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Abstract

The precise recognition of vessel types is critical for ap-
plications in maritime surveillance, but manual visual in-
spection is slow and error-prone. Automated fine-grained
object recognition helps to quickly and accurately catego-
rize vessels, as long as they overcome challenges of mod-
ern deep and machine learning-based methods such as class
imbalance or intransparency. This paper utilizes recent lit-
erature to work towards this task considering two differ-
ent problem formulations: fine-grained classification and
image retrieval. We create a novel dataset called Military
MARVEL consisting of 15,858 images of 137 military vessel
classes to conduct the extensive, survey-like experiments.
On two maritime datasets, we demonstrate that end-to-end
fine-grained classification leads to slightly higher accuracy
for the price of less flexibility compared to image retrieval.
Heatmap-based eXplainable Artificial Intelligence methods
are combined with the vessel recognition approaches to
assess the achieved transparency quantitatively and qual-
itatively. Notably, quantitative measures are consistent
with qualitative evaluation, especially in fine-grained clas-
sification. Our Military MARVEL dataset is available at
https://github.com/HensoldtOptronicsCV/
FineGrainedVesselRecognition.

1. Introduction

Coastal and maritime surveillance systems typically use
radar and sonar to detect targets. Enhancing these systems
with vision-based and electro-optical sensors can improve
the effectiveness [39]. Except for certain remote sensing
applications [24–26], however, computer vision in the mar-
itime domain is a niche topic in recent literature [34, 47, 63]
with rather few public benchmarking datasets [5, 6, 29, 39].
Among them are just a few works of literature, in which
fine-grained vessel recognition based on small appearance

differences is targeted [19, 62]. Fine-grained vessel recog-
nition, however, can be a highly relevant function in mar-
itime surveillance applications as it enhances the situational
awareness by distinguishing between up to several hundreds
of object classes. This enriches the meta data of an ob-
ject list provided by a maritime object detector that usually
comes with only few, coarse-grained object classes.

In this paper, we compare two different problem for-
mulations for the application of vessel recognition: fine-
grained classification and image retrieval. While there is a
strong relation between these two tasks [58, 61], they are
solved with different Deep Neural Network (DNN) archi-
tectures and machine learning approaches [48, 56, 64]. We
explore the potential of recent state-of-the-art work in both
fine-grained classification and image retrieval [11, 17, 27].
As the existing public datasets [19, 62] provide rather poor
image quality [43] or linked images in the internet get
increasingly lost over time, we collected a novel dataset
called Military MARitime VEsseLs (Military MARVEL).
This dataset consists of 15,858 images across 137 different
military vessel classes. Based on the Military MARVEL
and the commercial Janes Fighting Ships (JFS) database,
we analyze and evaluate the fine-grained classification and
image retrieval approaches. Finally, state-of-the-art meth-
ods for heatmap-based eXplainable Artificial Intelligence
(XAI) [15, 23, 38, 45] are utilized to increase the trans-
parency of the decision-making process, thereby increasing
the acceptance of deep learning and facilitating human un-
derstanding of the predictions made.

Our contributions can be summarized as follows: (1) we
provide a thorough analysis of two different problem for-
mulations, namely fine-grained classification and image re-
trieval, for the same task of visual vessel recognition. (2) we
create a novel dataset to conduct the experiments. This
dataset is called Military MARVEL and will be published
on acceptance. (3) we combine state-of-the-art XAI meth-
ods with the fine-grained classification and image retrieval
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methods analyzing the potential of fostering transparency.

The remainder of this paper is organized as follows: re-
lated work is presented in Section 2. The creation of the
Military MARVEL dataset is described in Section 3. Ex-
perimental results are presented in Section 4. We conclude
in Section 5.

2. Related Work

Fine-grained Classification is a type of image classifi-
cation that focuses on distinguishing between closely re-
lated categories that have subtle differences in appear-
ance [31, 56]. Previous studies have addressed this chal-
lenge by using Convolutional Neural Networks (CNNs) to
extract informative features at multiple levels [18, 22]. They
have employed training strategies that accommodate vary-
ing levels of granularity, identified discriminative objects or
components, and investigated feature interactions through
pairwise learning. Recent advancements in Transformer-
based methodologies have been used for fine-grained clas-
sification [11, 20]. This is achieved by leveraging feature
fusion across multiple Transformer layers and selective at-
tention mechanisms for parts delineation [11, 20].

