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Abstract

Mitigating bias in machine learning models is a critical
endeavor for ensuring fairness and equity. In this paper,
we propose a novel approach to address bias by leverag-
ing pixel image attributions to identify and regularize re-
gions of images containing significant information about
bias attributes. Our method utilizes a model-agnostic ap-
proach to extract pixel attributions by employing a convolu-
tional neural network (CNN) classifier trained on small im-
age patches. By training the classifier to predict a property
of the entire image using only a single patch, we achieve
region-based attributions that provide insights into the dis-
tribution of important information across the image. We
propose utilizing these attributions to introduce targeted
noise into datasets with confounding attributes that bias the
data, thereby constraining neural networks from learning
these biases and emphasizing the primary attributes. Our
approach demonstrates its efficacy in enabling the training
of unbiased classifiers on heavily biased datasets.

1. Introduction
In the domain of computer vision, various methodologies
are employed to mitigate bias and uphold fairness in ma-
chine learning models operating on sensitive attributes.
Data bias can manifest in various ways, such as when
the data representation disproportionately favors a spe-
cific group of subjects [22]. Alternatively, bias may arise
from substantial differences between the training and pro-
duction environments [23]. Moreover, biases within the
data can be either explicit and acknowledged beforehand
or concealed. We specifically focus on situations where
bias is pre-existing and originates from disparities between
the training and evaluation datasets due to a confounding
variable heavily influencing the former. For instance, in
the CelebA [15] dataset, a significant majority of women
are depicted with blond hair, whereas only a minority of
men exhibit this trait. Consequently, a model trained on
such data may exhibit unequal performance across men and
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Figure 1. Our strategy to address biased learning. We utilize a
region-based classifier to classify individual image patches based
on attributes that introduce bias to the data. By leveraging the
confidence of the trained model, we identify the regions within an
image where attribute-related information is most concentrated.
Subsequently, we introduce targeted noise to these areas in the
training data to prevent models from overfitting to the confounding
attributes.

women in a production setting where this distribution does
not hold true as it has learned to associate having blond hair
with being a woman.

One prevalent technique to mitigate the learning of bi-
ases is dataset re-sampling, where instances from minor-
ity or majority classes are either over-sampled or under-
sampled to achieve a more equitable distribution. However,
in scenarios such as facial data, where numerous attributes
are present, achieving a perfectly balanced dataset may be
unattainable as this would require an equal number of sam-
ples for each subcategory. In the case of CelebA, which
contains 40 binary attributes, this would mean you require
an equal amount of samples for each of the 240 possible
combinations. Another approach is to utilize dataset aug-
mentation [23], which involves altering the training data to
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rectify imbalances in underrepresented classes or counter
biases inherent in the training dataset, for example by gen-
erating synthetic data [25, 32]. Our solution falls under this
category as well. We propose a solution where we iden-
tify critical pixel areas for classifying attributes that intro-
duce a bias in the data (e.g., blond hair in face data). By
strategically introducing targeted noise to these regions in
the training data, we aim to prevent the model from overfit-
ting to these confounding attributes. A conceptualisation of
our technique can be seen in Figure 1.

Attributing pixels that are important for classification is
typically referred to as saliency mapping. Saliency mapping
techniques were originally developed to elucidate machine
learning models rather than datasets. Consequently, they at-
tempt to identify pixel regions crucial for a specific model’s
classification. However, for mitigating biases being learned,
it’s more pertinent to determine which regions potentially
contribute to classification. In other words, it’s essential to
discern which image regions harbour valuable information
for a particular class (e.g., identifying facial features aiding
in ethnicity classification). This will not always align with
specific model attribution maps, as not all networks learn
in the same way, and some may lay more importance on a
certain pixel region than others.

To tackle this issue, we introduce data attribution through
classification. We employ a small-scale classifier that pre-
dicts a sensitive label for the entire image from a single
image patch. By identifying regions where the classifier
confidently predicts the label, assuming the model is well
calibrated, we establish a measure of information content
regarding the sensitive label within that patch. As a result,
this methodology allows us to attribute specific image re-
gions to particular classes.

The resulting attributions could be used for a number of
purposes, but we see the most promise in fields where it is
undesirable that certain attributes are learned. The most no-
table of these is learning using a biased dataset. We propose
to use our attributions as a way to regularize the training
process, if some biases in the data are known a priori (e.g.
due to a high correlation between labels), then we can com-
pel the model learning to classify desired attributes to divert
focus away from those regions important for classifying the
confounder.

