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Abstract

The rapid growth of machine learning has spurred leg-
islative initiatives such as “the Right to be Forgotten,” al-
lowing users to request data removal. In response, machine
unlearning proposes the selective removal of unwanted data
without the need for retraining from scratch. While the
Neural-Tangent-Kernel (NTK) based unlearning method ex-
cels in performance, it suffers from significant computa-
tional complexity, especially for large-scale models and
datasets. To improve this situation, our work introduces
“Fast-NTK,” a novel NTK-based unlearning algorithm that
significantly reduces the computational complexity by in-
corporating parameter-efficient fine-tuning methods, such
as fine-tuning batch normalization layers in a CNN or vi-
sual prompts in a vision transformer. Our experimental re-
sults demonstrate scalability to really large neural networks
and datasets (e.g., 88M parameters and 5k images), sur-
passing the limitations of previous full-model NTK-based
approaches designed for smaller cases (e.g., 8M parame-
ters and 500 images). Notably, our approach maintains a
performance comparable to the traditional methods of re-
training on the retain set alone. Fast-NTK can thus enable
practical and scalable NTK-based unlearning in deep neu-
ral networks.

1. Introduction
The surge of machine learning applications has prompted
legislative actions, notably “the Right to be Forgotten,” al-
lowing individuals to request the removal of their online in-
formation [28]. However, the privacy challenge remains as
erasing data from databases may persist in machine learn-
ing models, particularly in deep neural networks (DNNs),
which are recognized for their efficient training data mem-
orization [30]. To address this issue, machine unlearning
has emerged to enable selective removal of unwanted “for-

*Work done during an internship at JPMorgan Chase Bank, N.A.

get samples” without the need of retraining the model from
scratch [25].

Among various unlearning algorithms [2, 3, 5, 11, 24,
29], NTK-based unlearning stands out for its state-of-the-
art performance [8, 9]. However, NTK-based unlearning al-
gorithms are challenging due to the need of computing ker-
nel matrices with respect to all samples and model weights.
This computational complexity grows polynomially with
the number of samples and model weights, thus resulting
in intensive computation costs and memory consumption.
Consequently, the effectiveness of NTK-based unlearning
algorithms is often limited only to small-scale models and
datasets (e.g., 8M parameters and 500 images).

In this work, we draw inspiration from parameter-
efficient fine-tuning (PEFT) [4, 18, 22, 33] and leverage
the NTK-based unlearning algorithms — specifically, the
computation of kernel matrices — to work with a limited
set of important parameters, such as those used in batch
normalization layers and visual prompts. We term this
approach “Fast-NTK,” as shown in Figure 1. Unlike the
conventional application of NTK-based unlearning algo-
rithms, Fast-NTK significantly reduces the parameter count
(cf. Table 2) of the standard implementation of the entire
model. Remarkably, our experimental results, e.g., vision
transformers (ViTs) on the ImageNet-R dataset, demon-
strate indistinguishable performance compared to the com-
monly used baseline that retrains the model from scratch
only on the remaining data. Consequently, we believe our
approach provides a practical and scalable solution for the
NTK-based unlearning approaches.1

2. Background and Related Work
Consider a training dataset D that can be divided into two
disjoint subsets: a forget set Df which is the target for un-
learning, and a retain set Dr which contains the remain-
ing samples. The objective of machine unlearning is to
eliminate the knowledge from the forget samples in Df

1Codes to reproduce our experiments are public at GitHub.

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. A schematic of parameter-efficient fine-tuning and unlearning.
For CNNs (left), instead of updating the entire model, we conduct the fine-
tuning and NTK-based unlearning on batch normalization (BN) layers. For
transformers (right), we only modify the appended prompts (pK and pV ).

of a model trained with D, while minimizing the perfor-
mance degradation of the retain samples in Dr [31]. One
simple strategy is to retrain the entire model from scratch,
utilizing only the samples in Dr. However, this process
is time-consuming, particularly when dealing with large-
scale datasets and models. Consequently, current research
endeavors to directly erase the knowledge associated with
the forget samples from the model, without necessitating a
complete retraining.

