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Abstract

A long-standing challenge in developing machine learn-
ing approaches has been the lack of high-quality labeled
data. Recently, models trained with purely synthetic data,
here termed synthetic clones, generated using large-scale
pre-trained diffusion models have shown promising results
in overcoming this annotation bottleneck. As these synthetic
clone models progress, they are likely to be deployed in
challenging real-world settings, yet their suitability remains
understudied. Our work addresses this gap by providing the
first benchmark for three classes of synthetic clone models,
namely supervised, self-supervised, and multi-modal ones,
across a range of robustness measures. We show that ex-
isting synthetic self-supervised and multi-modal clones are
comparable to or outperform state-of-the-art real-image
baselines for a range of robustness metrics – shape bias,
background bias, calibration, etc. However, we also find
that synthetic clones are much more susceptible to adver-
sarial and real-world noise than models trained with real
data. To address this, we find that combining both real and
synthetic data further increases the robustness, and that the
choice of prompt used for generating synthetic images plays
an important part in the robustness of synthetic clones.

1. Introduction

Most modern machine learning methods are bottlenecked
in performance by the quality and quantity of labeled data.
Several works [5, 39, 43] have shown that the generalization
error of neural networks follows the neural scaling law with
respect to the dataset size, i.e. the test error reduces linearly
with the log of the dataset size. Moreover, the datasets’
diversity [53] and fairness [63] are also factors that play an
important role in the generalization performance of modern
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Figure 1. Robustness of synthetic clones vs. real-image base-
lines for different model classes. Self-supervised and multi-modal
synthetic clones are close in performance on various robustness
measures to baseline models trained on real images. All synthetic
clones suffer in performance w.r.t. adversarial and common cor-
ruption robustness.

neural networks. Unfortunately, curating diverse, fair, and
large datasets is time-consuming and expensive.

The advent of large-scale image generation models like
Stable Diffusion [64] has revived the interest in utilizing
generated images to train models for various downstream
tasks in hopes of alleviating the need for high-quality anno-
tations. Models like [22, 67, 89] use only generated images
from Stable Diffusion for supervised training of a down-
stream classifier. [22, 31, 73] show that it is also possible to
train self-supervised models like SimCLR [14] and multi-
modal models like CLIP [60] using only synthetic images
and prompts. These models can match or outperform their
counterparts trained on real data for downstream tasks like
classification and segmentation. We term such models that
are trained using only generated data as synthetic clones.

Modern machine learning models are increasingly em-
ployed in solving real-world problems like autonomous
driving and automated medical assistance [9]. With the
rapid progress of using synthetic data for training models,
it is imperative that we understand how robust these models
are before deploying them in the real world. Recent work
on synthetic clones [22, 67, 73] has not focused on evalu-
ating the robustness of these models. Yet, models trained
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on synthetic or generated datasets have been known to suf-
fer from shortcomings such as model collapse [19, 70], i.e.
when the model forgets the long tail classes or learns a dif-
ferent distribution than the training dataset.

Our work aims to provide a comprehensive benchmark
for the robustness of synthetic clone models compared to
state-of-the-art (SOTA) baseline models that are trained on
real image datasets. We benchmark three classes of syn-
thetic clone models – supervised [22, 67], self-supervised
[73], and multi-modal [22] ones – against nine strong base-
line models trained using real images. We evaluate robust-
ness metrics regarding shape, background, and context bias.
We also benchmark these models against adversarial and
common image corruptions. Finally, we test how well these
models are calibrated in comparison to models trained with
real data. Our results are visually summarized in Fig. 1.

To overcome some of the drawbacks of using synthetic
data alone, we conduct extensive ablations regarding how
the robustness of synthetic clones changes with (i) joint
training with synthetic and real data, (ii) increasing the
number of synthetic samples, and (iii) the effect of prompts
when generating images with Stable Diffusion.

Let us summarize our findings: (i) On many robustness
metrics (calibaration, background bias, shape bias, etc.)
self-supervised and multi-modal models trained on syn-
thetic data perform on par with their counterparts trained on
real imagery. (ii) Supervised synthetic models, on the other
hand, lag behind baselines trained on real datasets w.r.t. sev-
eral key robustness measures like calibration, OOD detec-
tion, adversarial robustness, etc. (iii) Synthetic clones are
much more vulnerable to adversarial and common corrup-
tion than models trained with real images. (iv) A mixture of
real and synthetic data is the best combination for obtaining
robustness. (v) The choice of prompt for image generation
plays a crucial role in the robustness of synthetic clones.