We demonstrate the effectiveness of our attribution tech-
nique on two prominent face datasets, namely FairFace [12]
and CelebA [15]. These datasets are selected due to
their comprehensive annotations and consistent alignment
of posture, facilitating the validation of our attributions’
utility through averaged attributions across multiple images.
Subsequently, we explore the application of our attributions
in training unbiased perceived gender classifiers on biased
data, leveraging the CelebA dataset. By creating biased sub-
sets where specific attributes are prominent for women but

absent for men, we evaluate subgroup accuracy on a bal-
anced dataset. Our experiments reveal that incorporating
noise based on our attributions to the training data proves
beneficial in mitigating the adverse effects of dataset bias
on classifier performance.

We make the following contributions in this paper:
• We developed a general model-independent data attribu-

tion technique that can foster data understanding
• We showcase the use of this attribution technique for data

augmentation to train neural networks under known bi-
ases and experiment with different noise addition types
and settings
The remainder of this paper is organized as follows. We

position related works in Section 2. Following this, we in-
troduce our region classifier and show how we obtain attri-
butions in Section 3. Lastly, we experiment with using the
attributions for developing robust classifiers in Section 4.
We conclude our work in Section 5.

2. Related works
2.1. Dataset bias and fairness

Correlation is a widely studied problem in fair research,
mainly concerning spurious correlations in the dataset
through societal biases or dataset construction. For exam-
ple, for the CelebA dataset, it is known that the attractive
attribute is biased towards women and that a majority of the
women have blonde hair. Rajabi et al. [24] demonstrate that
mitigating bias between gender and attractiveness for the
CelebA dataset influences classification of several other at-
tributes related to attractiveness as well. Similarly, Denton
et al. [4] found that manipulating non-hair attributes such
as heavy makeup resulted in a change in hair style/and or
color.

Addressing these spurious correlations and biases rep-
resents an active area of investigation within the re-
search community. Some studies concentrate on improv-
ing datasets to ensure a more equitable distribution of data
samples, either through resampling techniques or augment-
ing the dataset with new data generated, for example, using
generative models [25, 32]. Others employ techniques dur-
ing model training to guide the learning process, facilitating
the acquisition or elimination of specific biases [33]. For in-
stance, Kim et al. utilize a regularization loss based on mu-
tual information to prevent the model from learning biased
attributes [14]. Additionally, certain approaches leverage
causal learning methodologies to achieve unbiased recogni-
tion [31].

2.2. Attribution beyond explainability

Pixel attribution techniques are utilized to identify the areas
or pixels within an image that significantly contribute to a
model’s prediction. These techniques typically fall into two
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categories: occlusion or perturbation-based, and gradient-
based methods. The former, being model-agnostic, assesses
the impact on prediction when certain regions are omitted,
while the latter computes gradients concerning the input
image [19]. Noteworthy gradient-based techniques include
Grad-CAM [27], Integrated Gradients [30], and XRAI [11].
For occlusion-based approaches, LIME [26] and SHAP [17]
are widely recognized.

These methods primarily serve to enhance the inter-
pretability of deep neural networks. However, they also
see use beyond, in improving the generalization of deep
learning models [2], such as those used in facial expression
recognition [13, 18] and person detection tasks [1], includ-
ing scenarios involving thermal imagery [6]. Particularly
relevant to our work, Huang et al. [9] employ saliency tech-
niques to address biases in facial recognition models. Their
approach employs gradient attention maps, ensuring con-
sistent attention patterns across diverse racial backgrounds.
However, our work differs in that we utilize saliency to mit-
igate confounding variables being learned, whereas they fo-
cus on ensuring uniform learning across different subgroups
regardless of what is learned.

3. Region classifier

In our efforts to alleviate learned biases, our focus is di-
rected towards identifying the regions containing vital in-
formation for classification. While saliency techniques are
commonly used for this purpose, they often focus solely on
pinpointing important pixels for a specific model, poten-
tially overlooking broader regions of interest. To address
this, we deploy a region classifier capable of analyzing im-
age patches and attributing characteristics of the entire im-
age, such as determining a person’s age. By assessing the
confidence levels of a well-trained classifier, we gain valu-
able insights into the specific areas where significant infor-
mation is concentrated.

