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Abstract

Modern deep CNN face matchers are trained on datasets
containing “color" images. We show that such match-
ers achieve essentially the same accuracy on color images
when trained using only grayscale images. We then con-
sider possible causes for deep CNN face matchers “not
using color”. Popular web-scraped face datasets actu-
ally have 30 to 60% of their identities with one or more
grayscale images. We analyze whether this grayscale el-
ement in the training set impacts the accuracy achieved,
and conclude that it does not. Comparable accuracy for
color test images using only grayscale images implies
that the inclusion of “color" may not necessarily add any
significant information to the recognition of individuals.
This also implies the use of computing resources can be
optimized to make the training process more efficient us-
ing only grayscale images. Utilizing grayscale images for
training reduces the memory footprint of the training data,
thereby decreasing system processing time during training.
Additionally, our findings emphasize that the adoption of
grayscale images not only makes face recognition train-
ing more efficient but also offers the opportunity to include
more training data, which could result in more accurate
face recognition models.

1. Introduction

Achromatopsia is a condition characterized by a par-
tial or total absence of color vision. People with complete
achromatopsia cannot perceive any colors; they see only
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Figure 1. Do Deep CNN Face Matchers “Use” Color? Deep
CNN face matchers are typically trained and tested on RGB color
images (above left). We show that the networks achieve equivalent
overall accuracy processing grayscale images (above right), taking
1/3 of the memory and reducing the complexity of the early layer
of the network.

black, white, and shades of gray. [1]

Deep convolutional neural networks (CNNs) have pow-
ered impressive accuracy gains in many areas of com-
puter vision. Some of the widely used face matchers
[17,31,36,45,57,60] use different loss functions in training
a ResNet [28] deep CNN backbone. The size of the train-
ing set, in terms of the number of identities and the number
of images, is a crucial factor in determining the accuracy
of a deep CNN face matcher. Web-scraped, in-the-wild
face datasets were popularized by Labelled Faces in the
Wild (LFW) [29]. Numerous web-scraped, in-the-wild face
datasets have been introduced since LFW, increasing in size
seemingly every year. While the MS1Mv2 dataset [27] con-
tinues to be a widely-used training set, more accurate ver-
sions of matchers can be trained using newer, larger datasets
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such as Glint-360k [7] and WebFace [71]. All of these web-
scraped, in-the-wild training sets contain images in RGB
color format.

There is no question that color is essential for some
general computer vision tasks [16, 22, 55]. But do cur-
rent deep CNN face matchers actually use color to achieve
better accuracy than they could with grayscale? The an-
swer is important because training deep CNNs is notori-
ously memory- and compute-intensive. Color images re-
quire 3 times the memory of native grayscale, and 3 times
the weights in the early layer of the CNN. By using native
grayscale instead of color, it’s possible to train the same
deep CNN on a larger quantity of images while using only
one-third of the weights in the initial layer.

The remainder of this paper is organized as follows. Sec-
tion 2 gives a brief literature review. Sections 3 and 5 to-
gether analyze whether there is any accuracy difference be-
tween using grayscale or color for the training data or the
test data; all results show that color does not give consistent
accuracy gain over grayscale. Section 4 details the network
implementation. Section 6 shows that using grayscale could
improve the training effiency and saved disk-space allows
opportunity to use additional data to improve models. Sec-
tion 7 presents qualitative analysis on model performance
with RGB and grayscale training sets. Finally, Section 8
summarizes and discusses the results.

2. Literature Review
Impact of color on CNNs for general object classifica-
tion/detection. Researchers have investigated how factors
such as noise, blur, jitter, compression, and others affect
accuracy of general object classification by deep networks
[19, 20, 24, 49, 52, 70]. However, the impact of color has re-
ceived comparatively less attention for general object clas-
sification. One early study by Engilberge et al. [22] ana-
lyzed the learned network to detect and characterize color-
related features. They found color-specific units in CNNs
and demonstrated that the depth of the layers affects color
sensitivity. Buhrmester et al. [13] investigated the impact of
several color augmentation techniques on the deeper layers
of the network and found that luminance is the most robust
against changes in color systems. This finding suggests that
the intensity value in color images contains the most useful
content. De et al. [16] showed that color information has
significant impact on the inference of deep neural networks.
Singh et al. [55] showed that CNNs often rely heavily on
color information, but that this varies between datasets.
Several researchers have found one color space better than
another for general object classification [13, 18, 25, 53, 64].
Additionally, in their study, Buhrmester et al. [13] inves-
tigated the effects of using RGB on a model trained with
grayscale data. Their experiments revealed minimal impact
on accuracy. They speculated that essential visual cues such