2. Related Work
Self-supervised learning (SSL) methods [7, 12, 33, 34]
have emerged as promising alternatives to solve the data
annotation bottleneck. These models learn by solving pre-
text tasks like context prediction [18], image denoising [79],
patch prediction [18], and many others [11, 56, 59, 86, 87].
In recent years, they have come increasingly close to su-
pervised models. For example, the downstream classifica-
tion accuracy for DINOv2 [57] with supervised linear prob-
ing is 84.5% (using ViT-B) while that of EfficientNet [84],
a strong supervised model, is 88.4% on the ImageNet-1K
dataset [15]. However, SSL methods suffer from scaling is-
sues, i.e. augmenting an already large-scale dataset in size
has little effect on the model performance [29]. Another ap-
proach is using large-scale uncurated multimodal web data
[60]. However, this data is often noisy, biased, and limited
in diversity (e.g., certain concepts may have only a few data

points [24, 58]).

Generative neural networks are a class of models that,
given random noise samples, learn to transform these noise
samples into data. Modern generative models can broadly
be categorized into implicit models, such as GANs [3, 10,
27, 45] and diffusion-based models [40, 72], or explicit
models like normalizing flows [13, 17] and VAEs [48, 77].
Diffusion models are SOTA for image generation since
they address the limited diversity and image quality issues,
which impaired the use of previous generative models [83].

Synthetic data has found usage in a myriad of com-
puter vision tasks or applications like semantic segmenta-
tion [61], object detection [65], and autonomous driving [1].
Recently, generated data from large-scale pre-trained dif-
fusion models was used to train better object classification
models [4]. Particularly, [35, 67] showed that synthetic data
is extremely useful in transfer learning, zero-shot, and few-
shot classification. [22, 31, 74] show that even training of
large-scale self-supervised models, such as CLIP [60] and
SimCLR [14], is possible with synthetic data. Our work
focuses on such synthetic clone models where the training
data was generated using large-scale pre-trained diffusion
models. We use diffusion models because of the superior
quality and diversity of the generated data.

Robustness. An often overlooked aspect when evaluating
models trained with synthetic datasets is evaluating them
for robustness. Recently, some efforts have been made to
benchmark models trained with synthetic data for adversar-
ial robustness [69] and out-of-distribution (OOD) detection
[6]. Still, no comprehensive robustness evaluation of these
models exists. In our work, we aim to benchmark synthetic
clone models in a more comprehensive manner and on vari-
ous robustness benchmarks. Besides adversarial robustness
[28] and OOD detection, we also benchmark these mod-
els on common 2D and 3D image corruptions [36, 44], and
w.r.t. shape bias [25], context bias [46], background bias
[52], and calibration [30]. Previous works [6, 69] have
only benchmarked small-scale supervised synthetic mod-
els, while we analyze synthetic clones trained with 100s of
millions of synthetic images across three classes of models,
namely supervised, self-supervised, and multi-modal ones.

3. Background: Synthetic Clones
Before analyzing various synthetic clone models below, let
us briefly recapitulate how synthetic images can be gen-
erated using diffusion models and how various classes of
models have been trained on these synthetic images.

Synthetic data generation. The synthetic images in syn-
thetic clone models [22, 31, 67, 73] are typically generated
using large-scale pre-trained image generation models, e.g.,
Stable Diffusion [64] or Imagen [66]. The input to the
generation model is Gaussian noise and a conditional text
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Figure 2. Setups for training different classes of models using synthetic images. Supervised learning (bottom) uses the ground-truth
label for conditionally generating a synthetic image, while self-supervised (top left) and multi-modal methods (top right) make use of a
concept bank along with a large language model (LLM) for prompt generation. Please see text for more details.

prompt. Synthetic clones can be divided into three cate-
gories, namely supervised synthetic models, self-supervised
synthetic models, and multi-modal synthetic models. We
now describe how each model creates the prompt for gener-
ating the image and which losses are used to train the model.

Supervised models using generated data. For training
a supervised classifier, Sarıyıldız et al. [67] first generate
an image using Stable Diffusion conditioned on the prompt
“c, hc inside b”. Here, c is the ground-truth class name sam-
pled from all class labels of a dataset (e.g., ImageNet-1K
[15]), hc is the hypernym associated with c, and b denotes
one of the 365 classes from the Places365 [88] dataset. A
hypernym of c is the parent node of c in the WordNet [23]
hierarchy. The classifier is then trained end to end with
the cross-entropy loss (LCE) between the predicted label
of the generated image and the sampled ground-truth class
label used for generating the image; see Fig. 2 (bottom).
Sarıyıldız et al. [67] created 1.2M such prompts and gener-
ated corresponding images to train a ResNet50 model. Sim-
ilarly, Fan et al. [22] used just class names “c” for generat-
ing 16M images. They then train a ViT-B model on the
generated images and ground-truth class labels.