3.1. Training setup

Our region classifier employs a ResNet18 model architec-
ture [8], which operates on patches of size k× k. Addition-
ally, the network takes in a region indicator, which indicates
the region from which the patch was taken in the original
image. This region indicator is translated into an embed-
ding akin to the vision transformer approach [5]. This em-
bedding is then concatenated to the input image before ex-
ecution. The embeddings and the classification network are
trained simultaneously. During the training process, a single
patch per image is randomly selected for training. Patches
are randomly selected from p possible positions, where
patch i corresponds to having ((i mod

√
p)∗s, ⌊i/√p⌋∗s)

as the top-left coordinates of the patch. Here, the stride s is
calculated as I − k/

√
p, with I being the image size.

Our experiments utilize the FairFace [12] and
CelebA [15] dataset, providing centred and aligned
face images, which we resized to 128 × 128 pixels. We
employ the AdamW optimizer [16] with an initial learning
rate of 10−3, reduced by a factor of 10 every 40 epochs
during training, for a total of 90 epochs. Patch dimensions k
are set to 32, and the number of possible patch positions p is
2041. A batch size of 256 is utilized, and the cross-entropy
loss function with label smoothing of 0.1 is employed.

3.2. Confidence estimation

To effectively utilize our region classifier for determining
whether a patch contains relevant information regarding the
subject, it is imperative that our classifier can provide an
indication of its confidence level. There are three prevalent
methods for estimating confidence when working with clas-
sification networks. Each relies on softmax values derived
from the output logits l, which are computed as follows:

S(li) =
eli∑
j e

lj
(1)

The three confidence indicators used are the top softmax
score, the margin, and the negative entropy score, which are
calculated as follows:
• Top softmax score: this indicator is determined by select-

ing the highest softmax value among all classes.

max
i

si (2)

• Margin: we determine it as the difference between the
highest and second-highest softmax values.

max
i

si − max
j ̸=argmax(s)

sj (3)

• Negative entropy score: it is computed as the negative
sum of the softmax probabilities multiplied by their natu-
ral logarithms.

−
∑
i

si log si (4)

In our experiments, we primarily rely on the negative
entropy score as it considers the entire output distribution.
While less straightforward to interpret than the top softmax
score or the margin, we strive to enhance interpretability by
normalizing outputs to a [0, 1] range wherever feasible.

3.3. Calibration

When using our classifier for attribution, it’s important that
its confidence outputs are grounded in how accurately it
can predict and, thus, how much information there is. A
calibrated model is a model whose estimated confidence is
close to its accuracy. The most common metrics of cali-
bration are the Expected Calibration Error (ECE) [20], and
reliability diagrams [3, 21].

237



Expected Calibration Error (ECE) quantifies the discrep-
ancy between predicted and actual confidence levels. It is
calculated as follows:

ECE =

N∑
i

bi||(pi − ci)|| (5)

Here, N represents the number of bins used for calibra-
tion, bi is the proportion of samples falling into bin i, pi
denotes the average predicted confidence, and ci represents
the average true accuracy. ECE measures the average dif-
ference between predicted confidence and actual accuracy
across different confidence levels. It provides a holistic as-
sessment of the calibration performance of a classifier.

Reliability diagrams, also known as calibration dia-
grams, graphically illustrate the alignment between pre-
dicted confidence levels and actual accuracy. They plot pre-
dicted confidence values against observed accuracy within
equally spaced bins. Ideally, a well-calibrated classifier
shows a diagonal line, indicating accurate confidence es-
timates. Deviations from this line highlight areas of over-
confidence or underconfidence. Reliability diagrams offer
a visual tool for evaluating a classifier’s calibration perfor-
mance.

Calibration diagrams, along with the corresponding Ex-
pected Calibration Error (ECE) scores, for networks trained
to classify the three FairFace attributes are depicted in Fig-
ure 2. These diagrams were generated using all possible
patches from the validation set using 100 bins. We observe
that our networks are well-calibrated without having made
any specific modifications. This is likely attributed to the
high variability in data quality. Many regions may lack suf-
ficient information for accurate classification but are still
included, thereby mitigating overfitting and ensuring con-
sistent calibration. Notably, for the age attribute, calibra-
tion appears to decrease significantly at high confidences,
although such instances are infrequent, as evidenced by the
lower plots.

