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Abstract

With the continuous expansion of neural networks in size
and depth, and the growing popularity of machine learn-
ing as a service, collaborative inference systems present
a promising approach for deploying models in resource-
constrained computing environments. However, as the de-
ployment of these systems gains traction, evaluating their
privacy and security has become a critical issue. Towards
this goal, this paper introduces a diffusion-based inverse
network attack, named DIA, for collaborative inference sys-
tems that uses a novel feature map awareness condition-
ing mechanism to guide the diffusion model. Compared to
prior approaches, our extensive empirical results demon-
strate that the proposed attack achieves an average im-
provement of 29%, 20%, 30% in terms of SSIM, PSNR,
and MSE when applied to convolutional neural networks
(CNN), 18%, 17%, 61% to ResNet models, and 55%, 54%,
84% to Vision transformers (ViTs). Our results identify
the significant vulnerability of ViTs and analyze the poten-
tial sources of this vulnerability. Based on our analysis,
we raise caution regarding the deployment of transformer-
based models in collaborative inference systems, emphasiz-
ing the need for careful consideration regarding the security
of such models in collaborative settings.

With the rapid development of deep learning, especially
with large language models (LLMs), the application sce-
narios of machine learning as a service (MLaaS) are be-
coming increasingly diverse [9]. These widespread ap-
plications have driven the exploration of deploying large
models on constrained computation and storage resources
such as Internet-of-Things (IoT) and edge devices, leading
to the emergence of collaborative inference as a prevalent
method [4, 10, 11, 21, 27]. In a collaborative inference sys-
tem, a model is divided into multiple segments, with dif-
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ferent devices performing inference on distinct segments of
the model.

In the most common, two-party collaborative inference
architecture, a model is split into two parts: the client re-
tains the initial segment, while the computationally capable
server handles the latter half. Upon completing the infer-
ence of the model’s first portion, the client forwards the in-
termediate feature maps to the server, which then completes
the computation and returns the final results. Typically, the
model’s initial segment contains fewer layers ensuring min-
imal computational overhead. In contrast, the latter segment
is more computationally intensive, often encompassing full-
connection layers. This paradigm effectively alleviates the
computational burden on the client.

From the perspective of data privacy for the end client, it
may appear secure as the server does not have direct access
to user data. However, recent studies [6, 17, 25, 27] suggest
that given access to query the client’s model, the adversary
can train an inverse model based on intermediate feature
maps, potentially enabling the reconstruction of input data.
Such inverse network attacks mainly relied on transposed
convolutional neural networks as a means of inverting nor-
mal convolutions, yielding effective attack results.

However, as neural networks grow in depth, the use
of more nonlinear layers introduces increasing resilience
of inversion network attack [1, 6, 13, 25–27], making it
more challenging to reconstruct using transposed convolu-
tion layers alone. To enhance the reconstruction, a more
proficient inverse model with generative capabilities is re-
quired. Conditional diffusion models, such as stable dif-
fusion [19], utilizing cross-attention as a condition mecha-
nism demonstrate the superior capability in generating di-
verse and high-fidelity data across various domains, includ-
ing images, videos, music, and audio [2, 8, 15, 16], mak-
ing them potentially suitable for the task of generating lost
information based on intermediate feature maps. Thus mo-
tivated, in this paper, we present a diffusion-based inverse
attack for reconstructing input data. Our proposed attack
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Figure 1. Reconstructed inputs comparison of prior approaches
and our method on ReLU22 of CNN

uses a novel feature map awareness conditioning mecha-
nism with a companion network specifically designed for
inverse network attacks. We use the Structural Similar-
ity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), and
Mean Squared Error (MSE) [6, 25] to evaluate inverse net-
work attacks. In comparison to previous attacks, as shown
in Figure 1, the extensive empirical results show that the
proposed attack achieves an average improvement of 29%,
20%, 30% in terms of SSIM, PSNR, and MSE when applied
to convolutional neural networks (CNN) and 18%, 17%,
61% to ResNet models. Moreover, as the demand for so-
phisticated MLaaS continues to grow, it becomes essential
to consider not only CNNs but also prevalent transformer-
based models such as Vision Transformers (ViTs) [3, 22]
and LLMs [18, 23] within collaborative inference systems.
The privacy of the transformer-based models has remained
relatively unexplored in the context of collaborative infer-
ence. In this paper, we apply the proposed diffusion-based
attack on the ViT and uncover its notable vulnerability com-
pared to CNNs and ResNet.