as edges and brightness are effectively learned and utilized
by the model for object recognition tasks. For a short review
of the impact of the color space on classification accuracy,
see Velastegui et al. [59]
Impact of color on human ability in face perception.
The role of color in face perception by humans has been
studied in Psychology. Early work by Bruce et al. [12]
and Kemp et al. [35] largely dismissed the impact of color
on face recognition. However, more recent work by Sinha
et al. [56, 65] demonstrated the influence of color on hu-
man ability in face detection and recognition. Brosseau et
al. [11] reported that color-blind individuals performed sig-
nificantly poorer on face recognition tasks, underscoring the
importance of color. Researchers have also explored the
effects of both face and background color on the percep-
tion of facial expressions [46]. Bindemann et al. [10] exam-
ined face detection performance in the absence of color and
found that performance declines when color information is
removed from faces, regardless of whether the surrounding
scene context is rendered in color.
Impact of color on deep CNN face perception. Re-
searchers have extensively examined the effects of qual-
ity factors, including blur, noise, occlusion, distortion,
and more, on the accuracy of deep CNN face recognition
[26, 34, 43]. However, the influence of color has received
relatively little attention. To our knowledge, Grm et al. [26]
is the only previous work on this specific topic. They
evaluated several pre-ArcFace matchers that were trained
on RGB images, with RGB and grayscale versions of test
images. They found that the matchers trained on RGB
achieved similar accuracy on grayscale test images as on
RGB test images. Our study differs from [26] in four sig-
nificant ways. One, we utilize deeper networks and employ
more advanced loss functions that are considered SOTA for
face recognition. Two, we train the entire network using
grayscale images and evaluate its performance on RGB im-
ages, aiming to assess the significance of color information
for modern face recognition networks. Three, we examine
the degree to which the network learns color-oriented fea-
tures in the layer that analyzes the RGB input. Four, we
examine the degree to which the RGB of the skin region of
an individual varies across their training images.

3. Accuracy on Grayscale vs. RGB Test Sets
This section evaluates one of the widely used pre-trained

face matchers to determine if it achieves better accuracy
for RGB vs grayscale images. We present the results
for combined-margin model based on ArcFace loss [17],
trained on Glint-360K(R100) [7] with weights from [3].
The network processes 112 × 112 aligned faces to create
512-d feature vectors matched using cosine similarity. Test
images are sourced from the MORPH dataset [4, 51], the
same version as in [5]. MORPH includes images of Cau-
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(a) Caucasian Male (b) Caucasian Female (c) African-American Male (d) African-American Female

Figure 2. Model Trained with RGB Images Exhibits Similar Performance When Applied To Grayscale Images From Diverse
Demographics. This suggests that using grayscale images do not disproportionately influence any specific demographic group. Each
image pair presented in the plot has similarity score for original RGB version and grayscale version. For each demographic, throughout the
range of similarity, the cloud of points trends on the 45-degree line. If grayscale gave consistently lower similarity score, the cloud should
trend below the 45-degree line. ResNet backbone, ArcFace loss, glint training set, MORPH test images.

casian and African-American males and females, with iden-
tities distinct from the web-scraped celebrity training sets.

Figure 2 presents a test of whether training on web-
scraped color images has any consistent accuracy differ-
ence for grayscale versus RGB versions of test images. The
test sets in this experiment are the four main demographic
groups in MORPH. RGB-RGB image pairs are formed from
the original MORPH color images. Corresponding gray-
gray image pairs are formed by using OpenCV to create
grayscale versions of the RGB images. To ensure com-
patibility with the same pre-trained model used for both
grayscale and color images, grayscale images are loaded in
a three-channel format where the values in all color planes
are identical, i.e., R=G=B.

