and 2. Comparing the resulting models with FLOCODE
shows a significant drop in mR@10 values, indicating the
value addition from each of these in generating unbiased
SGG. This also shows that both can address the bias, specif-
ically, contrastive learning deals with label correlation espe-
cially for long tailed classes and hence focus to generate
unbiased predicate embeddings. Temporally Consistent
Object Detection: Table 4 (row 3) clearly illustrates the
impact of flow-aware detection on ensuring temporal con-
sistency in object identification. The absence of TFoD leads
to a noticeable performance decline when contrasted with
FLOCODE, underscoring the pivotal role of accurate ob-
ject detection as a key bottleneck in SGG methods. For
the PREDCLS task, leveraging only ground-truth boxes and
labels results in significantly higher mR@k and R@K val-
ues compared to other tasks. Regarding the Uncertainty
Regularizer and EMA Teacher components (rows 4 and
5), their ablation underscores their crucial role in reducing
noise, especially for TAIL classes. Aleatoric and epistemic
regularization helps better prediction of the noise distribu-
tion i.e. mixture variances. EMA teachers contribute to bal-
anced predicate embeddings, enhancing performance spe-
cific to their respective classes. Number of Mixtures K:
The performance of FLOCODE with varying numbers of
mixtures in MLN is shown in Table 5. The number of mix-
tures between 4 to 6 is optimal.

5. Conclusion
In summary, this paper proposes FLOCODE, a method for
generating unbiased dynamic scene graphs from videos.
By addressing issues such as biased scene graph generation
and the long-tailed distribution of visual relationships,
FLOCODE achieves significant performance gains.
Through features like flow-aware temporal consistency,
correlation debiasing, label correlation and uncertainty
attenuation it offers a robust solution for capturing ac-
curate scene representations in dynamic environments.
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