We summarize our contributions as follows:

• We present a diffusion-based inverse network attack on
collaborative inference systems. In comparison to prior
attack methods, our empirical results demonstrate a sig-
nificant improvement in reconstructed results, as evi-
denced by higher SSIM, PSNR, and lower MSE.

• We present a novel feature map awareness conditioning
mechanism that uses a companion network that is specifi-
cally designed to enhance inverse network attacks. Our
experimental results indicate the better performance of
this conditioning method when compared to the cross-
attention conditioning approach.

• By employing the diffusion-based attack, we investigate
the vulnerability of the transformer-based model, ViTs, in
collaborative inference systems. Our empirical findings
reveal that ViTs are significantly more vulnerable than
CNNs and ResNet models. We analyze this vulnerabil-
ity from two perspectives and raise caution accordingly
regarding the deployment of transformer-based models in
collaborative inference systems.

1. Background
1.1. Metrics for Evaluating Inverse Network Attack

To evaluate the attack results, the prior method [6] applies
two metrics, PSNR and SSIM. PSNR quantifies the pixel-
level recovery quality of an image, with higher PSNR val-
ues indicating better image reconstruction quality. On the
other hand, SSIM [24] measures the human perceptual sim-
ilarity between two images by considering factors like lumi-
nance, contrast, and structural aspects. SSIM values range
between 0 and 1, where 0 indicates minimal similarity and
1.0 represents maximum similarity. Moreover, another prior
method, Ginver [25] employs Mean Squared Error (MSE) to
measure pixel-wise differences between two images, with a
smaller MSE indicating higher similarity. In this paper, for
a comprehensive evaluation, we utilize all three metrics to
assess the proposed attack.

1.2. Denoising Diffusion Probabilistic Model and
Conditional Diffusion Model

Denoising Diffusion Probabilistic Model (DDPM) [7] have
demonstrated state-of-the-art results in image [20]. The dif-
fusion models have two processes: the forward and reverse
processes. In the forward process, noise is incrementally in-
troduced into the images, transforming them into Gaussian
distributions. In contrast, the reverse process is an iterative
denoising procedure that initiates from a sampled noise. To
execute the reverse process, a UNet is trained to predict the
added noise at each time step, which is subsequently re-
moved using denoising operations. The central concept be-
hind UNet training lies in predicting the distribution of the
introduced noise across various time steps.

As for conditional diffusion, an encoder based on the
modality of the condition is usually used to transform
condition information into an embedding. This embed-
ding is then integrated into the UNet model using a con-
ditioning approach. A prevalent conditioning approach is
cross-attention [19], known for its effectiveness in generat-
ing diverse and high-fidelity data across various domains.
The success of diffusion models, particularly conditional
diffusion models, inspires our exploration of designing a
diffusion-based inverse network model for reconstructing
the input data.

2. The Proposed Diffusion Based Inverse Net-
work Attack

2.1. Notations

In this paper, we refer to the first part of the model on the
data owner-side with the notation M1. The diffusion pro-
cess is characterized by q and p representing the forward
and backward processes, respectively. Within this context,
xt denotes the noisy image at the time step t and ϵ represents
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the noise. Additionally, y denotes the intermediate feature
map that the adversary can access. T represents the pre-
determined number of steps used in the Gaussian diffusion
process.