Each pair of images produces a point in the scatter plot
in Figure 2, where the cosine similarity for the RGB version
of the image pair is the horizontal axis and the similarity of
the grayscale version of the same image pair is the vertical
axis. If accuracy is generally higher when matching RGB
pairs, the cloud of points would trend below the 45-degree
line. If the accuracy is generally higher for grayscale, the
points would trend above the 45-degree line. The actual re-
sult is that the cloud clusters along the 45-degree line. This
indicates no consistent accuracy difference when matching
grayscale versus color image pairs. This is true for each
of the four demographic groups. Figure 2 illustrates that,
on average, the Pearson product-moment correlation coeffi-
cient (R) between similarity scores computed for color im-
age pairs and grayscale image pairs is ≈ 0.97. This quan-
titatively demonstrates that facial similarity remains consis-
tent whether computed from color or grayscale images.

4. Implementation Details

In this section, we provide a concise overview of the con-
figuration employed. To train ArcFace and AdaFace from
scratch with color and grayscale images, the configurations
remain consistent across different training instances of the
same model, and the details are included to ensure that oth-

ers could reproduce the results if desired. Both loss func-
tions, ArcFace and AdaFace, are trained using ResNet-50
backbone [17, 28]. For ArcFace, we employ a combined
margin with margin combination values of (1.0, 0, 0.4). The
model is trained for 20 epochs using SGD as the optimizer,
with momentum of 0.9 and initial learning rate of 0.1. On
the other hand, for AdaFace, we set the initial margin to
0.4. The model is trained for 24 epochs using SGD as the
optimizer, with momentum of 0.9 and initial learning rate of
0.1. The learning rate is reduced by a gamma factor of 0.1 at
the 12th, 20th, and 24th epochs. All the mentioned config-
uration parameters align with the ones utilized for training
WebFace4M on the ResNet-50 backbone, as mentioned in
insightface [3, 7] and AdaFace [2] repositories.

5. Grayscale Images In “Color” Image Sets

The importance of “cleaner” training data, in the sense
of accurate identity labels, is widely acknowledged as en-
abling training more accurate matchers. In this section, we
show that (assumed) color training sets actually contain a
fraction of grayscale images, and consider whether “clean-
ing” grayscale images out of an assumed color training set
might help to explain the results in the previous section.

MS1MV2 [17] is a cleaned version of MS1-Celeb [27],
and is widely used in training face matchers. Glint-360k
[7] is newer than MS1MV2, and contains about 4x the
number of identities and 3x the number of images. Web-
Face4M/12M [71] is newer still, and increasingly promi-
nent, and its 4M subset has more than 2x the identities of
MS1MV2 but fewer total images. All three of these datasets
contain web-scraped, in-the-wild images in RGB format.

We ran a test to detect images that are effectively
grayscale even though stored as RGB. These are images
with R=G=B across all pixels, so that they are stored in
three-channel format but contain no color content. The pres-
ence of three channels in grayscale images allows the con-
volutional layers designed for RGB inputs to effortlessly
handle them. Results of this test are summarized in Ta-
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Training Dataset Test dataset
Model Type of Colorspace LFW CFP-FP AGEDB-30 CALFW CPLFW Mean
Loss WebFace4M (Channels) [%] [%] [%] [%] [%] [%]

RGB (3) 99.82 99.10 97.95 96.15 94.13 97.43
Entire Grayscale (3) 99.82 98.94 97.77 96.02 94.10 97.33

ArcFace Error∗ → 0.00 0.16 0.18 0.13 0.03 0.10
RGB (3) 99.80 99.04 97.88 96.02 94.18 97.38

Color Cleaned Grayscale (3) 99.82 98.98 97.70 96.01 94.20 97.34
Error∗ → -0.02 0.06 0.18 0.01 -0.02 0.04
HSV (3) 99.82 98.97 97.70 96.02 94.20 97.34

RGB (3) 99.76 98.94 97.63 95.95 94.30 97.32
Entire Grayscale (3) 99.76 98.82 97.51 95.83 93.78 97.14

AdaFace Error∗ → 0.00 0.12 0.12 0.12 0.52 0.17
RGB (3) 99.80 98.81 97.66 95.96 94.30 97.31