3.4. Region-based attributions

For the final step, we can use our patch-based classifiers,
which we have shown to be well-calibrated, to calculate
attribution maps. To attribute an image with respect to a
specific attribute, we employ our region classifier to assess
confidence across numerous regions. This is achieved by
iteratively collecting regions in a sliding window manner,
as can also be seen in Figure 1. Subsequently, the obtained
regions are batched and classified using the region classi-
fier. Finally, a confidence score, such as negative entropy,
is computed for each patch. The resulting attribution can be
visualized as a

√
p × √p map, with each pixel (x, y) rep-

resenting a region whose top left coordinate in the original
image is (s∗x, s∗y). Illustrative examples of our region at-
tributions for the FairFace dataset are showcased in Figure

3. Note that we solely rely on confidence scores to calculate
attributions, allowing a trained model to be applied to novel
data without the need for ground-truth labels. One limita-
tion of this attribution technique is its computational cost,
as it requires classifying p image patches per image.

By averaging over all samples, mean confidence maps
can be generated. These maps offer valuable insights into
the spatial distribution of important attribute information
within an image and can be used to relate these attributes to
one another. The calculated maps for the FairFace attributes
are presented in Figure 4, revealing distinct differences be-
tween the attributes. In addition to this, we trained region
classifiers on select attributes of the CelebA dataset, for
which we can see the mean attributions in Figure 5. We ob-
serve that the attribution maps for attributes such as Blond
Hair and Eyeglasses correspond with human intuition.

For many applications, a pixel-space attribution map is
more practical. We can achieve this by converting the
region-based map to pixel space using Algorithm 1. The
algorithm employs the confidences and locations of all
patches present on the original image to produce a pixel-
level confidence map matching the original image’s dimen-
sions. It calculates the confidence for each pixel by averag-
ing the confidences of all patches containing that pixel. For
all experiments in Section 4, we used pixel space attribu-
tions, which were normalized to a [0, 1] range.

Algorithm 1 Map region attributions to pixel space

1: Input: confidences, locations, k, image size
2: map← zeros tensor of size image size
3: counts← zeros tensor of size image size
4: for i = 0 to length(locations) - 1 do
5: (x, y)← locations[i]
6: map[y : y + k, x : x+ k] += confidences[i]
7: counts[y : y + k, x : x+ k] += 1
8: end for
9: return map/counts

4. Regularized training on biased data
To develop a robust training algorithm, we aim to lever-
age our attribution maps to address biases in the training
dataset by introducing targeted noise to regions critical for
detecting confounding attributes. Our attribution technique
could enable manipulation of the training data to mitigate
the model’s reliance on these confounders. An illustrative
figure can be seen in Figure 1.

4.1. Experiment Setup

In order to evaluate the feasibility of this approach, we
conducted experiments utilizing the CelebA dataset, which
comprises a comprehensive collection of annotated facial
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Figure 2. Reliability diagrams illustrating the performance of region classifiers trained on FairFace attributes. Our models exhibit strong
calibration without any adjustments, as evidenced by the close alignment between average confidence and accuracy, alongside low Expected
Calibration Error (ECE).
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Figure 3. Examples of region-based attributions.

attributes. Our investigation focuses on a scenario wherein a
classifier is trained for predicting perceived gender classifi-
cation1. The dataset is not sampled uniformly random from

1In the CelebA dataset, perceived gender is denoted as Male, where a
value of 1 represents individuals belonging to the category of men, while
a value of 0 is assigned to those who do not, which we label as women for
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Figure 4. Mean attribution maps for the FairFace attributes.

the CelebA dataset. Specifically, the dataset is perfectly bal-
anced for the classification attribute (3000 instances of men,
3000 instances of women), but contains bias in terms of an-
other attribute. Within the subset of men, none exhibit the
confounding attribute, whereas among women, 2000 indi-
viduals possess the confounder while 1000 do not. We cre-
ated datasets in this manner using Blond Hair, Eyeglasses,
Smiling and Wearing Hat as confounding attributes. Sub-
sequently, we assess performance on a test dataset that is
balanced with respect to gender as well as the hidden at-

simplicity’s sake.
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Figure 5. Mean attribution maps for CelebA attributes.

Figure 6. Example of regularizing the data based on attributions
for hair color. From left to right: Original, General Mask, Specific
Mask, General Noise, Specific Noise.

tribute. By introducing this bias into the dataset, our hy-
pothesis posits a significant discrepancy in test accuracy be-
tween male and female subjects, owing to the disparate dis-
tribution of data instances across gender categories in the
test set.