2.2. The Threat Model

Similar to prior works [6, 25, 27], we focus on the most
common collaborative inference paradigm, specifically the
two-party system. The proposed approach is performed in
a black-box setting: the server has no knowledge about the
data owner or client’s model M1, including its architecture
and parameters. During collaborative inference, the curi-
ous server attempts to retrieve the client’s private input x
from the received M1(x). We assume the server can query
the model to obtain the corresponding intermediate feature
output to train an inversion model.

2.3. Our Method

2.3.1 Forward Diffusion Process and Training

Following the regular diffusion model [7], the proposed ap-
proach defines a forward Markovian diffusion process de-
noted as q. This process involves iteratively introducing
Gaussian noise to the input image x over T iterations:

q(x1:T |x0) = ΠT
t=1q(xt|xt−1), (1)

q(xt|xx−1) = N (xt|
√
1− βtxt−1, βtI), (2)

where βt represents the variance of the noise added at time
step t, ranging between 0 and 1. This variance gradually in-
creases, ensuring the acquisition of isotropic Gaussian noise
after T iterations. Given the initial image x0, the distribu-
tion of xt can be expressed as:

q(xt|x0) = N (xt|
√
γtx0, (1− γt)I), (3)

where γt is defined as Πt
t=1(1− βt).

Algorithm 1 Training of the conditional denoising model

while not converged do
x0 ∼ q(x0)
t ∼ Uniform({1, ..., T})
ϵ ∼ N(0, I)
y = M1(x0)
Optimize a step on
∇θ||fθ2(

√
γtx0 +

√
1− γtϵ, fθ1(y), t)− ϵ||2

end while

As shown in Algorithm 1, in the training process that
aims at optimizing the conditional denoising model for the
attack, we sample an image x0 from the training dataset,
uniformly select a time step t from 1 to T , sample a noise ϵ
from N (0, I), and then derive the noisy image xt using x0

Algorithm 2 Inference and Attack to reconstruct the input

xT ∼ N(0, I)
for t = T, ..., 1 do
ϵ ∼ N(0, I) if t > 1, else ϵ = 0
xt−1 = 1√

1−βt
(xt − βt√

1−γt
fθ2(xt, fθ1(y), t)) +

√
βtϵ

end for
return x0

and the sampled noise, while simultaneously querying the
target model M1 to obtain the intermediate feature map y

xt =
√
γtx0 +

√
1− γtϵ (4)

y = M1(x0). (5)

Figure 2 provides a visualization of the proposed condi-
tional denoising model, comprising an encoder fθ1 and a
denoising model fθ2 . The fθ2 component is constructed
based on a UNet architecture and a companion network.
The training process is to train the complete conditional
denoising model fθ to predict the introduced noise. This
training aims to minimize the objective function

||fθ2(xt, fθ1(y), t)− ϵ||2, (6)

where ϵ ∼ N (0, I) represents the added noise at time step
t.

2.3.2 Inference and Attack

The inference and attack process is shown in Algorithm 2,
it aims to reconstruct the input x0 based on the intermediate
feature map y. This process involves a reverse Markovian
process, initiated with Gaussian noise xT ∼ N (0, I):

pθ(x0:T |y) = p(xT )Π
T
t=1pθ(xt−1|xt, y), (7)

p(xT ) = N (xT |0, I), (8)

pθ(xt−1|xt, y) = N (xt−1|µθ(xt, y, t), σ
2
t I). (9)

We define the inference process as a Gaussian con-
ditional distribution shown in Equation 11. Given that
the noise introduced at time step t can be approximated
by fθ2 , similar to [7], we can parameterize the mean of
pθ(xt−1|xt, y) and xt−1 as follows:

µθ(xt, y, t) =
1√

1− βt
(xt −

βt√
1− γt

fθ2(xt, fθ1(y), t)),

(10)

xt−1 ← µθ(xt, y, t) +
√
βtϵ, (11)

where ϵ ∼ N (0, I). The attack procedure iteratively em-
ploys the above parameterization over T steps to derive the
reconstructed input image x̂0.
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Figure 2. Architecture of the proposed diffusion-based inverse
network fθ2 (DS: downsampling layer; B: bottom convolutional
layer; US: upsampling layer)

2.4. Feature Map Awareness Conditioning Mecha-
nism

To provide conditional guidance, the intermediate feature
map y is propagated through a lightweight encoder network
fθ1 . This encoder network performs parameterized reshap-
ing of y to match the dimensions of xt, thereby simplifying
the incorporation of conditioning information.