Color Cleaned Grayscale (3) 99.68 98.58 97.36 96.00 93.88 97.10
Error∗ → 0.12 0.23 0.30 -0.04 0.42 0.20
HSV (3) 99.78 98.60 97.30 96.02 94.02 97.14

∗ Relative error of the accuracies computed as (RGB - Grayscale)

Table 1. Training on Grayscale Images and Testing on RGB Images Yields Comparable Performance to RGB Training and Testing.
For example, the top three rows show that training ArcFace on grayscale and testing on RGB results in a drop in mean accuracy across
the five datasets of (only) 0.10 compared to training and testing on RGB. Training on grayscale (3-channel) and testing on RGB test set
actually beats training and testing on RGB in a few instances. Moving from RGB to an alternate color space (HSV) that separates color
and brightness does not appreciably change the pattern of results. The results in this table motivate consideration of training and testing on
single-channel grayscale in order to reduce disk space needed to store image and enable larger training datasets. [ Key: Gray Better or
equal to RGB ]

ble 2. Approximately 6-8% of the images in each of the
datasets are effectively grayscale. Even more importantly,
34% (WebFace4M) to 60% (MS1MV2) of the identities in
each dataset have at least one grayscale image. This is rele-
vant because the goal of the deep CNN training is to get all
images of each identity to classify as that identity. Specula-
tively, having one or more grayscale images of an identity
could lead the deep CNN to learn to ignore color to have
unified classification for all identity-related images.

Dataset Original Grayscale Subset
Total
Identities

Total
Images

Identities w/ at least
one GrayScale image

Total
GrayScale Images

MS1MV2 85.7K 5.8M 51.7K ( ∼60% ) 444K ( ∼7.6% )

Glint360k 360K 17.1M 154K ( ∼43% ) 919K ( ∼6% )

WebFace4M 205K 4.2M 70K ( ∼34% ) 246K ( ∼6% )

Table 2. Grayscale Image / Identities in Popular Training
Sets. Similar to cleaning identity labels, cleaning is needed to
avoid web-scraped RGB datasets having a large fraction of identi-
ties with one or more grayscale images.

To investigate how a fraction of the training data being
effectively grayscale affects the accuracy of a trained net-
work, we create three additional versions of WebFace4M.
From the original WebFace4M, we create a “color cleaned”
subset by dropping the images found to have R=G=B. Af-
ter excluding these effectively grayscale images, we were
left with around 205K identities and 3.9M color images.

This subset of WebFace4M is the “color cleaned" version.
We then train a network from scratch using each of (1) the
original (94% color / 6% grayscale) WebFace4M, (2) a ver-
sion of the original WebFace4M with all images converted
to grayscale, (3) the color-cleaned (100% color) subset of
WebFace4M, and (4) the color-cleaned version of Web-
Face4M with all images converted to grayscale. Training
instances of ArcFace and AdaFace from scratch on these
four datasets resulted in a total of eight trained models. The
eight trained models fall into four pairs that give direct com-
parison of accuracy for a model trained on a color dataset
and the grayscale version of that color dataset. Note that
all models, both in the grayscale and color training sets,
have been trained with a three-channel input, and their ac-
curacy is evaluated using the color version of the bench-
mark datasets.

Table 1 summarizes these comparisons of accuracy for
training on grayscale versus color. Accuracy is listed for
each of the benchmark datasets LFW [29], CFP-FP [54],
AgeDB30 [47], CALFW [69] and CPLFW [68]. Note that
all of these benchmark datasets contain primarily color im-
ages. From Table 1, it is clear that (1) training on the color-
cleaned version of the training set does not result in con-
sistently worse or better accuracy across the validation sets
than the original WebFace4M, and (2) the model trained
with the grayscale version of the training set does not con-
sistently exhibit either better or worse accuracy across the
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validation set when compared to a model trained with the
color version of the same training set. Considering that the
models are trained on grayscale images, with no exposure to
color during training and performing comparably on aver-
age and even better in certain cases (e.g., LFW and CPLFW
for ArcFace ; CALFW for AdaFace ) when tested with the
model trained on color and gray version of “color-cleaned"
WebFace4M, it implies that training on color images does
not seem to extract any significant additional information
beyond what is present in grayscale.