To cultivate a robust classifier, we conducted experi-
ments exploring various methods of utilizing attribution
maps to alter the training data. We investigated the incorpo-
ration of both image-specific and general attributions (cal-
culated over a large number of samples) of confounding at-
tributes, as exemplified in Figure 5. For both mask types,
we experimented with greying out as well as additive noise.
An illustration of adding noise for the Hair Color attribute in
all manners (General Mask, Specific Mask, General Noise,
Specific Noise) is provided in Figure 6. When introducing
noise, we drew samples from a Gaussian distribution with
a mean of 0 and a standard deviation of 0.5. In all cases,
we masked out regions deemed most crucial for classifying
unintended biases, such as the top 30% most confident re-
gions within an image. The selection of the noise addition
scheme and the quantile used for masking out regions were
treated as hyperparameters in our analysis.

Several metrics are available for evaluating model fair-
ness, with Demographic Parity and Equality of Opportunity

being the most prominent. In our assessment, focusing on
perceived gender classification, we deemed it appropriate to
examine accuracy per subgroup. This approach allows us to
determine if any particular category (in this case, men or
women) is disproportionately affected by the known bias.

We employed a customized Convolutional Neural Net-
work (CNN) architecture for gender classification, as we
observed that deeper network architectures such as VGG
[28] and ResNet [8] were susceptible to overfitting. Our
CNN architecture comprised three convolutional layers,
supplemented with dropout regularization [29] and batch
normalization [10]. To optimize the model parameters, we
utilized the AdamW optimizer [16] with an initial learning
rate set to 10−5, followed by exponential decay with a de-
cay rate (γ) of 0.95. We conducted training with a batch size
of 128. Robust models incorporating noise were trained for
20 epochs, while those utilizing masking techniques were
trained until convergence for 10 epochs.

4.2. Results

We conducted experiments using all attributes illustrated in
Figure 5 as confounding attributes, with the results summa-
rized in Table 1. The table presents overall accuracy, as well
as accuracy for men and women separately on a balanced
test set, with the gap column indicating the difference be-
tween these two. Notably, our experiments encompassed
multiple quantiles, yet we only included those yielding the
most significant results for brevity. Additionally, we com-
pared these results against classifiers trained on a dataset
of equivalent size but balanced with respect to the attribute.
It’s worth noting that the data was not fully balanced in the
case of Blond Hair as the confounder for men but rather
54/46 in favor of non-blond hair, as the original CelebA
train set contains only 1387 men with blond hair.

First of all, we can observe that all models have some
discrepancy between the accuracy for men and women, with
those trained on the biased dataset without any modifica-
tions having the largest gap. Nevertheless, we observe that
for each confounding attribute, there exists a specific com-
bination of noise type and quantile for regularizing that
yields notably improved equality in accuracy, despite the
significant divergence in the training distribution of men
compared to the balanced test data. Surprisingly, even when
trained on balanced data concerning the attribute, we still
observe a performance gap between men and women, al-
beit significantly smaller than with highly unbalanced data.
This discrepancy likely persists due to other confounders
that remain present, as we did not balance the data on the
remaining 38 attributes. Furthermore, in the case of smiling,
there is almost no discernible difference between balanced
and unbalanced data. This observation may be attributed
to the inherent difficulty in classifying smiling compared
to gender, resulting in a lesser impact of this bias on the
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Accuracy ↑ Accuracy Men ↑ Accuracy Women ↑ Gap ↓
Type Original Balanced ∆ Ours ∆ Original Balanced ∆ Ours ∆ Original Balanced ∆ Ours ∆ Original Balanced Ours

Attribute Noise Quantile

Blond Hair General Mask 0.60 0.74 +0.09 0.0 0.6 +0.2 +0.02 0.88 -0.03 -0.03 0.28 0.05 0.22
General Noise 0.70 0.77 +0.06 -0.02 0.64 +0.16 +0.08 0.9 -0.05 -0.12 0.26 0.05 0.09
Specific Mask 0.60 0.74 +0.09 +0.01 0.6 +0.2 +0.09 0.88 -0.03 -0.08 0.28 0.05 0.11
Specific Noise 0.80 0.79 +0.04 -0.05 0.67 +0.13 +0.01 0.9 -0.05 -0.1 0.23 0.05 0.15