Deep Metric Learning (DML) is a process that learns a
feature embedding to quantify the similarity between ob-
jects to facilitate image retrieval [64]. The metric learn-
ing losses can be divided into two categories: pair-based
and proxy-based. Pair-based methods [3, 10, 46] empha-
size sample-to-sample relations, while proxy-based meth-
ods, such as Proxy-NCA [35] and Proxy-Anchor [27], focus
on proxy-to-sample relations. Proxy-based methods pro-
vide better generalization with low training complexity, but
they may sacrifice the exploration of semantic information
in sample-to-sample relations [59].

Explainable Artificial Intelligence (XAI) aims to improve
the interpretability of deep learning models [8, 38, 60].
Explanation methods are categorized based on scope and
mechanism, with various taxonomies available. Local ex-
planations interpret individual data points, while global ex-
planations summarize models across datasets [23]. Expla-
nations are classified as white-box or black-box, depending
on the level of model access required. Black-box meth-
ods [15, 38, 40, 60] are model-agnostic, offering broader
applicability, whereas white-box methods [8, 45, 50, 65]
typically require access to the model’s gradient values. Ad-
ditionally, XAI methods can be split into occlusion-based
approaches [15, 38, 40, 60], where the original image is
occluded, fed to the model, and results are compared for
salience map creation, activation-based approaches [45, 50,
54] that require gradients, and activation-based approaches
tailored for ViTs [1, 8].

3. The Military MARVEL Dataset

The use of large-scale, comprehensive benchmark datasets
has significantly improved visual object classification [30,
41], especially when training DNNs. For robust general-
ization in fine-grained recognition, rather domain-specific
training data is required, resulting in the publication of
datasets for specific object categories [44, 66]. Therefore,
we introduce the Military MARVEL dataset. The dataset
name and the data collection approach are adopted from
the already existing MARVEL dataset for civil ships [19].
Military MARVEL is currently the largest dataset for fine-
grained visual military ship categorization. It comprises
15,858 images across 137 classes, constructed through a
semi-automated clustering method. We started with 90,000
webscraped images that we carefully filtered removing du-
plicates, nighttime images, or low-quality images.
Data Collection: The Military MARVEL dataset was cre-
ated to serve in benchmarking advanced fine-grained visual
recognition techniques for military vessel classification and
retrieval. It consists of 15,858 annotated images obtained
from a shipspotting website1. The annotations include ship
category, date, photographer, location, and International
Maritime Organization (IMO) number for vessel identifi-
cation. Although many annotated shipspotting images are
available online, their use is usually limited to research pur-
poses, requiring explicit permission from photographers for
commercial use due to the vastness of the dataset. Military
MARVEL comprises around 90,000 images taken by 1,036
photographers, extensively covering various types of mili-
tary vessels. The use of annotated visual data from hobby-
ists can significantly benefit research efforts, provided that
the necessary permissions for usage are obtained.
Data Cleanup: When constructing image analysis datasets,
it is important to prioritize quality over quantity to avoid bi-
ased outcomes and reduced performance [14]. To ensure the
quality of the dataset, it is important to identify and remove
duplicate images, as they can skew the performance met-
rics of machine learning models trained on the dataset [36].
Prior to detection and removal of duplicates, a banner was
removed at the bottom of each image. While image hashing
offers an alternative approach [32, 52], it carries the risk of
false positives. The computation of the Structural Similarity
Index (SSIM) [55] helps to identify duplicate images and
ensures a meaningful assessment of perceptual similarity.
Automated processes are used to remove small, grayscale,
blurred, and nighttime images, which improves the qual-
ity of the dataset. Manual curation further enhances the in-
tegrity of the dataset by meticulously removing poor-quality
or irrelevant images and ensuring that only single-vessel im-
ages are included. Iterative maintenance is employed to en-
sure the accuracy of the dataset and the definition of classes.