There exist three distinct strategies for accomplishing
machine unlearning: data partitioning [2], mimicking dif-
ferential privacy [11], and adjusting the model weights [3,
5, 24, 29]. Our work delves into the intricacies of updat-
ing the model weights, hence targeting machine unlearning
through the computation of NTKs [16, 21].

Consider a neural network fθ : X → Y , parameterized
by θ ∈ Rd, where X and Y are the support sets of the in-
put and output, respectively. The NTK matrix of the two
datasets D1 and D2 is defined as:

Θ(D1,D2) ≜ ∇θfθ(D1)∇θfθ(D2)
⊤ (1)

Let θ and θr be the weights from training with the entire
training set D and the retain set Dr alone, respectively2. By
linearizing the outputs of fθ, we can approximate θ and θr
in closed forms, and directly move the model weights from
θ to θr by an optimal one-shot update:

θr = θ + P∇θfθ(Df )
⊤MV , (2)

where P = I −∇θfθ(Dr)
⊤Θ(Dr,Dr)

−1∇θfθ(Dr) is the
matrix that projects the gradients of the samples to forget
∇θfθ(Df ) to a space that is orthogonal to the space spanned
by the gradients of all retain samples; M =

[
Θ(Df ,Df )−

2Note that directly obtaining θr from θ is the goal of machine unlearn-
ing by updating model weights.

Θ(Dr,Df )
⊤
Θ(Dr,Dr)

−1
Θ(Dr,Df )

]−1
and V = (yf −

fθ(Df ))+Θ(Dr,Df )
⊤
Θ(Df ,Df )

−1
(yr−fθ(Dr)) are the

re-weighting matrices, while yf and yr are the ground truth
labels for the forget set and retain set, respectively.

Although the NTK-based unlearning provides state-of-
the-art performance in comparison to other methods [17],
there are concerns regarding its numerical instability and
scalability for models with many parameters [8, 9]. The in-
herent computational complexity has spurred efforts to en-
hance the efficiency of NTK-based unlearning algorithms,
especially in large-scale setups. One approach to mitigate
the computational costs involves the utilization of sketch-
ing techniques to approximate the tensor products associ-
ated with NTK [32]. This method not only scales linearly
with data sparsity, but also efficiently truncates the Taylor
series of arc-cosine kernels. Additionally, improvements in
the spectral approximation of the kernel matrix are achieved
through leveraging the score sampling, or introducing a
distribution that efficiently generates random features by
approximating scores of arc-cosine kernels [32]. Further
strides in computational efficiency are made by novel al-
gorithms employing mixed-order or high-order automatic
differentiation [26]. It is important to note that these meth-
ods are often tailored to specific types of deep neural net-
works, thus limiting their widespread applicability. More-
over, their efficiency may still fall short for some larger deep
networks [26]. Consequently, our objective is to propose a
parameter-efficient and practical implementation of NTK-
based unlearning methods, as discussed next.

3. Proposed Method
3.1. Fast-NTK

The major barrier in NTK-based unlearning arises from the
computation of the Jacobian matrix ∇θfθ(D), defined in
Eq. (1) and (2), with dimensions |Y||Df | × d. In the con-
text of deep neural networks, the parameter count d spans
a vast range, from millions to trillions [7, 27]. This abun-
dance of parameters poses a formidable challenge due to
the prohibitive costs in computation and storage, and has
indeed been a primary impediment in applying NTK-based
unlearning algorithm on large scale models. To mitigate the
computational and storage burdens, the concept of PEFT
has been recently proposed in Houlsby et al. [14]. PEFT
selectively fine-tunes only a small subset of (additional)
model parameters. Recent empirical findings indicate that
state-of-the-art PEFT techniques achieve performance com-
parable to that of full fine-tuning (i.e., tuning all parame-
ters) [33], but with a lower computational cost.

