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Abstract

Despite their remarkable performance, the explainabil-

ity of Vision Transformers (ViTs) remains a challenge.

While forward attention-based token attribution techniques

have become popular in text processing, their suitabil-

ity for ViTs hasn’t been extensively explored. In this pa-

per, we compare these methods against state-of-the-art in-

put attribution methods from the Vision literature, reveal-

ing their limitations due to improper aggregation of in-

formation across layers. To address this, we introduce

two general techniques, PLUS and SkipPLUS, that can be

composed with any input attribution method to more ef-

fectively aggregate information across layers while han-

dling noisy layers. Through comprehensive and quantita-

tive evaluations of faithfulness and human interpretability

on a variety of ViT architectures and datasets, we demon-

strate the effectiveness of PLUS and SkipPLUS, establish-

ing a new state-of-the-art in white-box token attribution.

We conclude with a comparative analysis highlighting the

strengths and weaknesses of the best versions of all the stud-

ied methods. The code used in this paper is freely avail-

able at https://github.com/NightMachinery/

SkipPLUS-CVPR-2024.

1. Introduction

Transformers currently dominate various NLP tasks and are

gaining significant popularity in the field of computer vision

[19, 22, 52, 56, 68]. Despite their remarkable success, a cru-

cial challenge remains in comprehending their inner work-

ings, which poses risks in real-world deployments. Con-

sequently, there is an increasing demand for research that

explains the outputs of Transformers [14, 40, 47, 59].

Input attribution methods are techniques designed to

quantify the influence of individual input features, or groups

of them, on a model’s output [5, 37, 42, 43, 60, 65, 66, 77].

Input attribution methods can assist in understanding a
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Figure 1. This figure presents a qualitative comparison of the

composition of the proposed SkipPLUS method with the Forward

Attention-Based Token Attribution technique DecompX, using the

EVA Large model. Brighter shades signify an increased positive

contribution of features towards the prediction of the target class.

The results illustrate that DecompX-SkipPLUS effectively con-

centrates on the target class (“Newt” in this image) while min-

imizing noise. In contrast, GenAtt, the previous state-of-the-art

method, exhibits suboptimal performance on EVA Large, falling

behind baselines such as GradCAM. For additional qualitative ex-

amples, including multi-class instances, refer to Figs. 5 and 6, as

well as the appendices.

model’s decision locally for a single input considered in

isolation. They also act as foundational elements for more

advanced explanation techniques. For instance, in concept-

based explanation methods like CRAFT [24], attribution

methods are employed for two main purposes: to quantify

the impact of each activated concept and to identify the spe-

cific input features responsible for activating these concepts.

Early works used the raw self-attention weights of the

last layer as a token attribution map [7, 10, 31]. Recent stud-

ies have questioned the reliability of this approach, given

that self-attention is only a small part of a Transformer

block [14, 34, 63, 72]. Forward Attention-Based Token At-

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Starting DecompX from Different Layers

tribution methods [1, 25–27, 46] try to address this issue by

incorporating other components of the block. These meth-

ods have been primarily developed and evaluated on text

Transformers and their effectiveness in Vision Transform-

ers has not been thoroughly investigated.

In this paper, we conduct a comprehensive study com-

paring Forward Attention-Based Token Attribution methods

against popular interpretation techniques used in the Vision

literature. Our findings reveal that, in their original formu-

lation, Forward Attention-Based Token Attribution methods

do not perform well for Vision Transformers, mainly due to

their improper aggregation of information across layers.

To address this limitation, we propose PLUS and Skip-

PLUS, simple techniques that can be applied to a wide

range of input attribution methods, without imposing any

specific prerequisites. We perform extensive quantitative

evaluations on a variety of ViT architectures and datasets

to assess the faithfulness and human interpretability of the

proposed method. Our results show that composing Skip-

PLUS with recent text-based interpretation techniques can

significantly enhance their performance, surpassing all the

widely-used techniques for interpreting vision models. En-

couraged by this success and the composability of these

techniques, we compose PLUS and SkipPLUS with other

attribution methods. This integration enhances the effec-

tiveness of many traditional methods without compromis-

ing performance when it proves unhelpful. (See Fig. 4 and

Sec. C in the appendices for further details).