1www.shipspotting.com
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Despite advancements in automation, human intervention
remains essential for recognising image quality. This em-
phasises the need for thorough manual cleaning processes.
Finding Distinctive Classes: The process of collecting a
dataset for military vessels poses challenges due to evolv-
ing vessel designs and similarities between models. Ini-
tially, grouping vessels based on categories from shipspot-
ting websites yielded only eleven classes, which is insuffi-
cient for fine-grained recognition. Another method, group-
ing by vessel identification numbers (IMO numbers), re-
sulted in 380 classes, and by vessel titles, 452 classes, al-
though many had fewer than 30 samples. To achieve more
precise recognition, we organised the data using Wikime-
dia2 metadata. This was done primarily through manual
inspection, aided by identifying model mergers and verify-
ing differences through rigorous examination of sample im-
ages, Wikimedia metadata, and manufacturer websites. We
merged similar models when visual differences were indis-
tinct, resulting in 137 classes, each with at least 30 samples.
This ensured a more detailed dataset for visual recognition.
Diversity Maximization: A potential limitation of relying
on a limited number of photographers to generate a dataset
is the potential for unwanted correlations to be introduced
into the data [33, 53]. While photographers may be ac-
tive over a period of years, there may be regional depen-
dencies due to factors such as certain ships visiting cer-
tain ports more frequently. To address this, a filtering pro-
cess was applied to maximise the internal diversity of the
dataset. Specifically, pairwise similarity scores were cal-
culated for each pair of images within a variant based on
photographer, time, vessel and port. A total of at least 30
images per class were then incrementally and greedily se-
lected in order of decreasing diversity to minimise internal
correlation. The resulting images were randomly divided
into training, validation and test subsets. This approach was
effective in reducing internal correlation, as evidenced by a
significant decrease in the classification performance of the
baseline classifiers. To avoid complex dependencies in the
data, the option of isolating different photographers into dif-
ferent subsets was also considered, but ultimately rejected.
There are up to 213 different photographers in a class and
at least four photographers in a class. On average, there are
37 different photographers.
Dataset Properties: The dataset contains 15,858 images
at a resolution of 224×224 pixels with annotated vessel
classes belonging to 137 classes and there are 116 samples
per class on average, at least 30 samples per class and at
most 902 samples per class (see Fig. 1). The vessels in the
dataset can be assigned to eleven different categories with
at least 48 samples of fast attack craft and at most 4,366
samples of frigates (see Fig. 2). There are 1,442 samples
on average per category. The backgrounds of the images

2https://www.wikimedia.org/

Class
0

200

400

600

800

#
sa

m
p
le

s

Figure 1. Number of samples per class in Military MARVEL.
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Figure 2. Number of samples per category in Military MARVEL.

(a) Canal with trees (b) Open sea (c) Harbor

Figure 3. Different image backgrounds in Military MARVEL.

(a) Front port side (b) Port side (c) Rear port side

(d) Front starboard side (e) Starboard side (f) Rear starboard side

Figure 4. Different perspectives in Military MARVEL.

in the Military MARVEL dataset vary greatly (see Fig. 3).
Images were taken on canals with a lot of vegetation in the
background, on the open sea with a lot of blue background,
and in harbors with a lot of buildings in the background.
The manual cleanup process as described earlier resulted in
six dominant perspectives in the images (see Fig. 4). The
dataset contains all possible views except the top, front and
rear views of the vessel. The Military MARVEL dataset
exhibits a fine-grained structure, in which the vessel cate-
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(a) Hameln class (b) Kulmbach class

Figure 5. Example for two classes with small appearance differ-
ence within the Military MARVEL dataset.

gory is further subdivided into subcategories with nuanced
differences in visual features and patterns. Two representa-
tive subcategories of the dataset, shown in Fig. 5, are the
Hameln class and the Kulmbach class, which are distin-
guished solely by variations in the configuration of the radar
structure on their superstructures. In addition, the intra-
class variation of the dataset is substantial, as the classes
contain a wide range of perspectives and backgrounds, re-
sulting in significant intra-class variance.