A straightforward method of incorporating conditional
guidance involves concatenating the encoder output ŷ with
xt along the channel dimension. However, using this
method often results in evident artifacts that significantly
impact the quality of the reconstructed images. We hy-
pothesize this drawback arises from the fact that the condi-
tional information primarily guides the process at the outset
and diminishes in significance as data traverses the UNet,
particularly during the upsampling phase. To address this
concern, we introduce a novel feature map awareness con-
ditioning mechanism that integrates a companion network
into fθ2 . As shown in Figure 2, the bottom branch corre-
sponds to the companion network, which only accepts and
processes input from the condition which is the intermedi-
ate feature map. Each downsampling or upsampling layer
in the UNet has a corresponding layer in the companion
network, and the output of each companion layer is con-
catenated with the output of the corresponding layer in the
UNet along the channel dimension. This companion net-
work provides consistent conditional guidance throughout
the propagation process, especially during the upsampling
phases. This ensures that the reconstructed image adheres
to the condition of the intermediate feature map. Empirical
results presented in Section 3.5 demonstrate the effective-
ness of the feature map awareness conditioning mechanism
compared to the alternative conditioning method involving
cross-attention layers.

3. Experiments
3.1. Model Architecture

To implement the attack model, we utilize an encoder fθ1
with several transpose convolution layers to align with the
dimensions of x0 and one ResNet basic block [5]. Each
transpose layer doubles the size of the condition and the

Table 1. Dataset and Model Information

Attack
Setting

Target Model
Dataset

Attack Model
Dataset

Target
Model Spilit Feature

Dim.

Same
Dataset CIFAR10 CIFAR10 CNN ReLU22 (B, 128, 16, 16)

ReLU32 (B, 128, 8, 8)

ResNet Layer1 (B, 64, 32, 32)

Diff.
Dataset CIFAR10 Tiny-ImageNet

Layer2 (B, 128, 16, 16)

ViT, Large ViT*
Block3 (B, 65, 192), (B, 65, 768)
Block6 (B, 65, 192), (B, 65, 768)
Block9 (B, 65, 192), (B, 65, 768)

* ViT outputs are shaped like (B, N, C), in which B is the batch size, N is the concatenation of patches and one class embed-
ding, and C is the hidden dimension. The output will be mapped to (B, N-1, C) and then resized to (B, C,

√
N − 1,

√
N − 1.)

quantity of transpose layers varies based on the dimension
of the intermediate feature map. For the UNet fθ2 , we em-
ploy three downsampling layers, three middle convolution
layers, and three upsampling layers. After each downsam-
pling or upsampling layer, we incorporate a self-attention
layer. As for the companion network, we use three compan-
ion downsampling layers and three companion upsampling
layers.

3.2. Experimental Setup

In the experiments, the target model is trained using the
CIFAR-10 [12] training dataset. The evaluation of the at-
tack is performed on the CIFAR-10 test set, and the metrics
are averaged over this set. Following [6], to assess the ef-
fectiveness of the proposed attack in various scenarios, we
train the attack models under two distinct settings:
• Same Dataset: For this setting, the attack model is

trained on a subset of the CIFAR-10 training dataset with
40k images.

• Different Dataset: In this setting, the attack model’s
training data is distinct from the target model’s train-
ing set. Specifically, we employ the Tiny-ImageNet
dataset [14] as the training set for the attack model and
CIFAR-10 for training the target model. To circumvent
overlap and potential bias, we excluded categories (35
in total) that might correlate with CIFAR-10. From the
remaining 165 categories, 40k images are randomly se-
lected for training the attack models.
The image resolution in both settings is 32×32. To eval-

uate the proposed attack, we selected three distinct models
as targets for our attacks:
• CNN: This model is a Convolutional Neural Network

comprising six convolutional layers and two fully con-
nected layers. The CNN model is partitioned at the end of
the fourth (ReLU22) and sixth (ReLU32) convolutional
layers.