Finally, we provide a comparative analysis of the best

versions of all the studied methods, highlighting their

strengths and weaknesses.

2. Related Work

Owing to space constraints, this section will briefly intro-

duce only the most fundamental methods. A comprehensive

overview of additional methods is provided in the appendix,

detailed in Sec. E.

2.1. Gradient­Based Methods

Input×Gradient (IxG). IxG [37] multiplies the input

values by their corresponding gradients. Let xi be a spatial

feature of the input, where xi,j represents the j-th channel

of xi. The Input×Gradient attribution for the spatial feature

xi with respect to the target class c is computed as follows,

where yc is the output of the model for the target class c:

  \text {Input$\times $Gradient}_i = \sum _{j} \frac {\partial y_{c}}{\partial x_{i,j}} \cdot x_{i,j}, 








   (1)

2.2. Forward Attention­Based Token Attribution
Methods

Rollout. Rollout [1] is a technique used to aggregate

the attribution maps from different self-attention layers in

Transformer models. While Rollout was originally de-

veloped for aggregating attention weights across layers, it

can be applied to any attribution method that produces a

2D From-To attribution matrix for each layer. The rollout

method linearly multiplies the attribution maps from each

layer.

Given the attribution map Ti at the i-th layer, the rollout

operation updates the accumulated attribution map Ri that

has aggregated information up to the i-th layer. The update

rule for the accumulated attribution map is as follows:

  \mathbf {R}_0 = \mathbf {I}, \quad \mathbf {R}_{i+1} = (0.5\mathbf {I} + 0.5\mathbf {\overline {T}}_i) \mathbf {R}_i        (2)

where I is the identity matrix, and Ti is the normalized

attribution map of the i-th layer. The normalization ensures

that the sum of each row in the attribution map is one, mir-

roring the behavior of attention weights. Some methods

forgo the 0.5I term and/or the normalization step in the roll-

out operation.

3. Methodology

3.1. Progressive Layer Unification through Summa­
tion (PLUS)

Let f be a model with L layers (numbered from 0 to L−1),

and A be an attribution method that takes a model and an

input, and produces an attribution map. Given an input x0 to

the model, we define Progressive Layer Unification through

Summation (PLUS) as:

  \text {\PLUS {}}(f, A)(x_{0}) = \sum _{l=0}^{L-1} A(f_l)(x_l) 





 (3)

where fl is the sub-network of f starting from layer l

(and going until the end of the model), and xl is the inter-

mediate output of the model at layer l − 1 when the input

is x0. Note that the layer numbers are zero-based, so f0 is

equivalent to the full model f . In essence, PLUS varies the

start layer of the underlying attribution method A from the
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first to the last layer and aggregates the resulting attribution

maps through summation.

3.2. SkipPLUS

SkipPLUS is a variant of PLUS that starts the aggregation

from the middle layer instead of the first layer. Formally,

let m = ⌈L
2
⌉ be the middle layer of the model f . Then,

SkipPLUS is defined as:

  \text {\SkipPLUS {}}(f, A)(x_{0}) = \sum _{l=m}^{L-1} A(f_l)(x_l) 




 (4)

In other words, SkipPLUS skips the first m − 1 layers

and only aggregates the attribution maps starting from the

middle layer m.

For a discussion on the justification and insights behind

these methods, refer to Sec. 5.1.

3.3. FullGrad+

FullGrad [67] extends the Input×Gradient (IxG) method

[37] by computing attribution maps not only for the original

input but also for each bias term in the network. The final

attribution map is obtained by summing the IxG attribution

map of the input with the bias attribution maps.