4. Experiments and Results
In extensive experiments, we work towards explainable ves-
sel recognition. We use well-established protocols for train-
ing and evaluation [27, 33] to assess and compare meth-
ods for image retrieval and fine-grained classification. Be-
sides two vessel recognition datasets, we additionally use
two well-established datasets for fine-grained visual recog-
nition [28, 53] as verification datasets. We then explore the
current state-of-the-art for this application in (1) visual en-
coders for feature extraction and clustering, (2) problem for-
mulation via fine-grained image classification or image re-
trieval, and (3) XAI. We conclude this section with a discus-
sion on the suitability of either fine-grained classification or
image retrieval for visual vessel recognition as well as the
performance capability of XAI methods.

4.1. Datasets

We obviously utilize the newly created Military MAR-
VEL dataset as presented in Section 3. The commer-
cial JFS database3 contains 8,460 unique images, includ-
ing submarines, ships, amphibious vehicles, and naval air-
craft. The images are not inherently categorized. How-
ever, the information available in the XML files allows
the images to be classified into different classes. To uti-
lize this dataset, a subset was created called the JFS 20
dataset, which contains 5,158 images belonging to 20 dif-
ferent classes. In this way, we could guarantee that at

3https://www.janes.com/capabilities/defence-equipment-
intelligence/naval-combat-systems

Table 1. Overview of the used datasets. Military MARVEL and
JFS 20 are datasets for visual vessel recognition. We use the well-
established datasets CUB200 and CARS196 for verification.

Dataset Classes #images #training #test
CUB200 [53] 200 11,788 5,994 5,794
CARS196 [28] 196 16,185 8,144 8,041
Military MARVEL 137 15,858 11,042 4,816
JFS 20 20 5,158 3,461 1,697

least 15 samples exist for each class. Unlike the Military
MARVEL dataset, the JFS 20 dataset does not only con-
tain ships. It also contains submarines and military aircraft,
resulting in a higher intra-class variance and a lower inter-
class variance. The dataset is imbalanced with an average
of about 133 samples per class. Furthermore, we use the
well-established CUB200 [53] for visual bird recognition
and the CARS196 [28] for visual car recognition that have
been used for years in related literature to compare fine-
grained classification and image retrieval approaches. For
better comparability in both fine-grained classification and
image retrieval closed-set [4] splits are used, i.e. no rejec-
tion class is considered. Table 1 shows an overview of the
used datasets.

4.2. Comparison of Visual Encoders

We evaluate the discriminative abilities of ViT-Small [16],
DINO ViT-Small [7], and ResNet50 [21] in fine-
grained datasets using the Ranking with Medoids index
(RankM) [13]. RankM evaluates the distinctiveness of the
extracted features with a number following the principle
the higher the better. ViT-Small with 22 million parame-
ters is pre-trained on ImageNet-21K [41] producing a 384-
dimensional feature vector, while ResNet50 with 23 million
parameters is pre-trained on ImageNet-21K, too, produc-
ing a 2,048-dimensional vector. ViT-Small with DINO, our
third considered approach, is foundation model-based using
self-supervised training on ViT-Small using ImageNet-21K
without labels. On ImageNet-21K, ViT-Small achieves
78.1 % accuracy, slightly surpassing DINO with ViT-Small
with 77.0 % and ResNet50’s 76.7 % [7, 9].

RankM was calculated for the four datasets listed in Ta-
ble 1 and the results are visualized in Table 2. For all
four datasets the RankM is higher for features extracted
by ViT-Small compared to features extracted by ResNet50.
ViT-Small also outperforms ViT-Small with DINO on all
datasets, which is consistent with the results of Amir et
al. [2]: they showed that supervised ViT features are
grouped by classes and DINO features are mostly grouped
by object parts. As a result, we only consider ViT as visual
encoder in the remainder of this section.
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Table 2. RankM↑ analysis to measure dataset granularity of pre-
trained backbones. The best result for each dataset is written in
bold font. ViT-Small clearly outperforms the other approaches.