• ResNet: We utilize the ResNet-18 [5] architecture from
the torchvision library. To accommodate the dataset, we
modified the initial convolutional layer and the fully con-
nected layer. Divisions are made at the end of the first,
second, and third basic blocks.

• ViT: We employ the Data-efficient Image Transformer
(DeiT) tiny model configured with three heads and 12 at-
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Figure 3. Reconstructed inputs comparison of prior approaches
and our method on Layer1 of ResNet

Figure 4. Reconstructed inputs comparison of prior approaches
and our method on Block3 of ViT

tention blocks and DeiT base model with 12 heads and 12
attention blocks as the large ViT [22]. The patch size is
adapted to be compatible with the dimensions of the in-
put images. The ViT model is segmented at the end of the
third, sixth, and ninth attention blocks.

The above dataset and model information are also pre-
sented in Table 1. We train the attack model for 500 epochs
and use a learning rate of 3e-6 and batch size of 32. For the
hyperparameter of the diffusion process, we use T = 1000
diffusion steps and the noise variance βt is uniformly sam-
pled between 0.0001 and 0.02. All attacks take less than
1 minute. Experiments were conducted utilizing NVIDIA
Tesla A40 (48GB) and RTX A6000 GPUs.

3.3. Comparison with Prior-Art on CNN and
ResNet

In this section and Section 3.4, we compare the proposed
method with previous approaches, namely, the black-box
attack (BBA) in [6] and enhanced inverse-network attack
(EINA) [17].

In Figure 1, 3 and 4, we present visualizations comparing
reconstructed images generated by previous approaches and
our proposed method. Ground truth images are included
for reference. These reconstructed inputs are based on ran-
domly selected images. It can be observed that the prior
approaches demonstrate similar reconstructed results, while
our method aligns significantly closer to the reference im-
ages, presenting reducing blur.

In Tables 2, 3, we present the results on two target mod-
els, CNN and ResNet. We employ SSIM and PSNR met-
rics to assess the quality of the reconstructed images, com-

Table 2. Performance comparison with prior attacks at two split
points for CNN

BBA [6] EINA [17] DIA (ours)
Metric Setting ReLU22 ReLU32 ReLU22 ReLU32 ReLU22 ReLU32

SSIM ↑ 0.6851 0.4349 0.7335 0.4353 0.9392 0.5041
PSNR ↑ 23.38 19.50 24.31 19.63 31.77 19.84
MSE ↓

Same Set
0.1047 0.2559 0.0846 0.2482 0.0153 0.2367

SSIM ↑ 0.6358 0.3562 0.7306 0.4176 0.9336 0.4762
PSNR ↑ 22.17 18.37 24.30 19.37 31.42 19.50
MSE ↓

Diff Set
0.1383 0.3315 0.0847 0.2630 0.0166 0.2559

Table 3. Performance comparison with prior attacks at two split
points for ResNet

BBA [6] EINA [17] DIA (ours)
Metric Setting Layer1 Layer2 Layer1 Layer2 Layer1 Layer2

SSIM ↑ 0.7613 0.6377 0.7641 0.7373 0.9041 0.8411
PSNR ↑ 24.67 22.53 24.94 24.50 29.07 28.30
MSE ↓

Same Set
0.0777 0.1271 0.0731 0.0808 0.0158 0.0341

SSIM ↑ 0.7622 0.5812 0.7699 0.7378 0.8711 0.7810
PSNR ↑ 24.66 21.72 25.02 24.53 28.79 25.91
MSE ↓

Diff Set
0.0778 0.1531 0.0718 0.0804 0.0306 0.0586

Table 4. Performance comparison with prior attacks at three split
points for ViT

BBA [6] EINA [17] DIA (ours)
Metric Setting Block3 Block6 Block9 Block3 Block6 Block9 Block3 Block6 Block9