Self-supervised models using generated data. Syn-
thetic self-supervised models, namely SynCLR [73] and
StableRep [74], first sample a concept label from a con-
cept bank. The concept bank is typically constructed using
extracted synsets of WordNet [23] or common unigrams,
bigrams, and titles from Wikipedia [85]. This sampled con-
cept label is then fed into a large language model (LLM)
[2, 42, 76] for generating extra contextual information. The

final prompt is formed by concatenating the concept label
and the contextual information. This prompt is then used
to generate n images. After this, several augmentations
(Aug.) also used in the SimCLR model [14] are applied.
The SynCLR model is trained using a multi-positive con-
trastive loss (LContra) [47, 73], see in Fig. 2 (upper left).
Multi-modal model using generated data. The multi-
modal synthetic CLIP [22, 31] models also use a concept
label sampled from a concept bank. This concept label,
along with a random place label sampled from the classes
of Places365 dataset, is fed into an LLM [2] for generating
a caption, which is subsequently used for conditional image
generation. These images are used to train a CLIP model
[60] using a contrastive loss between the generated image
and the prompt that was used for generating the image. The
architecture is shown in Fig. 2 (upper right).

4. Robustness Analysis
Setup. We divide the models to be analyzed into super-
vised, self-supervised, and multi-modal models. For syn-
thetic supervised models, we use a ResNet50 from [67] and
a ViT-B model from [22], which were trained on approx.
1M images generated using prompts as described in Sec. 3.
The class labels used for creating the prompts were sampled
from the classes of the ImageNet-1K dataset [15]. For clar-
ity of notation, we term them SynResNet50 and SynViT-B
for all our experiments. We compare these models against
strong supervised models trained on the real ImageNet-1K
dataset like ResNet50 [32], ViT-B [20], DeiT-III [75], Swin
transformer [50], and ConvNeXt [51]. All baselines are
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from the PyTorch Image Models library [80].
For the self-supervised case, we use the SynCLR model

[73], which has been trained on 600M synthetic images. We
use SOTA self-supervised models like DINOv2 [57], MAE
[34], and MOCOv3 [33] trained on ImageNet-1K as self-
supervised baselines. All checkpoints for the baseline mod-
els were obtained from the timm library. For a fair compar-
ison, we use the ViT-B [20] backbone with a patch size of
16 for all models. We perform linear probing on all self-
supervised models, training a single-layer linear classifica-
tion head on the top of these models for 90 epochs using the
ImageNet-1k [15] dataset. We searched over ten learning
rates to find the optimal linear classifier for each model.

Finally, for the multi-modal case, we analyze the syn-
thetic CLIP model from [22], which we term as SynCLIP,
trained on 371M synthetic images. We compare this
model with the CLIP implementation from OpenCLIP [41],
trained on 400M real images. We used the ViT-B backbone
for these models to allow for a fair comparison. For CLIP
and SynCLIP we report the zero-shot results.

4.1. Calibration

As neural networks become adopted for safety-critical tasks
like autonomous driving and healthcare, it is not only im-
portant to predict accurate results, but also to accurately re-
port the confidence in their prediction [30]. Calibration can
help to understand how reliable the model’s prediction is
and whether an end user can trust the model’s output. The
calibration of neural networks is commonly measured using
the Expected Calibration Error (ECE) [55]. The ECE mea-
sures the expected absolute difference between the model
confidence and the model accuracy. In our work, we study
the effect that training on synthetic images has on the cali-
bration of a model compared to training with real data.

We report the results for the ECE metric with 20 bins for
all models. Fig. 3 shows the results for both in-distribution
(ID) calibration (train and test splits are from the same
dataset) on the ImageNet-1k dataset [15] and for out-of-
distribution (OOD) calibration (train and test split are from
different datasets) on the ImageNet-R [37] and ImageNet-A
[38] datasets. We can conclude the following:

Observation 1: Synthetic clones are mostly well cali-
brated for the in-distribution case and even to some ex-
tent out-of-distribution on ImageNet-R. The OOD cal-
ibration of synthetic clones suffers on ImageNet-A.

This may be because the synthetic data generated from
pre-trained diffusion models (trained on data scraped from
the web) already captures the distribution of the ImageNet
(images scraped from the web) and ImageNet-R (consisting
of cartoons and sketches, which are abundant on the inter-
net) datasets. ImageNet-A, on the other hand, consists of

naturally adversarial examples that are hard to find on the
internet; hence, synthetic clones and even baseline models
trained on real images exhibit a rather poor calibration for
this dataset. However, models trained with real datasets are
generally better calibrated for ImageNet-A, likely due to the
inherent noise in the dataset (see also Sec. 4.2).