6. GrayScale Can Improve Accuracy and Effi-
ciency

In the analyses in earlier sections, the grayscale images
were in a 3-channel format with R=G=B across the pixels.
The results points that color have no consistent advantage
over grayscale for SOTA face recognition. If this is the
case, then training and testing a network using only single-
channel grayscale images should give essentially the same
accuracy as training and testing on RGB color images. Fur-
thermore, grayscale images use less disk space than native
RGB images. If we utilize the freed-up disk space with ad-
ditional images, can it enhance the model’s accuracy? Ad-
ditionally, does employing grayscale make the training pro-
cess more efficient? This section explores these questions.

We modify the Resnet50 backbone so that the first
convolutional layer processes a single-channel image rather
than a three-channel image. The size of the first convolution
block is changed from 64 × 3 × 3 × 3 to 64 × 1 × 3 × 3.
Following that, we train the adjusted backbone using: a)
single-channel grayscale images from the color-cleaned
WebFace4M subset, and b) the dataset from (a) combined
with additional data from WebFace12M to utilize the
emptied disk space previously occupied by RGB images,
now converted to grayscale. Subsequently, both trained
networks are evaluated on single-channel grayscale images.
The accuracy of this fully grayscale face recognition and
training is compared to the accuracy of the corresponding
fully color network.

Accuracy and Efficiency with single-channel GrayScale
Data. The results of this experiment using a ResNet-50
backbone, with ArcFace and with AdaFace loss, appear
in Table 3. For ArcFace, the fully grayscale results are
marginally higher on CFP-FP and CALFW, and marginally
lower on LFW, AGEDB-30 and CPLFW. For AdaFace, the
fully grayscale results are marginally higher on CFP-FP, the
same on CALFW, and marginally lower on the rest. Net-
works trained and tested on color offer no consistent im-
provement over the accuracy achieved by networks trained
and tested on single-channel grayscale of the same images.

But, color images require more storage space in disk.
For instance, the RGB version of “color-cleaned" Web-

Face4M training set, occupies 96 GB of disk storage,
while the grayscale version takes up 67 GB. The storage
of images in disk thus, is reduced to about 2/3 on average
in going to single channel grayscale1. This reduction in
disk space could be beneficial for training deep CNN face
networks. During training, GPU memory comprises of the
model itself, mini-batch for training with some additional
overheads. Large training datasets exceed GPU memory
capacity, requiring repeated transfer of mini-batches from
the disk to the GPU for training. Grayscale images,
with their smaller memory footprint (requiring only 1/3
of the bytes to represent the tensor) compared to RGB,
result in reduced data transfer between the CPU and GPU
during training. While the improvement in computational
and training efficiency for a single forward pass may
not be significant, the overall training process benefits
from the reduced data transfer volume between the CPU
and GPU, resulting in improved training efficiency. For
example, with a cluster of 4 Titan-Xp GPUs, we observed
approximately 1.2K GBs of data transferred during RGB
training and about 0.48K GBs for single-channel grayscale
training. This led to an approximately 20% improvement
in system CPU time used. These numbers will vary based
on the system and its configuration, but generally, training
in single-channel grayscale should reduce data transfer
volume and system CPU usage.

Improved Accuracy by Utilizing Freed-Up Disk Space.
Opting for grayscale images to train and test face recog-
nition networks delivers comparable performance to color
images, while consuming less disk space, which frees up
additional disk storage. To make the most of the avail-
able freed-up disk space, we use additional data from Web-
Face12M, which shares similar characteristics with Web-
Face4M. The added data is selected randomly to maintain a
consistent number of images per identity as “color-cleaned"
WebFace4M. As a result, the total disk space now equals
approximately 96 GB, with 282K identities and 5.5M im-
ages. Results for this experiment are presented in Table
3. In the case of ArcFace, using extra data during training
led to slightly better performance on four datasets: LFW,
CFP-FP, AGEDB-30, and CALFW, and slightly worse per-
formance only on CPLFW as compared to RGB training.
As for AdaFace, additional data resulted in slightly im-
proved performance on CFP-FP and CALFW, while show-
ing marginally worse performance decrease on the other
datasets as compared to RGB training. Thus, leveraging the
additional data from the freed-up disk space can enhance
the performance of grayscale training, either outperforming
color training or reducing the performance gap.