SSIM ↑ 0.5480 0.5433 0.5314 0.7651 0.7620 0.7652 0.9845 0.9657 0.9552
PSNR ↑ 21.43 21.36 21.26 24.95 24.80 24.96 40.64 27.78 27.93
MSE ↓

Same Set
0.1645 0.1668 0.1709 0.0730 0.0756 0.0728 0.0020 0.0414 0.0448

SSIM ↑ 0.5276 0.5321 0.5087 0.7648 0.7645 0.7650 0.9805 0.9742 0.9617
PSNR ↑ 21.22 21.37 21.03 24.95 24.93 24.95 39.69 38.58 37.41
MSE ↓

Diff Set
0.1722 0.1665 0.1806 0.0730 0.0732 0.0729 0.0024 0.0032 0.0042

plemented by MSE to measure the error. The results indi-
cate that the proposed attack performs well at shallow split
points of CNN and ResNet. As the split point deepens, the
reconstruction quality of all attacks on CNN and ResNet
decreases.

While training the attack models on a different dataset
exhibits marginal variance in results at shallow split points,
this variance becomes more pronounced with a deeper split
point. Nonetheless, in comparison to previous methods,
our attack consistently outperforms in all tested scenarios
across all three metrics. More precisely, the proposed attack
achieves an average improvement (across prior attacks and
split points) of 29%, 20%, 30% in terms of SSIM, PSNR,
and MSE when applied to convolutional neural networks
(CNN) and 18%, 17%, 61% to ResNet models.

3.4. Comparison with Prior-Art on ViT and Vulner-
ability of ViT

In Table 4, we present the results of the proposed method
and compare it with previous approaches on ViT. Our attack
outperforms prior methods on ViT in all tested scenarios
across all three metrics, demonstrating an average improve-
ment (across prior attacks and split points) of 55%, 54%,
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Table 5. Performance comparison with prior attacks at three split
points for large ViT

BBA [6] EINA [17] DIA (ours)
Metric Setting Block3 Block6 Block9 Block3 Block6 Block9 Block3 Block6 Block9

SSIM ↑ 0.7763 0.7767 0.7752 0.7748 0.7725 0.7740 0.9901 0.9883 0.9525
PSNR ↑ 25.17 25.18 25.16 25.15 25.10 25.15 42.92 42.65 27.33
MSE ↓

Same Set
0.0694 0.0692 0.0695 0.0697 0.0704 0.0697 0.0012 0.0013 0.0442

SSIM ↑ 0.7746 0.7749 0.7751 0.7741 0.7743 0.7740 0.9875 0.9851 0.9648
PSNR ↑ 25.17 25.13 25.14 25.12 25.11 25.10 37.41 34.55 40.17
MSE ↓

Diff Set
0.0693 0.0699 0.0698 0.0702 0.0703 0.0704 0.0043 0.0083 0.0023

84%.
Notably, when compared to CNN and ResNet, the recon-

structions on ViT models maintain consistently higher qual-
ity across all split points and the advantage of our approach
over earlier attacks is more significant. We analyze and at-
tribute this result to two potential reasons. While the behav-
ior of downsampling is common in CNNs, the ViT main-
tains a similar tensor dimension and lacks this process. The
absence of downsampling could lead to intermediate fea-
tures retaining a higher fidelity to the original input image
details [25], rendering the ViT more susceptible to attacks.
Moreover, in ViT, non-linear layers are not as frequent as in
CNNs and ResNet. Several studies [6, 25, 27] have shown
that the presence of non-linear layers not only enhances
model generalization but also obfuscates some model de-
tails, possibly increasing the model’s resilience against in-
verse network attacks.

To evaluate the effectiveness of the proposed attack on
large model, we apply the proposed approach on the largest
DeiT ViT and present the result in Table 5. It can be ob-
served that the proposed method shows consistently effec-
tive results with the smaller ViT models, and demonstrates
a significant advantage over the prior works.