Drawing inspiration from PEFT, we extend the approach
to NTK-based unlearning by selectively focusing on a sub-
set of model parameters—this combined technique is re-
ferred to as “Fast-NTK.” As illustrated in Fig. 1, in the case
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Table 1. Prompt-based FAST-NTK on ViTs with CIFAR-10. All results are averaged over 5 runs with different seeds. The results closest
to RETRAIN are considered as the best results and shown in bold.

Architectures ViT-Small ViT-Base

Dataset #Images per class 100 200 500 100 200 500

CIFAR-10 #Params ratio (%) 0.11 0.11 0.11 0.05 0.05 0.05

Accuracy on Dr

FULL 95.78±0.52 94.93±1.06 94.78±0.48 84.18±1.09 85.67±0.62 87.07±0.24

RETRAIN 96.02±0.43 95.71±0.53 94.29±0.20 84.36±1.16 86.47±0.58 88.19±0.32

MAX LOSS 87.18±1.19 86.53±0.79 83.47±0.40 78.04±0.60 84.26±0.83 87.39±0.08

RANDOM LABEL 93.87±0.86 93.72±0.55 93.32±0.35 76.56±0.83 83.83±0.82 87.28±0.17

Fast-NTK 93.91±0.77 94.84±1.25 94.59±0.03 87.60±1.16 89.13±0.51 89.30±0.12

Accuracy on Df

FULL 97.00±1.55 96.20±1.36 95.73±1.67 84.80±6.31 90.40±1.11 92.00±0.00

RETRAIN 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

MAX LOSS 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

RANDOM LABEL 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Fast-NTK 0.20±0.40 0.20±0.24 0.00±0.00 0.00±0.00 0.00±0.00 0.20±0.20

Accuracy
on Hold-Out set

FULL 86.62±1.42 87.51±0.93 89.29±0.18 82.06±0.77 84.95±0.95 86.78±0.28

RETRAIN 78.94±1.11 79.61±0.44 80.64±0.10 73.76±0.43 76.56±0.87 78.59±0.27

MAX LOSS 71.90±0.45 73.38±0.72 73.09±0.24 68.14±0.71 74.60±0.86 77.73±0.21

RANDOM LABEL 78.12±0.91 79.01±0.59 80.30±0.07 66.80±1.23 74.34±0.83 77.73±0.35

Fast-NTK 77.78±1.14 78.87±0.97 80.63±0.23 70.62±2.10 75.37±0.45 78.47±0.15

#Relearning
Epochs

RETRAIN 2.60±0.49 1.40±0.49 1.00±0.00 >100 >100 46.50±0.50

MAX LOSS 9.20±0.40 8.00±0.00 6.00±0.00 >100 >100 47.50±0.50

RANDOM LABEL 2.20±0.40 1.20±0.40 1.00±0.00 >100 >100 45.00±1.00

Fast-NTK 2.60±0.49 1.00±0.00 1.00±0.00 >100 >100 53.50±1.50

of convolutional neural networks (CNNs), our approach
involves fine-tuning the batch normalization (BN) layers,
which has proven to be an effective strategy for adapting
a trained model to new data domains [4, 22]. Meanwhile,
for vision transformers (ViTs), success is achieved by fine-
tuning several prompts appended to the attention blocks
[18, 23, 33]. To elaborate, given a pre-trained CNN or ViT,
we perform fine-tuning on the downstream dataset D by
using BN-based adjustments (for CNNs) or prompt-based
modifications (for ViTs).

Subsequently, when provided with a forget set Df , we
execute NTK-based unlearning using Eq. (2) exclusively
on the fine-tuned parameters. This streamlined Fast-NTK
approach significantly reduces the parameters subjected to
fine-tuning, down to a range of 0.05% ∼ 4.88% of the full
model parameters. Remarkably, Fast-NTK achieves a per-
formance comparable to tuning all parameters, as demon-
strated in the next section.