Out of distribution (OOD) detection deals with finding
out how well a model can distinguish between samples from
the training data distribution (ID – in distribution) and sam-
ples from another distribution. OOD detection is critical to
increasing an end users’ trust in the safety and reliability of
the model. We thus aim to evaluate how training on syn-
thetic data affects a model’s capability for OOD detection.

The OOD detection task can be formulated as a bi-
nary classification task on the model’s predictive probabil-
ity. A model F with weights θ classifies an input sam-
ple xi as ID if the maximum predictive probability of the
sample is higher than a pre-defined threshold value τ , i.e.
maxFθ(xi) ≥ τ , and as OOD if maxFθ(xi) < τ . OOD
detection can be evaluated using standard metrics for binary
classification, such as the area under the receiver operating
characteristic curve (AUROC). We also report the false pos-
itive rate of OOD samples when the true positive rate of
in-distribution samples is at 95% (FPR@95). Tab. 1 shows
the results of all models on three OOD datasets, namely
SUN397 [81], Places365 [88], and iNaturalist [78], where
ImageNet-1K is the ID dataset. We conclude the following:

Observation 2: SynCLR and SynCLIP are compara-
ble to the baseline models in their category for OOD
detection. Even with 16 times more data than the base-
line, SynViT-B clearly lags behind supervised models
trained with real data.

4.2. Robustness

Adversarial robustness. Adversarial learning aims to un-
derstand model robustness to examples manipulated by an
adversary in a way that the examples seem similar to the hu-
man eye but change the model’s predictions. In our work,
we want to explore whether models trained on synthetic
data are more susceptible to adversarial attacks. We use two
popular white-box attacks, the Fast Gradient Sign Method
(FGSM) [28] and the Projected Gradient Descent (PGD) at-
tack [52]. These white-box attacks require that the model’s
gradient be known to the adversary. The FGSM attack per-
turbs the input image with the gradient of the model’s pre-
diction w.r.t. its input, scaled by a small step ϵ. This can be
written as x̂i = xi+ ϵ∇xiJ(θ, xi, yi), where xi denotes the
input image, ∇xi

J denotes the gradient of the loss function
w.r.t. xi, and yi denotes the label for the input image xi.
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Figure 3. Test error vs. ECE for ID and OOD datasets. We report the resulting ECE metric and test error metrics for both ID (ImageNet)
and OOD datasets (ImagNet-{R,A}). Filled markers indicate real models, empty markers indicate synthetic clones.

Table 1. OOD detection with ImageNet-1K being in-domain (ID). We report the AUROC and FPR@95 metrics for the OOD detection
task on the three OOD datasets, namely SUN, iNatualist, and Places. In addition, we also report the avg. performance of all models on all
three datasets. The best performing model in each category is highlighted in bold.

No. of training
images

SUN iNaturalist Places Avg.

Model AUROC (↑) FPR@95 (↓) AUROC (↑) FPR@95 (↓) AUROC (↑) FPR@95 (↓) AUROC (↑) FPR@95 (↓)

ResNet50 1.2M 0.84 0.65 0.91 0.47 0.82 0.69 0.86 0.60
SynResNet50 1.2M 0.70 0.83 0.72 0.89 0.67 0.87 0.70 0.86
Swin-B 1.2M 0.79 0.63 0.86 0.45 0.77 0.69 0.81 0.59
ConvNeXt 1.2M 0.76 0.68 0.89 0.45 0.74 0.71 0.80 0.61
DeiT 1.2M 0.80 0.66 0.89 0.48 0.80 0.68 0.83 0.61
ViT-B 1.2M 0.81 0.64 0.90 0.45 0.80 0.67 0.84 0.59
SynViT-B 16M 0.76 0.74 0.75 0.75 0.72 0.79 0.74 0.76

MAE 1.2M 0.76 0.84 0.87 0.71 0.75 0.86 0.79 0.80
DINOv2 142M 0.88 0.49 0.98 0.09 0.87 0.53 0.91 0.37
MOCOv3 1.2M 0.84 0.65 0.94 0.35 0.84 0.66 0.87 0.55
SynCLR 600M 0.85 0.58 0.95 0.24 0.83 0.63 0.88 0.48