Feature extractor CUB200 CARS196 Military JFS 20
ViT-Small [16] 0.839 0.354 0.572 0.484
DINO ViT-Small [7] 0.664 0.217 0.536 0.435
ResNet50 [21] 0.504 0.295 0.399 0.421

4.3. Comparison of Fine-Grained Classification and
Image Retrieval

Our experiments compare fine-grained classification and
image retrieval methods using RankM and t-SNE plots [51].
The approach-specific quantitative evaluation is conducted
with top-1 accuracy [11, 49], for fine-grained image classi-
fication and Recall@1 for image retrieval [27, 57]. While
RankM, top-1 accuracy, and Recall@1 are quantitative
measures that follow the principle the higher the better,
t-SNE visualizes the clustering capability of an encoder
in a dimensionality-reduced 2D representation. Intention-
ally, we chose top-1 accuracy and Recall@1 as approach-
specific metrics measures as they measure similar aspects
of performance: matching the correct class with the first hit.
Thus, they are well-suited for a direct comparison of fine-
grained classification and image retrieval methods. First,
we perform ablation studies considering recent literature
and then we compare these two different problem formu-
lations for the same task of visual vessel recognition.
Fine-Grained Classification: We consider easy-to-use
DNN architectures flavored with recent literature: the orig-
inal ViT-Small network as well as the novel Plug-In Mod-
ule (PIM) [11] together with ViT-Small. The utilized orig-
inal models use pre-trained weights from the PyTorch Im-
age Models repository on ImageNet-21k. We put a linear,
fully-connected layer on top of the final hidden state of the
ViT’s [CLS] token as classification head. Batch size was 32,
Stochastic Gradient Descent (SGD) optimizer with momen-
tum 0.9, initial learning rate 0.002, and cosine annealing
scheduler were used. To handle imbalanced data, minor-
ity classes were oversampled using WeightedRandomSam-
pler [37]. Augmentation included random cropping, flip-
ping, and the AutoAugment policy [12].
Image Retrieval: We utilize the following image retrieval
techniques taken from recent literature: ViT-Small with
Proxy-Anchor (PA) training [27] and ViT-Small with Hy-
perbolic Embeddings (HYP) [17]. PyTorch Image Models’
pre-trained weights are used with SGD optimizer, cosine
annealing scheduler, and specific batch sizes for PA. Hyper-
bolic embeddings are applied to ViT-Small pre-trained on
ImageNet-21K using frozen linear projection for patch em-
beddings and generating 384-dimensional representations
for HYP. The matching between the query image and the

Table 3. RankM↑ calculation to measure dataset granularity. Fine-
tuning on the training sets of each dataset strongly boosts the per-
formance of feature extraction. The visual encoder of Image Re-
trieval (IR) outperforms Fine-Grained Classification (FGC).

Method Task CUB CARS196 Military JFS 20
ViT-Small [16] - 0.839 0.354 0.572 0.484
ViT-Small [16] FGC 0.875 0.848 0.989 0.657
PA [27] IR 0.889 0.934 0.997 0.716

Table 4. Comparison of top-1 accuracy↑ and Recall@1↑ (in per-
cent) of various methods for Fine-Grained Classification (FGC)
and Image Retrieval (IR). Only minor improvement is given by
PIM compared to the baseline ViT-Small.

Method Task CUB200 CARS196 Military JFS 20
ViT-Small [16] FGC 86.9 90.4 99.6 65.3
PIM [11] FGC 87.5 91.0 99.7 65.8
PA [27] IR 84.1 90.6 99.6 55.4
HYP [17] IR 85.4 88.7 99.5 51.1

database is done via cosine similarity [17, 27].
Comparison: We start with an analysis of the RankM mea-
sure. Table 3 provides an overview. The ViT-Small model
pre-trained on ImageNet-21K only is drastically improved
according to the RankM measure by fine-tuning the visual
encoder for both approaches fine-grained classification and
image retrieval with PA training. Image retrieval slightly
outperforms fine-grained classification. This observation is
confirmed by the t-SNE plots in Fig. 6, where more dis-
tinct clusters appear in the lower row that represents the vi-
sual encoder of the image retrieval approach. Finally, Ta-
ble 4 shows that end-to-end trainable fine-grained classifi-
cation performs slightly better in top-1 accuracy compared
to image retrieval in terms of Recall@1, respectively. The
improvement given by task-specific recent literature with
PIM [11] and HYP [17] is rather small compared to the ad-
ditional effort. Our experiments on the benchmark datasets
CUB200 [53] and CARS196 [28] show that the published
results of HYP [17], PIM [11] and ViT-Small [16] can be
reproduced. Results of PA [27] in combination with ViT-
Small on CUB200 [53] and CARS196 [28] are plausible.