3.2. Parameter Reduction of Fast-NTK

Fine-tune/unlearn CNNs with BN layers. As shown in
Fig. 1, a convolutional layer is typically followed by a batch
normalization layer in a CNN. For a typical convolutional
layer with Co output channels, Ci input channels, kernel
size K × K, and g separable groups, the total number
of parameters (weights) in this layer is Parametersconv =
Co×Ci×K2

g . In contrast, for a batch normalization (BN)
layer, the only learnable parameters are the scaling (γ)
and shifting (β) terms for each channel. Hence, the to-
tal number of learnable parameters in a BN layer is then
ParametersBN = 2×Co. Usually, Ci×K2 ≫ 2 and g = 1;
therefore

Parametersconv

ParametersBN
=

Ci ×K2

2g
≫ 1. (3)

Fine-tune/unlearn ViTs with Prompts. In a ViT, the em-
bedding layer transforms the input image into a sequence-
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Table 2. BN-based FAST-NTK on CNNs with CIFAR-10. All results are averaged over 5 runs with different seeds. The results closest to RETRAIN are
considered as the best results and shown in bold.

Architectures MobileNet-V2 ResNet-110

Dataset #Images per class 100 200 500 100 200 500

CIFAR-10 #Params ratio (%) 4.88 4.88 4.88 0.51 0.51 0.51

Accuracy on Dr

FULL 74.42±2.17 78.54±0.62 84.12±0.24 66.87±1.03 72.28±1.39 77.22±1.27

RETRAIN 75.56±2.36 79.50±0.55 85.27±0.26 69.02±1.65 74.13±1.54 78.98±0.43

MAX LOSS 71.13±1.91 68.24±1.40 14.12±1.59 56.64±2.17 49.17±2.19 13.49±1.89

RANDOM LABEL 69.58±2.21 69.02±1.72 66.94±2.84 58.76±1.58 66.58±1.71 72.58±2.42

Fast-NTK 70.80±2.04 73.70±0.68 80.76±0.40 65.60±4.36 71.04±1.65 76.84±0.21

Accuracy on Df

FULL 68.40±5.28 75.00±4.17 84.80±2.07 67.20±3.06 73.70±1.81 75.20±0.98

RETRAIN 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

MAX LOSS 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

RANDOM LABEL 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Fast-NTK 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Accuracy
on Hold-Out set

FULL 65.00±1.11 71.63±1.25 77.91±0.21 54.12±0.72 62.29±1.12 71.02±0.71

RETRAIN 60.50±1.15 66.41±0.46 71.80±0.19 50.36±1.17 57.57±0.71 65.58±1.51

MAX LOSS 58.14±0.95 58.28±1.22 12.51±1.27 43.18±0.34 41.61±2.06 12.06±2.81

RANDOM LABEL 57.04±1.15 63.36±0.48 69.27±0.15 43.38±0.91 52.53±0.64 61.18±0.60

Fast-NTK 58.54±0.88 63.96±1.67 69.96±3.64 50.80±5.57 59.88±1.59 60.58±0.63

#Relearning
Epochs

RETRAIN 21.20±0.40 11.00±0.00 4.80±0.40 12.60±0.49 6.20±0.40 3.00±0.00

MAX LOSS 28.80±0.40 22.20±0.40 77.20±6.01 24.00±0.89 25.20±2.48 22.00±0.93

RANDOM LABEL 19.80±0.40 10.00±0.00 4.00±0.00 10.80±0.40 6.00±0.00 3.00±0.49

Fast-NTK 21.00±0.63 10.80±0.40 4.00±0.00 12.40±0.80 6.00±0.00 2.80±0.40

like feature representation with the embedding dimension
of E. Next, the representation is processed by several
transformer block, consisting of a multi-head self-attention
(MSA) block and two multi-layer perceptron (MLP) lay-
ers to obtain the outputs. Within each block, each MLP
layer has E × rE, where r is usually 4; so two MLP lay-
ers have 8E2 parameters. Besides, each attention head has
three weight matrices of size E

m×E, where m is the number
of attention heads in a given MSA. Hence, MSA has 3E2

parameters, and, in total:

ParametersBlock = 8E2 + 3m× E

m
× E = 11E2

As shown in Fig. 1, the prompt-based fine-tuning inserts the
prompt parameters pK and pV to the Key and Value hK and
hV of an MSA.

As a contrast to tuning the entire MSA, the prompt-based
method fine-tunes only Lp × E parameters, where Lp is the
number of appended prompts. Typically, the embedding di-

mensions E is much higher than the prompt length Lp (in
our experimental setup, Lp = 10); therefore:

Parametersblock

Parametersprompt
=

11E

Lp
≫ 1. (4)

4. Empirical results

4.1. Setup

Our method starts with the CNNs and ViTs pre-trained
on the CIFAR-100 and ImageNet-1K datasets, respectively.
We fine-tune these pre-trained models on the CIFAR-10
[20] and ImageNet-R [13] datasets and then assess the per-
formance of FAST-NTK. In the case of CIFAR-10, we des-
ignate one class as Df , while considering the remaining
classes as Dr. Similarly, for the ImageNet-R dataset, we
randomly choose one class as Df and select either 19 or 49
classes from the 200 classes as Dr (i.e., resulting in 20 or
50 total classes in D) to demonstrate the scalability of our
approach. Besides, we vary the number of the images per
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Table 3. Prompt-based FAST-NTK on ViTs with ImageNet-R. All results are averaged over 5 runs with different seeds. The results closest to RETRAIN
are considered as the best results and shown in bold.

Architectures ViT-Tiny ViT-Small ViT-Base

Dataset #Classes/#IPC 20/50 50/20 20/50 50/20 20/50 50/20

ImageNet-R #Params ratio (%) 0.24 0.35 0.12 0.18 0.06 0.09

Accuracy on Dr

FULL 66.40±0.91 65.48±0.85 87.60±0.89 85.56±1.58 36.82±2.55 15.36±1.17

RETRAIN 68.21±1.50 65.92±0.93 87.77±0.42 86.58±0.15 37.45±2.03 16.02±1.02

MAX LOSS 57.71±1.33 51.80±0.70 77.35±1.23 71.17±0.66 24.78±2.74 8.52±0.77

RANDOM LABEL 58.29±1.70 51.50±0.97 78.51±1.52 71.43±0.20 23.56±2.99 7.60±0.77

Fast-NTK 66.53±0.63 65.24±0.48 87.03±1.49 85.31±2.14 40.84±1.84 17.40±1.89

Accuracy on Df

FULL 77.20±5.60 56.67±20.95 91.60±3.44 87.50±2.50 56.80±11.91 20.00±5.00

RETRAIN 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

MAX LOSS 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

RANDOM LABEL 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Fast-NTK 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Accuracy
on Hold-Out set

FULL 47.73±0.45 31.43±1.70 68.06±1.12 52.75±0.75 32.53±2.40 12.05±0.05

RETRAIN 46.54±1.26 30.67±2.25 64.69±0.90 51.60±0.90 30.29±2.24 11.60±0.10

MAX LOSS 41.56±1.05 26.13±0.87 59.41±1.03 45.15±0.05 19.67±3.20 6.55±0.55

RANDOM LABEL 45.02±1.92 26.03±1.31 64.03±1.23 45.40±0.10 19.96±3.60 6.55±0.25

Fast-NTK 45.44±0.93 31.17±1.28 64.03±1.03 52.40±0.50 23.26±2.40 9.15±0.35

#Relearning
Epochs

RETRAIN 5.00±0.00 4.67±0.47 6.40±0.49 6.50±0.50 >100 >100

MAX LOSS 17.00±0.00 13.67±0.47 18.00±0.00 15.00±0.00 >100 >100

RANDOM LABEL 4.20±0.40 3.67±0.47 6.40±0.49 6.00±0.00 >100 >100

Fast-NTK 4.40±0.49 4.00±0.00 5.80±0.40 6.00±0.00 >100 >100

Table 4. Linear probing on the ImageNet-R dataset. All results are averaged over 5 runs with different seeds.