1Additional disk space is allocated to store header files that hold essen-
tial image metadata. As a result, the occupied disk space is not precisely
one-third of the total disk space for RGB images.
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Loss → ArcFace AdaFace

Test ↓
Train →

RGB (3) Gray (1) ∆ ↓ Gray+ (1) ∆ ↓ RGB (3) Gray (1) ∆ ↓ Gray+ (1) ∆ ↓

LFW 99.80 99.78 0.02% 99.83 -0.03% 99.80 99.71 0.09% 99.77 0.03%
CFP-FP 99.04 99.11 -0.07% 99.21 -0.17% 98.81 98.84 -0.03% 98.96 -0.17%

AGEDB-30 97.88 97.85 0.03% 97.88 0.00% 97.66 97.41 0.25% 97.33 0.33%
CALFW 96.02 96.10 -0.08% 96.08 -0.06% 95.96 95.96 0% 96.05 -0.09%
CPLFW 94.18 93.85 0.35% 94.10 0.08% 94.30 93.90 0.4% 94.13 0.17%

Average 97.38 97.34 0.04% 97.42 -0.04% 97.31 97.16 0.14% 97.25 0.05%

∆ Relative error of the accuracies computed as RGB (3) - Gray/+ (1)

Table 3. Training with Additional Data using the Freed Disk Space can improve Grayscale accuracy compared to RGB. 1:1 Verifi-
cation accuracy (%) when trained and evaluated all in single-channel grayscale versus trained and evaluated in RGB is essentially the same.
Improving accuracy is possible by using additional data in the freed-up disk space. RGB (3) and Gray (1) represents the color-cleaned
WebFace4M in RGB and one-channel Grayscale format. Gray+ (1) represents the data in Gray (1) + additional one-channel grayscale data
pooled from WebFace12M to make use of emptied diskspace. [ Key: Gray better or equal to RGB ]

7. Importance of Color for Face Recognition

We have quantitatively analyzed model performance us-
ing RGB and grayscale training sets in the previous sec-
tions. Now, we will qualitatively explore color’s role in face
recognition and address these key questions:

• Can altering color spaces enhance the extraction of
color-related details?

• Does the feature extractor learn distinct features from
different color planes?

• Is color consistent across an identity’s training images?

7.1. Is HSV Color Space Better Than RGB?

RGB is the universal format for color images in face
recognition pipelines. However, results in the previous sec-
tions may motivate the question of whether a different color
space might enable the network to learn more from the color
images. RGB can be viewed as having the disadvantage of
not explicitly separating chromaticity and luminosity. This
limitation could be problematic when dealing with web-
scraped images that are captured under varying lighting
conditions. To investigate whether a color space that sepa-
rates chroma and luma can enable to network to learn more
from color, we ran a parallel set of experiments with color
images converted to HSV (Hue, Saturation, Value) color
space for training and testing. Since RGB and HSV both
consist of three channels, no change is needed in the CNN
architecture. The advantage of HSV for this experiment is
that luma information is isolated in one plane (value), and
chroma (color) in the other two planes (hue and saturation).
Potentially, this could enable the network to better exploit
color, if it is indeed relevant for the task.

We trained and tested ArcFace and AdaFace using an
HSV version of the “color-cleaned" subset of WebFace4M.
Results of this experiment are in the last row of the ArcFace
and AdaFace sections of Table 1, which shows that repre-

senting color in HSV does not result in consistently better
or worse accuracy than RGB.

For example, in the case of ArcFace, the accuracy is
slightly higher for the HSV color space compared to the
RGB in LFW and CPLFW, and it remains the same for
CALFW when using the model trained with the “color-
cleaned" WebFace4M RGB and its corresponding HSV ver-
sion, as indicated in Table 1. In other cases, HSV accu-
racy is slightly lower than the corresponding RGB accuracy.
A more detailed analysis of which HSV planes the HSV-
trained model relied on is presented in the next section.