The top-1 accuracy and the Recall@1 on the proposed
Military MARVEL dataset is very high indicating that the
dataset is well-engineered and and not too difficult. Further-
more, the JFS 20 dataset seems to be the most challenging
dataset. Since this dataset was constructed by humans for
human-based database queries of meta information rather
than image information, this dataset is not well-annotated
for computer vision applications. Delving deeper into the
dataset, there are classes with large intra-class variance and
rather small inter-class variance leading to difficulties in
clustering as visualized in the t-SNE plots of Fig. 6.
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CUB200
Pre-Trained

CARS196
Pre-Trained

Military
Pre-Trained

JFS 20
Pre-Trained

CUB200
Fine-Tuned
(FGC)

CARS196
Fine-Tuned
(FGC)

Military
Fine-Tuned
(FGC)

JFS 20
Fine-Tuned
(FGC)

CUB200
Fine-Tuned (IR)

CARS196
Fine-Tuned (IR)

Military
Fine-Tuned (IR)

JFS 20
Fine-Tuned (IR)

Figure 6. Feature visualization via t-SNE plots of pre-trained en-
coders (upper row), encoders fine-tuned with Fine-Grained Clas-
sification (FGC) in the center row, and encoders fine-tuned with
Image Retrieval (IR) in the lower row. Class labels are visual-
ized in different colors. Clustering is expected to work well for
all datasets especially after fine-tuning except for JFS 20, which
is not well-annotated for computer vision applications.

4.4. Explainable Artificial Intelligence

In this section, heatmap-based XAI methods [42] are ana-
lyzed for their suitability in our application of visual vessel
recognition. Particularly, we evaluate the occlusion-based
XAI methods RISE [38], Sliding window [60] and Saliency
Based Similarity Maps (SBSM) [15], the activation-based
methods Sim-Score [54], Grad-CAM [45] and Sim-CAM
[50], and attention-based methods such as Attention roll-
out [1] and Transformer-IBAV with and without Layer-wise
Relevance Propagation (LRP) [8]. They are evaluated quan-
titatively using the deletion and insertion metric [38]. The
deletion metric measures the decrease in the probability of
the predicted class as an increasing number of significant
pixels are removed. Each pixel’s significance is given by
the generated saliency map (see Fig. 7). A distinct expla-
nation is indicated by a sharp decrease in the probability
curve, resulting in a low Area-Under-Curve (AUC) value.
The insertion metric evaluates the increase in probability as
more pixels are introduced with a higher AUC indicating a
more effective explanation (see Fig. 8). Therefore, a blurred
image is generated by smoothing with a Gaussian kernel of
size 15. By using both the deletion and insertion metrics,
we perform a comprehensive evaluation of XAI methods.
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Figure 7. Deletion metric with ratio of deleted pixels δDel and
class probability P of Kulmbach class. AUC = 0.025 for this
deletion metric example.
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Figure 8. Insertion metric with ratio of inserted pixels δIns and
class probability P of Kulmbach class. AUC = 0.814 for this
insertion metric example.

Fine-Grained Classification: We consider the heatmap-
based XAI methods for fine-grained classification called
Sliding window [60], RISE [38], Transformer-IBAV with
and without LRP [8], Attention rollout [1], and Grad-
CAM [45] on the Military MARVEL and JFS 20 datasets.
For RISE, the binary random masks were stochastically
generated with equiprobable values of zero and one. Specif-
ically, a total of 14,400 masks were used, each with di-
mensions of h = w = 11 and consistently applied with
H = W = 224 in all experimental settings. Binary masks
for the Sliding Window method were generated using a win-
dow size of 18×18 pixels and a step size of two, resulting in
14,400 masks. These parameters were found by minimizing
deletion metric for the image shown in Fig. 7.
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Table 5. Quantitative evaluation of heatmaps of XAI methods for
fine-grained classification using insertion and deletion metric for
the Military MARVEL and the JFS 20 dataset. RISE outperforms
the other methods by a good margin.