Network ViT-Small ViT-Base

#Classes/#IPC 20/20 20/50 50/20 20/20 20/50 50/20

Acc on Dr

PRE-TRAINED 60.39±1.27 58.24±1.49 53.70±2.36 99.93±0.11 99.32±0.24 99.87±0.08

RANDOM-INIT 35.66±1.69 26.40±1.06 22.32±0.60 32.31±0.74 19.30±0.66 17.33±0.69

Fast-NTK 60.25±3.76 53.71±2.45 47.24±0.00 86.58±2.13 87.66±1.01 87.24±0.00

Acc on Df

PRE-TRAINED 72.50±9.01 79.50±6.22 66.25±5.45 100.00±0.00 99.00±1.00 98.75±2.17

RANDOM-INIT 54.53±2.46 33.33±17.00 43.33±11.12 49.40±4.42 15.00±8.16 17.33±7.72

Fast-NTK 0.00±0.00 0.00±0.00 0.00±0.00 2.50±2.50 0.00±0.00 0.00±0.00

class (IPC) from 20 to 500. For example, for ImageNet-R
dataset, we can set the number of classes as 20 (one forget
class plus 19 retain classes) and set IPC as 200, then in to-
tal we have 4,000 images in D; we can set IPC as 500 for
CIFAR-10, we have 5,000 images in D.

We consider the following three metrics. First, we mea-

sure accuracy on both Dr and Df — an unlearning algo-
rithm should maintain high accuracy on Dr while mini-
mizing accuracy on Df . Second, we calculate accuracy
on a hold-out set to ensure consistent performance on un-
seen data. Note that the hold-out set may contain samples
from classes present in both Df and Dr. The accuracy on
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the hold-out set should remain unaffected by the unlearning
algorithm. Third, we incorporate relearning time [8], rep-
resenting the number of epochs to achieve a training loss
below 0.05 on the forget set3. Relearning time serves as a
measure of the difficulty in recovering knowledge from the
forget set. If the model fails to achieve a loss below 0.05
within 100 epochs, we denote it as ‘>100’.

We compare FAST-NTK against the following baselines:
• FULL: The original model fine-tuned on D = Df ∪ Dr

without unlearning, serving as the reference model.
• MAX LOSS [12]: This baseline maximizes the training

loss with respect to the ground truth labels of the samples
in the forget set Df .

• RANDOM LABEL [10, 19]: This baseline minimizes the
training loss by assigning uniformly random labels to the
samples in the forget set Df .

• RETRAIN: The model trained only on the retain set Dr.
Among these baselines, RETRAIN is commonly referred

to as the golden baseline. This designation stems from
its lack of prior knowledge about the samples in the for-
get set Df , making it an ideal reference point for com-
paring any unlearning algorithms. By evaluating FAST-
NTK against RETRAIN, we aim to ensure that the unlearned
model closely approximates the ideal scenario. This com-
parison helps ascertain that the unlearning process effec-
tively eliminates unwanted data without causing significant
performance degradation on Dr. Essentially, an ideal un-
learned model should exhibit indistinguishability in terms
of the specified evaluation metrics to the golden baseline
RETRAIN (see [25, Section 3.2]).