CLIP 400M 0.82 0.74 0.68 0.88 0.78 0.76 0.76 0.79
SynCLIP 371M 0.73 0.75 0.74 0.75 0.70 0.79 0.72 0.76

The PGD attack is an iterative version of the FGSM attack,
followed by a projection of the adversarial input to an ϵ ball
around the input x. The ϵ value denotes the maximum per-
turbation allowed. We use ϵ values of 1/255 for the PGD
and FGSM attacks. The number of steps is set to 20 for
the PGD attack. We report the accuracy of the clean and
the adversarial examples from the test set. We define the
adversarial robustness metric, Radv, as the relative accuracy
between adversarial and clean samples as Radv = Accadv

Accclean
,

where Accadv is the accuracy on the adversarial samples and
the Accclean is the accuracy on the clean samples. Tab. 2
shows the results. We can conclude the following:

Observation 3: Synthetic clone models are signifi-
cantly more vulnerable to adversarial examples, par-
ticularly supervised synthetic clones, than models
trained with real data. The self-supervised synthetic
clone model trained with large amounts of synthetic
data, i.e. SynCLR, is loosely comparable to real-image
baseline models in its respective category.

We find that MAE [34] performs the worst among all
models (synthetic and real) regarding adversarial robust-
ness, indicating that the training objective along with the
training dataset size are important factors in determining a
model’s adversarial robustness.

Table 2. Adversarial robustness results (in %). We report the
clean and adversarial accuracy. Also, we report the relative adver-
sarial robustness (Radv) metric for each model.

FGSM PGD

Model Accclean(↑) Accadv(↑) Radv(↑) Accadv(↑) Radv(↑)

ResNet50 80.12 26.95 33.64 16.71 20.85
SynResNet50 42.89 2.12 4.95 1.27 2.96
Swin-B 83.08 48.59 58.49 23.71 28.54
ConvNext 85.52 42.19 49.33 17.51 20.47
DeiT 84.59 53.22 62.92 35.51 41.98
ViT-B 76.78 27.39 35.67 20.45 26.64
SynViT-B 50.96 8.84 17.35 5.06 9.92

MAE 67.59 0.67 0.99 1.34 1.98
DINOv2 84.49 19.10 22.61 18.71 22.14
MOCOv3 76.66 13.21 17.23 9.11 11.88
SynCLR 80.46 7.31 9.08 6.18 7.68

CLIP 68.27 8.75 12.82 6.31 9.24
SynCLIP 55.11 2.40 4.35 2.02 3.67

Robustness against common corruptions. Next, we
evaluate the performance of all models on real-world noise
corruptions that occur frequently. For this, we evaluate on
the ImageNet-C [36] and ImageNet-3DCC [44] datasets.
ImageNet-C consists of 19 naturally occurring image cor-
ruptions like Gaussian noise, shot noise, motion blur, elas-
tic transforms, etc. ImageNet-3DCC includes 12 common
corruptions that take depth into account, e.g., z-axis blur,
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Table 3. Common corruptions robustness results (in %). We report the individual and average accuracy for various 2D and 3D common
corruptions. We also report the relative drop in average accuracy (Avg. Rcc) for all models.

Noise ResNet50 SynResNet50 Swin-B ConvNeXt DeiT ViT-B SynViT-B MAE DINOv2 MOCOv3 SynCLR CLIP SynCLIP

AccClean 80.12 42.89 83.08 85.52 84.59 76.78 50.96 67.59 84.49 76.66 80.46 68.27 55.11

Shot noise 56.31 5.11 66.33 72.31 75.41 57.95 29.03 34.47 73.45 57.14 43.23 44.13 19.85
Motion blur 47.55 5.56 59.87 67.30 70.85 49.58 19.91 27.70 67.24 48.68 37.47 38.63 16.67
Snow 44.32 7.07 57.62 65.38 69.02 45.71 18.33 25.87 67.17 46.27 40.38 38.22 16.64
Pixelate 45.32 7.38 58.11 66.07 69.66 46.95 19.96 27.89 69.06 48.47 41.33 40.14 17.26
JPEG compression 47.03 7.09 58.92 67.51 70.37 49.82 20.91 30.38 70.70 51.60 39.66 41.81 16.34
Near focus 64.55 27.28 69.11 75.23 75.82 63.17 33.98 47.18 77.33 65.14 67.57 56.90 34.64
Far focus 60.94 24.76 65.93 72.53 73.28 60.13 31.34 43.96 75.35 61.77 63.85 53.89 32.04
Fog 3D 58.80 23.22 63.67 70.17 71.00 58.11 30.57 40.17 72.87 58.64 60.48 51.29 30.88
XY motion blur 54.30 19.42 60.12 66.86 67.94 53.95 26.71 35.25 69.11 54.43 54.78 47.20 27.05
Z motion blur 50.43 16.77 56.85 64.28 65.52 50.12 22.97 32.07 66.59 50.65 50.10 43.90 23.64