Data Method Deletion ↓ Insertion ↑

M
ili

ta
ry

RISE [38] 0.035 ± 0.029 0.819 ± 0.109
Sliding Window [60] 0.048 ± 0.053 0.798 ± 0.130
Transformer-IBAV w/ LRP [8] 0.040 ± 0.027 0.785 ± 0.131
Transformer-IBAV w/o LRP [8] 0.040 ± 0.028 0.783 ± 0.132
Grad-CAM [45] 0.142 ± 0.089 0.756 ± 0.149
Attention rollout [1] 0.182 ± 0.091 0.674 ± 0.156

JF
S

20

RISE [38] 0.154 ± 0.133 0.745 ± 0.144
Sliding Window [60] 0.175 ± 0.153 0.690 ± 0.181
Transformer-IBAV w/ LRP [8] 0.161 ± 0.096 0.627 ± 0.187
Transformer-IBAV w/o LRP [8] 0.167 ± 0.097 0.623 ± 0.189
Grad-CAM [45] 0.192 ± 0.111 0.593 ± 0.196
Attention rollout [1] 0.243 ± 0.114 0.517 ± 0.191

(a) Sliding Window (b) RISE (c) T-IBAV with LRP

(d) T-IBAV (e) Attention rollout (f) Grad-Cam

Figure 9. Heatmaps of various XAI methods for fine-grained clas-
sification. Since the Kulmbach class distinguishes itself from the
most similar class Hameln just by the highlighted superstructure
(a spherical radar), the findings of Table 5 are confirmed.

Five methods are quantitatively evaluated on both the
Military MARVEL and the JFS 20 dataset. Only true posi-
tive samples from the test sets are considered. Table 5 shows
the results. Occlusion-based methods, especially RISE,
achieved the lowest deletion and highest insertion scores
on Military MARVEL, while attention-based and activation
mapping XAI methods achieved higher deletion and lower
insertion scores. The popular Grad-CAM method performs
weak on both datasets. Figure 9 presents example images
overlayed with heatmaps generated by the XAI methods.
Heatmaps of the occlusion-based methods correctly focus
on the spherical radar on top of the superstructure. The
heatmap of the activation and attention-based methods fo-
cuses on the whole vessel with some artifacts in the back-
ground. RISE achieves the best XAI performance on both
datasets for fine-grained classification.

Table 6. SBSM with random masks outperforms other XAI meth-
ods based on the insertion and deletion metrics for image retrieval
on the Military MARVEL dataset. The margin is rather low.

Data Method Deletion ↓ Insertion ↑

M
ili

ta
ry

SBSM (random masks) [15] 0.326 ± 0.041 0.885 ± 0.055
SBSM (sliding window) [15] 0.361 ± 0.055 0.879 ± 0.058
Sim-CAM [54] 0.344 ± 0.055 0.868 ± 0.058
Sim-Score [50] 0.513 ± 0.206 0.746 ± 0.156

JF
S

20

SBSM (random masks) [15] 0.334 ± 0.073 0.765 ± 0.100
SBSM (sliding window) [15] 0.445 ± 0.127 0.698 ± 0.128
Sim-CAM [54] 0.423 ± 0.119 0.695 ± 0.107
Sim-Score [50] 0.497 ± 0.158 0.630 ± 0.151

Image Retrieval: We compare the similarity-based
heatmaps generated by four algorithms, namely SBSM with
binary masks and SBSM with random masks [15], Sim-
CAM [54], and Sim-Score [50] qualitatively and quanti-
tatively. The same setup is used for SBSM as previously
described for RISE and Sliding Window. Table 6 shows
the results of the quantitative evaluation. The deletion met-
ric values are quite similar. Notably, there is no significant
correlation between the AUC and the qualitative analysis
as shown in Fig. 10. However, the two occlusion-based
methods showed higher AUC compared to Sim-CAM. The
insertion metric also provides similar AUC values. We as-
sume that the image retrieval-based cosine similarity as con-
fidence indication is not as meaningful for calculating the
deletion/insertion metrics compared to the classifier confi-
dence in fine-grained classification. Another indication is
the strong difference of the deletion/insertion values com-
pared to Table 5. However, the two occlusion-based meth-
ods perform slightly better compared to activation-based
methods. SBSM with random masks has the highest AUC.