4.2. Evaluation of Fast-NTK

We perform BN-based fine-tuning on ViTs, MobileNet-v2
and ResNet-110 using a subset of the CIFAR-10 dataset,
followed by unlearning algorithms that involves forgetting
the class labeled “0.” To showcase the scalability of our
approach, we vary the number of images per class (#IPC).
The results in Table 1 and Table 2 reveal that our method
requires less than 4.88% of the parameters involved in fine-
tuning the entire model, thus making the unlearning process
practical and achievable for these large models. Notably,
FAST-NTK exhibits negligible or no accuracy degradation
on the retain set compared to the golden baseline RETRAIN.
In contrast, the accuracy on the forget set is indistinguish-
able from RETRAIN (drops to ”0”) across various setups,
with a similar number of relearning epochs needed as RE-
TRAIN. Compared to the other baselines, MAX LOSS and
RANDOM LABEL, FAST-NTK effectively preserves accu-
racy on the retrain set Dr and the general test set, highlight-
ing the robustness and efficiency of our proposed technique
for CNNs.

3Here, we use 0.05 but it can be other values.

Additionally, we extend the same setting to ViTs on the
ImageNet-R dataset. As demonstrated in Table 3, our ap-
proach requires less than 0.4% of the parameters compared
to tuning the entire model, thus making it practical unlearn-
ing feasible for these large models. Comparisons with RE-
TRAIN, MAX LOSS, and RANDOM LABEL show that FAST-
NTK effectively preserves accuracy on the retain set Dr

and the general test set, achieving close accuracy to RE-
TRAIN on the retain set. These results confirm the effective-
ness and practicality of our unlearning approach for ViTs.
Importantly, our method scales up to ViTs, representing a
significant advancement compared to previous approaches
like [8], which are confined only to toy networks and small
datasets (e.g., 8M parameters and less than 200 samples).

5. Discussion
Risk of using pre-trained models. It is crucial to empha-
size that FAST-NTK starts with a pre-trained model rather
than one initialized randomly. Despite the increasing popu-
larity of leveraging pre-trained foundation models [1], these
pre-trained models may possess some knowledge of classes
from Df . This prior knowledge introduces an inherent risk
for the unlearning process, as erasing all information and
concepts associated with the classes in Df solely through
the use of forget samples becomes a challenging task.

To assess this risk, for the pre-trained models used in our
evaluation (PRE-TRAINED), we conduct fine-tuning of the
classification head (i.e., linear probing) on Dr ∪ Df , while
keeping the parameters in the remaining layers frozen. We
also conduct the linear probing on the randomly initialized
model (RANDOM-INIT) and the unlearned model obtained
by FAST-NTK (cf. Section 4).

As illustrated in Table 4, the accuracy of PRE-TRAINED
on Dr and Df is much higher than RANDOM-INIT (very
close to 100%), indicating that the pre-trained model al-
ready possesses some level of knowledge about Dr and Df .
As expected, FAST-NTK effectively removes the knowl-
edge on Df as the accuracy on Df is zero. This finding
underscores the need for further investigation into the inter-
play between unlearning and PEFT on pre-trained models.

Future work. Our current implementation to obtain the
NTK matrix relies on exact computations. To further im-
prove the efficiency of FAST-NTK, one future direction is to
explore approximate computation of the NTK matrix, e.g.,
by low-rank approximation or factorization [6, 15].

6. Conclusion
In this work, we have proposed ”Fast-NTK”, an inno-
vative approach to machine unlearning that addresses the
computational challenges associated with Neural-Tangent-
Kernel-based (NTK-based) methods. By integrating the
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parameter-efficient fine-tuning techniques, Fast-NTK sig-
nificantly reduces computational complexity, making it an
efficient and practical solution for large-scale models and
datasets. Our experimental results demonstrate that Fast-
NTK not only significantly improve the scalability of prior
full-model NTK-based strategies but also achieves compa-
rable accuracy with the classical retraining-based methods.
Our approach paves the way for practical and scalable NTK-
based unlearning in deep neural networks.

Disclaimer
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