Eyeglasses General Mask 0.60 0.71 +0.06 -0.02 0.61 +0.11 +0.03 0.82 +0.0 -0.07 0.21 0.10 0.12
General Noise 0.60 0.72 +0.05 +0.01 0.61 +0.11 +0.05 0.84 -0.02 -0.04 0.23 0.10 0.14
Specific Mask 0.60 0.71 +0.06 +0.03 0.61 +0.11 +0.13 0.82 +0.0 -0.08 0.21 0.10 0.05
Specific Noise 0.80 0.72 +0.05 -0.01 0.61 +0.11 +0.1 0.84 -0.02 -0.13 0.23 0.10 0.09

Smiling General Mask 0.80 0.81 +0.03 -0.04 0.71 +0.06 -0.02 0.9 +0.01 -0.05 0.19 0.13 0.16
General Noise 0.60 0.85 -0.01 -0.05 0.79 -0.02 -0.04 0.91 -0.0 -0.07 0.12 0.13 0.09
Specific Mask 0.95 0.81 +0.03 -0.02 0.71 +0.06 -0.02 0.9 +0.01 -0.01 0.19 0.13 0.20
Specific Noise 0.60 0.85 -0.01 -0.05 0.79 -0.02 +0.01 0.91 -0.0 -0.1 0.12 0.13 0.05

Wearing Hat General Mask 0.80 0.71 +0.08 +0.05 0.63 +0.11 +0.08 0.79 +0.05 +0.03 0.16 0.10 0.10
General Noise 0.95 0.73 +0.06 -0.02 0.63 +0.11 +0.03 0.84 +0.0 -0.07 0.21 0.10 0.11
Specific Mask 0.95 0.71 +0.08 0.0 0.63 +0.11 +0.01 0.79 +0.05 -0.01 0.16 0.10 0.15
Specific Noise 0.95 0.73 +0.06 -0.03 0.63 +0.11 +0.04 0.84 +0.0 -0.1 0.21 0.10 0.08

Table 1. Summary of the noise addition experiment across multiple attributes of the CelebA dataset. Models are trained on a highly biased
dataset regarding each attribute, leading to a disparity in performance between men and women. This disparity between performance for
men and women is denoted in the gap column. Accuracies for models trained on a balanced dataset, and those using our noise addition
regularization are shown relative to those trained on the original, biased dataset. Through the strategic addition of noise to regions crucial
for each attribute based on a specified noise type, we diminish the discrepancy in accuracies between genders.

model [7]. However, our technique notably reduces the ac-
curacy gap between men and women, approaching the per-
formance achieved with balanced data, suggesting that our
method is a more practical approach than obtaining a bal-
anced dataset on all attributes.

Subsequently, we zoom in on the choice of the two hy-
perparameters. Figure 7 illustrates a comparison of various
noise addition strategies for the Blond Hair attribute, where
we removed the 30% most influential information related
to the attribute from all training data. All robust training
schemes either enhance or maintain the accuracy for men,
while diminishing the accuracy for women, thus aligning
subgroup accuracies and mitigating the effect of training
on a biased dataset. Notably, the incorporation of General
Noise brings both subset accuracies closest to parity.
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Figure 7. Comparison of noise addition techniques for the attribute
Blond Hair using Quantile 0.7

Next to the type of noise, the quantile of information
blocked is an important hyperparameter as well. Figure

8 shows how the accuracy of the subgroups evolves with
the differing percentages. In the case of Specific Mask for
the Blond Hair attribute, the optimal point seems to be the
70% mark. Masking out more reduces accuracy for women
further while more specific noise additions increase the in-
equality in performance to that of unmodified data.
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Figure 8. Comparison of metrics for the Specific Mask noise ad-
dition, for the attribute Blond Hair. Dotted lines indicate the accu-
racy of the original model for the same metric.

5. Conclusion
In conclusion, our paper introduces a novel method for mit-
igating bias in machine learning models, crucial for ensur-
ing fairness and equity. We propose leveraging pixel image
attributions to identify and regulate regions within images
containing significant information about biased attributes.
Our approach, employing a model-agnostic technique to ex-
tract pixel attributions through a CNN classifier trained on
small image patches, enables the identification of critical in-
formation distribution across images. By utilizing these at-
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tributions to introduce targeted noise into datasets with con-
founding attributes, we effectively prevent neural networks
from learning biases and prioritize primary attributes. Our
method demonstrates its effectiveness in training unbiased
classifiers on heavily biased datasets, offering promise for
enhancing fairness and equity in machine learning applica-
tions.
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