7.2. Do the First-layer Filters “See” Color?

In this section, we analyze what the network learns about
using color by visualizing the pattern of weights learned in
the first convolutional layer for ArcFace. For the ResNet
backbone, the color image is input to the first convolutional
layer, and the first layer learns 64 different 3 × 3 × 3 con-
volution filters, each of which can extract a different feature
image from the original color image. Each convolution is
3× 3× 3 because it is a 3× 3 kernel applied to each of the
3 (R, G, B) color planes. After the first layer, the learned
weights are no longer directly tied to the color planes.

We visualize the 3×3×3 learned weights for a given one
of the 64 convolutions through a set of four 3× 3 grayscale
grids. The first grid represents the standard deviation of the
values across the R, G, and B weights at each pixel posi-
tion. An all-black 3x3 grid in the first column shows that
the weights are the same across R, G and B; in effect, the
learned filter is extracting grayscale information. White in a
3× 3 grid in the first column represents the maximum stan-
dard deviation across the R, G, and B weights among all
64 sets of 3 × 3 × 3 weights. The second, third and fourth
grids represent the weights for the R, G and B planes, re-
spectively. The weights are linearly scaled for better visu-
alization. In these three columns, negative weights are de-
picted as black, zero weights as gray, and positive weights
as white. This scheme allows us visualize characteristics of
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(a) Trained on “color-cleaned" WebFace4M (on RGB) (b) Trained on “color-cleaned" WebFace4M (on HSV)

Figure 3. Visualization of 64 Convolution Filter Weight Values for the First Convolution Block in row-major order. Approximately
one-third of the convolution blocks dedicated to RGB data reached nearly zero values, while the remaining blocks exhibited a strikingly
similar pattern across the RGB planes. However, only a few convolution blocks displayed significantly different values for the RGB
planes. In contrast, when considering the HSV plane, it appears that the most active block primarily derives its information from the V
plane, indicating that the network learns to extract more valuable data from this particular plane compared to the others.

the learned filter weights.
Figure 3 contains the visualization of the weights for

training ArcFace on the RGB color-cleaned subset of Web-
Face4M on the left, and the weights for training ArcFace
on the HSV version of the same images on the right. Each
set of 64 convolution weights is shown as 4 columns of 16.
Consider the visualization of the convolution weights for
ArcFace trained on RGB, as shown in Fig 3a. The visualiza-
tion of convolution weights in the upper left corner shows
that the standard deviation of the weights is zero (black in
the first 3× 3 grid) and that the weights in the 3× 3 convo-
lution are zero for each of the R, G and B color planes (grey
in the other 3 × 3 grids). This is an example of a filter that
converged to a convolution that just produces the value zero.
About one third of the 64 learned convolutions converged
to a similar result, consistent with the observations docu-
mented in [8]. Most of the remaining convolutions have a
weight pattern that is very similar for R, G and B. A similar
pattern of weights across R, G and B would produce a result
very similar to applying the average weights on a grayscale
version of the image. Only a few of the convolutions have a
pattern of weights that appears substantially different across
R, G and B. For example, the convolution in the lower left in
Fig 3a appears to be a spot or line detector using primarily
the R plane.

Contrast the visualization of the weights for the RGB-
trained ArcFace with those for the HSV-trained ArcFace,
shown in Figure 3b. In the visualization of these 64 con-

volutions, there is much more variation in the pattern of
weights across H, S and V. The weights are generally near
zero across the 3×3 grid for H. There is generally more vari-
ation in the pattern of weights for S. And by far the great-
est overall variation is in V. Thus, the HSV-learned weights
suggest that the network learns to extract more information
from the V plane, which is effectively just the grayscale, than
from the other two planes. Our results are consistent with
Albiol et al’s finding that there is an equivalent optimal skin
detector for every color space [6]. These visualizations to-
gether do not prove that there are no useful information in
the color content of the images, but they do show that the
network learns to extract mostly grayscale information. The
next section presents an analysis of the color of the skin re-
gion for selected identities in the training set that suggests
why this might be the case.

7.3. Color Variation Within an Identity’s Images

The training of a deep CNN face matcher aims to classify
all images of a given identity as that identity, for all iden-
tities in the training set. The network has the potential to
extract features from color information, provided it is ben-
eficial, by identifying shared color elements that are unique
to each identity. We analyze selected training set images
to illustrate how useful, or not, the color information in the
training images could be.