Avg. Acccc (↑) 52.96 14.37 61.65 68.76 70.89 53.55 25.37 34.50 70.89 54.28 49.88 45.61 23.50

Avg. Rcc(↑) 66.10 33.50 74.21 80.40 83.80 69.74 49.78 51.04 83.90 70.81 61.99 66.81 42.64

far and near focus errors, etc. Due to time and resource
constraints, we report the results only on ten common cor-
ruption tasks (five each from ImageNet-C and ImageNet-
3DCC). We report the accuracy of the clean and corrupted
samples and the average accuracy over all corruptions. We
also report the Avg. Rcc metric, which is defined as the rel-
ative accuracy between the clean samples and the average
accuracy over all corruptions, i.e. Avg. Rcc =

Avg. Acccc
Accclean

. The
results are given in Tab. 3 and yield the following conclu-
sion:

Observation 4: Synthetic clones are significantly less
robust to common corruptions in images than base-
lines trained with real images.

The Avg. Rcc is significantly lower for synthetic clones
across all categories of models. Real datasets inherently
have these common corruptions present in the imagery,
hence training on real data already makes the resulting mod-
els more robust to noise. Synthetic images currently lack
these corruptions, making synthetic clones highly suscepti-
ble to common image corruptions.

4.3. Biases

Context bias. We define context bias as the affinity of a
model to use contextual cues, e.g., location for classifying
objects, rather than actually using the object appearance.
This context bias exists because most large-scale datasets
consist of uncurated data scraped from the internet. For ex-
ample, images of airplanes in a forest are highly unlikely
when compared to airplanes on a taxiway. We use the FO-
CUS (Familiar Objects in Common and Uncommon Set-
tings) dataset [46] to evaluate the context bias, which con-
sists of around 21K images. Each image in the dataset is an-
notated with the object class, the time of day, location, and
weather labels. FOCUS subdivides the dataset into a subset
of common and uncommon samples. Uncommon samples
are uncommon in the real world, like “airplane in forest”

Table 4. Context bias results (in %). CBk denotes the context
bias with k uncommon attributes.

Model CB1 (↑) CB2 (↑)

ResNet50 61.27 38.70
SynResNet50 62.33 44.49
Swin-B 68.83 54.85
ConvNext 70.20 55.57
DeiT 68.19 55.19
ViT-B 67.21 49.71
SynViT-B 66.13 50.29

MAE 59.75 46.53
DINOv2 69.11 54.46
MOCOv3 62.29 44.95
SynCLR 70.04 58.42

CLIP 76.77 63.09
SynCLIP 71.47 54.39

or uncommon in the ImageNet dataset due to labels used
for its construction (e.g., there is no label for seaplane in
ImageNet). The dataset is partitioned into mutually exclu-
sive partitions Pk where k is the number of uncommon at-
tributes. The total dataset is divided into four partitions, P0

(containing only common objects) to P3 (containing three
uncommon attributes). We report the CBk metrics (Context
Bias with k uncommon attributes), which is defined as the
relative accuracy between the accuracy on the partition with
no uncommon attributes P0 and a partition with k uncom-
mon attributes Pk, i.e. CBk =

AccPk

AccP0
. For example, CB2

measures the relative accuracy between P0 and P2. The re-
sults are given in Tab. 4 and yield the following:

Observation 5: Self-supervised synthetic clones are
robust to changes in context compared to baseline su-
pervised and self-supervised models trained with real
data. The supervised synthetic clone SynViT-B is com-
parable in performance to the ViT-B model trained
on real data. Meanwhile, SynCLIP is more prone to
changes in context compared to CLIP, but it is still
comparable to models like DINOv2 and ConvNeXt.
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Figure 4. Shape bias. (left) Average shape bias of models trained
with synthetic (dashed bars) and real data. Synthetic clones are
generally more biased toward shape than texture compared to
models trained with real datasets. (right) Class-wise shape bias
of synthetic clones and their counterparts trained using real data.
Solid and dashed lines represent the mean shape bias of models
trained with real images and synthetic images, respectively.