Figure 10 presents a example query image and its cor-
responding top-1 retrieved image overlayed with heatmaps
generated by the different algorithms. The retrieved image
is correct. We see that the heatmap of the occlusion-based
methods is predominantly focused on the spherical radar
on top of the superstructure, whereas the heatmap of the
activation-based methods focuses on the whole vessel with
some artifacts in the background. We assume that qualita-
tive evaluation of heatmaps, which typically neglects fail-
ure cases, can be misleading. In our application, however,
SBSM seems to be the choice for XAI in image retrieval.

4.5. Visualization of the Decision-Making Process

In this case study, we take two samples from Military MAR-
VEL to visualize model-based decision-making for both
fine-grained classification and image retrieval. Heatmaps
are used to gain further insight into the models and the data.

A sample of the Military MARVEL dataset from Kulm-
bach class is presented in Fig. 11a. We generate heatmaps
for the top-3 predicted classes shown in Figures 11b to 11d.
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(a) Query image (b) SBSM (binary) (c) SBSM (random)

(d) Sim-Score (e) Sim-CAM

Figure 10. Heatmaps of various XAI methods for image retrieval.
The spherical radar was correctly detected as most relevant image
region, but the rather similar numbers in Table 6 do not correlate
with the strong performance difference observed in the figure.

(a) Kulmbach (b) Kulmbach (c) Hameln (d) Blue Ridge

Figure 11. Heatmaps of top-3 predicted classes for Kulmbach
class sample.

The Kulmbach class is characterized by a spherical radar lo-
cated on top of the superstructure, which is effectively cap-
tured by the heatmap in Fig. 11a. Note that the Hameln
class is similar in appearance to the Kulmbach class just
without the spherical radar. The difference between these
two classes is highlighted by the blue circle in the heatmap
shown in Fig. 11c. The heatmap also shows a high similar-
ity along the diagonal line on the hull. The same sample was
used as query image for image retrieval and the heatmaps
of the three most similar images are shown in Fig. 12. The
heatmaps of Figures 12b to 12d show that the retrieved im-
ages are similar to the query image in terms of the spherical
radar on top of the superstructure and the diagonal line on
the hull. Another sample of the Kulmbach class is shown in
Fig. 13a. The sample is incorrectly classified as the Hameln
class. The heatmap of Hameln class in Fig. 13b shows the
importance of the diagonal line on the hull and that the
spherical radar on top of the superstructure is less important
for Hameln class. The heatmap in Fig. 13c indicates that
the diagonal line on the hull is also important for the Kulm-
bach class. In addition, the spherical radar contributes to the
models’ decision. It seems that the model does not detect
the spherical radar. In contrast, all three retrieved images

(a) Query image (b) Rank 1 (c) Rank 2 (d) Rank 3

Figure 12. Heatmaps of correctly retrieved images for a Kulmbach
class query image.

(a) Kulmbach (b) Hameln (c) Kulmbach (d) Elbe

Figure 13. Heatmaps of top-3 predicted classes for Kulmbach
class sample.

(a) Query image (b) Rank 1 (c) Rank 2 (d) Rank 3

Figure 14. Heatmaps of correctly retrieved images for a Kulmbach
class query image.

are correct as shown in Fig. 14. Figures 14b to 14d show
that the retrieved images and the query image are similar in
terms of the spherical radar on the superstructure.

5. Conclusion
In this paper, we introduced a novel dataset for visual ves-
sel recognition, namely the Military MARVEL dataset that
consists of 15,858 images arranged in 137 different vessel
classes. Based on this dataset and other related datasets,
we conducted a systematic analysis of the state-of-the-art
in fine-grained image classification, image retrieval, and
XAI. Our key findings are: (1) a well-engineered dataset
such as Military MARVEL can quite easily be utilized for
high-performance visual vessel recognition with state-of-
the-art approaches for fine-grained classification and image
retrieval. (2) modern Transformer-based visual encoders
such as ViT are powerful feature extractors that outperform
CNNs. (3) end-to-end fine-grained image classification
achieves higher accuracy according to the top-1 accuracy
measure compared to image retrieval but image retrieval is
more flexible and extendable especially to previously un-
seen classes. (4) occlusion-/black-box-based XAI meth-
ods such as RISE are both powerful and easy-to-implement
tools to gain insight into a DNN’s decision process.
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