Fifty of the most frontal images for each of four dis-
tinct identities are chosen from the WebFace4M training
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data, on the basis of having strongly different skin tone
from each other, and each identity having a large number
of images in the training set. To select suitable quality im-
ages for analysis of the face skin region in the image, we
use a BiSeNet semantic segmentation [66] to filter out faces
where less than 30% of the face area is classified as skin.
This gives us mostly frontal faces, without too much occlu-
sion by glasses or scalp hair. To avoid inconsistencies stem-
ming from mouth open/closed and facial expression, we fo-
cus on the part of the face above the upper lip, and on the
pixels classified as skin (omitting eyebrows and eyes), and
calculate the average RGB of skin pixels. For each of the
four identities, we select the 50 images that have the largest
number of such skin pixels and plot the average RGB for
each of their images in a 3D RGB space. If color is use-
ful to separate images belonging to different identities in
the training set, then the 50 images of each identity should
form a compact cluster that is well separated from the other
identities.

Figure 4. Identities with different skin tones tend to cluster in
3D RGB space. It is evident that the RGB representation of visible
skin pixels for the same identity is not tightly clustered. This varia-
tion reflects the diverse nature of the training set, where individuals
of the same identity can exhibit different skin tones depending on
lighting conditions. This observation suggests that color may not
be crucial information for the network to utilize, given the varia-
tion in skintones within the images of the same identity.

From Figure 4, it is clear that none of the four identities
have images where the average RGB of their skin region
forms a compact cluster. Visually, it is clear that the cluster
of points for each of the identities is broad, and that the four
clusters are highly overlapped. As a quantitative indication
of this, we can consider the fraction of points whose nearest
neighbor is from the same identity. If color was highly use-
ful in classifying images of these four identities, then each
point’s nearest neighbor would be from the same identity.
If color was a purely random clue, then with four identities,
a point’s nearest neighbor would be from the same iden-
tity about 25% of the time. Across the 200 points from the
four strongly different identities in Figure 4, a point’s near-
est neighbor is from the same identity about two thirds of

the time, roughly halfway between random and highly use-
ful. Analyzing a larger number of identities, and identities
not chosen to have clearly different skin color, would drive
the result closer to random. This analysis suggests that the
color information in a set of web-scraped, in-the-wild face
images simply does not contain very much useful identity-
related information.

8. Results and Discussion
Computing resources used unproductively processing
color. A deep CNN face matcher trained on single-channel
grayscale images, and matching single-channel grayscale
images, achieves essentially the same accuracy as a network
working with RGB color images. But the single-channel
grayscale images use 1/3 the memory of the RGB images.
And the early convolutional layer of the grayscale network
has 1/3 the weights of the color network. Furthermore, opt-
ing for grayscale images can save disk space in comparison
to color images, enabling the use of additional data for train-
ing a superior face recognition model.
SOTA deep CNN face matchers do not “use” color.
When the deep CNN is trained on only grayscale train-
ing images (stored in three-channel format) and evaluated
on RGB color images, essentially the same accuracy is
achieved as when the deep CNN is trained on RGB color
images – the network learns as much from grayscale train-
ing data as from color training data, for the purpose of
matching color face images.
Conditions specific to deep CNN face matching. It is
known that the color is important for some general object
detection tasks solved by deep CNNs [16, 55]. Our results
here are not in conflict with these studies. Deep CNN face
matching is a specialized task. Matchers are trained to rec-
ognize (categorize) persons from in-the-wild, web-scraped
images, and color is not consistent across images of a per-
son in this context. It is possible that a very tightly con-
trolled face matching application, with all images always
acquired in the same lighting and with consistent back-
ground, could result in color being more useful.
The role of color in demographic accuracy differences.
It is acknowledged that face recognition accuracy varies
across demographic groups [9,14,15,21,23,30,32,33,37–
42, 44, 48, 50, 58, 61–63, 67]. Discussion of this topic often
mentions skin tone or skin color. Our results suggest that the
accuracy differences are not specific to using images with
color content. The same differences can be observed when
processing grayscale images rather than color.
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