Shape-texture bias. Children learn to recognize and or-
ganize objects based on shape and are more biased towards
object shape rather than color and textures [16, 71]. It has
been shown [25, 54] that biasing a network towards shape
increases its robustness against common corruptions. This
suggests that the robustness of neural networks generally
benefits from biasing towards categorizing objects by shape
rather than textures. Generated images from GANs typi-
cally have high-frequency artifacts (indicating high texture
bias) [21, 68]. Diffusion models also exhibit similar pat-
terns, though these are more muted [62]. Such artifacts
contrast with real images that do not contain these high-
frequency artifacts. To understand if training on synthetic
images from Stable Diffusion biases the networks towards
texture, we use the cue conflict dataset [25]. This dataset
consists of about 1200 images of 16 classes where the tex-
ture and shape of an image are in conflict with each other.
Fig. 4 shows the shape bias of all the models averaged
across all classes. We also show the class-wise shape bias
results for synthetic clones and some baseline models. We
conclude the following:

Observation 6: Synthetic clones tend to be more
shape-biased than texture-biased. In particular,
SynCLIP outperforms all models on the shape bias
metric, while SynViT-B outperforms all classification
and self-supervised models. The SynCLR model has
comparable performance to the MOCOv3 model and
outperforms the MAE model on the shape-bias metric.

A similar result was observed in [8] with synthetic data
from StyleGANv2 [45] models. Our results indicate that
synthetic data is diverse in terms of shape, leading to a
higher shape bias of synthetic clone models, but this could
indicate that the generated images lack texture diversity,

Table 5. Background bias results (in %). BG-Gap metric reports
the drop in performance by just changing the background to a dif-
ferent class than the foreground class.

Model Original Acc.
(IN-9L, ↑)

Mix-Same Acc.
(↑)

Mix-Rand Acc.
(↑)

BG-Gap (↓)

ResNet50 95.43 87.04 81.36 5.68
SynResNet50 66.44 44.35 35.83 8.52
Swin-B 96.57 88.32 82.57 5.75
ConvNeXt 97.98 93.95 90.40 3.56
DeiT 97.70 93.28 89.98 3.31
ViT-B 95.98 87.53 79.63 7.90
SynViT-B 87.70 77.01 71.60 5.41

MAE 57.36 46.47 40.57 5.90
DINOv2 97.95 91.93 85.95 5.98
MOCOv3 95.01 83.63 74.17 9.46
SynCLR 96.22 86.59 80.37 6.22

CLIP 93.31 83.09 77.19 5.90
SynCLIP 84.79 71.16 65.83 5.33

making the network rely more on shape for classification.

Background bias. The background bias of models can be
used to identify if the model is using the background of the
image to make the classification decision instead of using
the object itself. Learning if a model is biased towards the
background is an effective way to understand if the model
has learned shortcuts [26] instead of learning good features
for the given category. For evaluating a model’s background
bias, we utilize the Mixed-Rand and Mixed-Same partitions
from the IN-9L dataset [82]. The Mixed-Rand dataset seg-
ments the foreground object in an image and switches the
original background with a random background from a dif-
ferent class label, while the Mixed-Same partition places the
segmented foreground object on a random background from
the same class label. Tab. 5 shows the accuracy of all mod-
els on the original, Mixed-Rand, and Mixed-Same parti-
tions from the IN-9L dataset, along with BG-Gap. The BG-
Gap measures the difference in performance between ac-
curacies on the Mixed-Rand and Mixed-Same datasets and
assesses how decisions can be manipulated just by chang-
ing the background to a different class than the foreground.
We conclude the following:

Observation 7: Synthetic clones perform on par in
terms of background bias with a SOTA baseline model
trained with real data.

In general, we found all models (synthetic and real) to be
very robust to background changes.

4.4. Ablations

We now look at three important factors that affect the ro-
bustness of synthetic clone models. We use the models from
[22] for these ablations (including all the CLIP models).

Effect of prompts. Here, we analyze the effect that the
prompt has on the robustness of the synthetic clone models.
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Table 6. Effect of prompt type and dataset size on various performance metrics for the supervised SynViT-B model. Radv (FGSM)
denotes the adversarial robustness for the FGSM attack, and Rcc (2DCC) the robustness for 2D common corruptions. Bold indicates the
best performance within a prompt type, and color indicates the best performance across all prompts and dataset sizes.