3.5. Importance of the Feature Map Awareness
Conditioning Mechanism

To evaluate the significance of the proposed feature map
awareness conditioning mechanism utilizing the companion
network in the attack, we replace it with a prevalent condi-
tion mechanism [19] that employs cross-attention layers to
incorporate condition information into the UNet. The attack
results are presented in Tables 6, 7, 8. The results indicate
that the feature map awareness conditioning mechanism is
significantly more effective than the cross-attention mecha-
nism and more suitable for inverse network attacks.

3.6. Impact of Data Size on the Proposed Attack

In this section, we analyze the impact of training data size
on the proposed attack. We select the CNN as our tar-
get model, partitioning it at the fourth layer ReLU22, and
evaluate varying training data sizes under both the same set
and different set configurations. As shown in Figure 5, the
results demonstrate a positive correlation between training
data size and the effectiveness of the attack. As the dataset

Table 6. Performance comparison of conditioning mechanism on
CNN

Cross Attention DIA (ours)
Metric Setting ReLU22 ReLU32 ReLU22 ReLU32

SSIM ↑ 0.5132 0.3524 0.9392 0.5041
PSNR ↑ 20.34 17.58 31.77 19.84
MSE ↓

Same Set
0.2110 0.3983 0.0153 0.2367

SSIM ↑ 0.2098 0.3012 0.9336 0.4762
PSNR ↑ 16.48 16.92 31.42 19.50
MSE ↓

Diff Set
0.5143 0.4641 0.0166 0.2559

Table 7. Performance comparison of conditioning mechanism on
ResNet

Cross Attention DIA (ours)
Metric Setting Layer1 Layer2 Layer1 Layer2

SSIM ↑ 0.1504 0.1669 0.9041 0.8411
PSNR ↑ 15.67 15.50 29.07 28.30
MSE ↓

Same Set
0.6140 0.6424 0.0158 0.0341

SSIM ↑ 0.1343 0.1365 0.8711 0.7810
PSNR ↑ 15.67 15.36 28.79 25.91
MSE ↓

Diff Set
0.6207 0.6646 0.0306 0.0586

Table 8. Performance comparison of conditioning mechanism on
ViT

Cross Attention DIA (ours)
Metric Setting Block3 Block6 Block9 Block3 Block6 Block9

SSIM ↑ 0.1881 0.1856 0.1888 0.9845 0.9657 0.9552
PSNR ↑ 15.74 15.81 15.89 40.64 27.78 27.93
MSE ↓

Same Set
0.6107 0.6019 0.5892 0.0020 0.0414 0.0448

SSIM ↑ 0.1851 0.1784 0.1679 0.9805 0.9742 0.9617
PSNR ↑ 15.92 15.76 15.44 39.69 38.58 37.41
MSE ↓

Diff Set
0.5851 0.6072 0.6532 0.0024 0.0032 0.0042

size increases, SSIM values ascend and plateau at peak lev-
els. Simultaneously, PSNR exhibits a steady rise, while
MSE values steadily decline.

4. Conclusions and Future Work

In this paper, we present a diffusion-based inverse network
attack on collaborative inference systems. Our attack lever-
ages a novel feature map awareness conditioning mecha-
nism that utilizes a companion network tailored for inverse
network attacks. Our extensive experiments demonstrate
the effectiveness of the proposed attack, surpassing prior
approaches across three target models. To the best of our
knowledge, the proposed attack sets a new state of the art in
attacking collaborative inference systems.

Moreover, our results reveal a significant vulnerabil-
ity of the collaborative inference of ViT models. In
the future, as computational resources allow, we will ex-
plore whether there is a similar vulnerability for larger
transformer-based models, such as large language mod-
els including GPT [18] and Llama 2 [23]. Given the
broader applications of transformer-based models, we
will explore defensive measures to enhance their re-
silience.
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Figure 5. Impact of training data size on the SSIM, PSNR, and MSE for the proposed attack on ReLU22 of CNN
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