Metric Class name Captions CLIP templates

1M 4M 8M 16M 1M 4M 8M 16M 1M 4M 8M 16M

Acc. (↑) 0.44 0.49 0.50 0.51 0.50 0.58 0.59 0.60 0.45 0.53 0.54 0.55
Radv (FGSM, ↑) 0.14 0.18 0.17 0.17 0.12 0.16 0.16 0.17 0.15 0.17 0.18 0.18
Rcc (2D-CC, ↑) 0.39 0.42 0.43 0.42 0.37 0.43 0.44 0.44 0.44 0.51 0.54 0.54
CB2(↑) 0.47 0.47 0.47 0.50 0.52 0.58 0.58 0.59 0.47 0.53 0.50 0.50
Shape Bias (↑) 0.39 0.55 0.56 0.56 0.33 0.42 0.47 0.45 0.57 0.71 0.71 0.69
BG-Gap (↓) 0.71 0.66 0.61 0.54 0.85 0.54 0.53 0.52 0.63 0.42 0.37 0.46
FPR@95 (SUN, ↓) 0.81 0.74 0.75 0.74 0.77 0.74 0.73 0.74 0.84 0.82 0.81 0.80
ECE (↓) 0.33 0.31 0.29 0.28 0.25 0.18 0.17 0.16 0.30 0.24 0.23 0.23

Table 7. Effect of dataset composition and size on various performance metrics for the SynCLIP model. Bold indicates the best
performance within a prompt type, and color indicates the best performance across all dataset compositions and sizes.

Metric Real Synthetic Synthetic + Real

64M 128M 256M 371M 64M 128M 256M 371M 64M 128M 256M 371M

Acc. (↑) 0.55 0.60 0.65 0.66 0.47 0.51 0.54 0.55 0.56 0.62 0.65 0.66
Radv (FGSM, ↑) 0.09 0.07 0.10 0.12 0.05 0.03 0.04 0.04 0.09 0.08 0.10 0.12
Rcc (2D-CC, ↑) 0.44 0.46 0.51 0.52 0.29 0.28 0.31 0.31 0.46 0.48 0.52 0.52
CB2 (↑) 0.52 0.52 0.57 0.61 0.58 0.53 0.55 0.54 0.61 0.58 0.63 0.61
Shape Bias (↑) 0.51 0.51 0.51 0.52 0.54 0.55 0.59 0.58 0.54 0.51 0.56 0.60
BG-Gap (↓) 0.73 0.76 0.57 0.72 0.65 0.51 0.57 0.53 0.73 0.63 0.63 0.56
FPR@95 (SUN, ↓) 0.92 0.84 0.81 0.82 0.86 0.75 0.75 0.75 0.86 0.81 0.82 0.78
ECE (↓) 0.22 0.19 0.16 0.14 0.25 0.20 0.17 0.16 0.16 0.13 0.11 0.11

Tab. 6 shows results for a SynViT-B model [22] trained on
synthetic images generated using different prompts such as
(i) class names, (ii) 80 CLIP templates, e.g. “high-quality
photo of {class name}”, used in evaluating the zero-shot
classification performance of the CLIP model, and (iii) class
names combined with a generated caption from BLIP2 [49],
e.g. “Tench [class label], a man holding a fish”. As can be
seen in Tab. 6, captions and CLIP templates are much better
for creating robust synthetic clones compared to just using
class names. This can be attributed to more diverse images
being generated with more descriptive text.
Effect of adding real data. Next, we study the effect of
using a mixture of real and synthetic image data on the ro-
bustness of the CLIP model. Fan et al. [22] trained the CLIP
model with a fixed dataset size (for example, 371M images)
where the real and synthetic images are picked randomly to
create a subset containing both real and synthetic images,
which are then used for training the CLIP model. Tab. 7
shows that adding real data as suggested by [22] improves
the performance on many key metrics (ECE, adversarial ac-
curacy, shape bias) while remaining comparable on others.
Also, we see that training with just synthetic images or a
combination of synthetic and real images creates more ro-
bust models compared to models trained just on real data.
Size of generated data. We evaluate the effect of dataset
size on the training of synthetic clones. As seen in Tabs. 6
and 7, adding more data, in general, helps with the robust-
ness of both SynViT-B and SynCLIP models. In some cases,
adding more data may slightly decrease performance, which

can be due to less dataset diversity with increasing dataset
size and overfitting of the model with less diverse data.

5. Conclusion

Our work is the first to perform a detailed analysis of
models trained with synthetic data across different robust-
ness measures. Specifically, we show that certain synthetic
clones, namely SynCLIP and SynCLR, perform within tol-
erable limits of their counterparts trained on real images;
this holds for all robustness metrics except for common cor-
ruptions and OOD detection. Supervised models, namely
SynViT-B, on the other hand, are outperformed by their
real-image counterparts on all metrics except shape bias,
which clearly shows the need for better supervised syn-
thetic clones. Through detailed ablations, we find that using
captions or CLIP templates produces more robust synthetic
clones. Importantly, we find that mixing real data with syn-
thetic data can improve the robustness measures across most
metrics. We hope our work encourages the development of
more robust synthetic clones.
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