Directly applying PLUS or SkipPLUS on FullGrad

would lead to multiple sums of the bias attribution maps

of the later layers, as the bias attribution maps of layer l

also appears in FullGrad(fk) for k less than l. To avoid this

repetition, we define FullGrad+ as follows:

  \begin {aligned} \text {FullGrad+} & \circ \text {\PLUS {}}(f)(x_{0}) = \\ & \sum _{l=0}^{L-1} \text {IxG}(f_l)(x_l) + \sum _{l=0}^{L-1} \sum _{b \in B_l} \text {IxG}(f_{b})(b) \end {aligned}   
















(5)

  \begin {aligned} \text {FullGrad+} & \circ \text {\SkipPLUS {}}(f)(x_{0}) = \\ & \sum _{l=m}^{L-1} \text {IxG}(f_l)(x_l) + \sum _{l=m}^{L-1} \sum _{b \in B_l} \text {IxG}(f_{b})(b) \end {aligned}   
















(6)

where IxG(fl)(xl) is the Input×Gradient attribution map

of the sub-network fl with input xl, and IxG(fb)(b) is the

Input×Gradient attribution map of the sub-network fb with

a bias term b from layer l as the input. fb is the sub-network

of f starting from the bias term b and going until the end

of the model. Bl denotes the set of all bias terms in layer

l. FullGrad+ aggregates the input attribution maps of each

layer along with the attribution maps of all bias terms in

each layer, ensuring no repetition occurs. Refer to Fig. 10

(in the appendices) for a quantitative evaluation of Full-

Grad+ versus FullGrad, and Fig. 6 for a qualitative com-

parison.

3.4. Special Cases of PLUS in Prior Work

The methods described below can be viewed as special

cases of PLUS, where PLUS is composed with a previously

existing method.

GradSAM. GradSAM [3] is equivalent to composing

GenAtt [9] with PLUS, instead of using Rollout. (cf. Fig. 9

in the appendices)

CAT. Class Activation Tokens [55] is equivalent to

IxG◦PLUS. (cf. Fig. 11 in the appendices)

AttCAT. We can define an attention-enhanced variant of

IxG, AttIxG, by multiplying IxG with AttnFrom:

  \attnfrom {}_j = \frac {1}{H \times N} \sum _{h=1}^{H \coloneqq \text {Heads}} \sum _{i=1}^{N \coloneqq \text {Tokens}} \text {RawAttn}_{h, i, j} 














Note that attention weights have three dimensions:

heads, to, from.

Attentive Class Activation Tokens [55, AttCAT] would

then be equivalent to AttIxG◦PLUS. (cf. Fig. 11 in the ap-

pendices)

LayerCAM. LayerCAM [35] was introduced for ReLU

CNN networks, where it is equivalent to applying a normal-

ization process on the layer-wise attribution maps obtained

from GradCAMElementWise [30], followed by the PLUS

aggregation method. The normalization step is proposed

because earlier layers tend to have smaller attribution maps

compared to later layers. By normalizing the maps, Lay-

erCAM ensures that each layer contributes more equally to

the final attribution map. However, this approach is not suit-

able for ViTs, as we explicitly want to avoid giving earlier

layers the same impact on the final attribution map as later

layers (cf. Fig. 2, also supported by our preliminary quanti-

tative evaluations).

4. Experimental Setup

4.1. Faithfulness Evaluation Metrics

Modern literature favors evaluations for input attribution

methods that are collectively called faithfulness, which in-

tuitively measures how well the attribution scores reflect

the true contribution of each input feature to the target

output. Although several metrics have been proposed to

quantify faithfulness, we adopt the most comprehensive ap-

proach, which involves computing the area under the curve

(AUC) for the deletion and insertion operations, consid-

ering the changes in accuracy and the target probability

[13, 26, 46, 49].
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The deletion accuracy curve is obtained by progressively

removing input features in order of decreasing attribution

scores and measuring the model’s accuracy at each step.

A faithful attribution method should result in a steep drop

in performance as the most important features are removed

first. The deletion accuracy scores are normalized using the

formula 100−x, where x is the original score, so that higher

scores always indicate better performance.

Similarly, the deletion AOPC curve is generated by grad-

ually removing input features in order of decreasing attri-

bution scores and evaluating the change in the target out-

put probability at each step. A faithful attribution method

should lead to a rapid decrease in the target probability as

the most important features are removed first.

Conversely, the insertion accuracy curve is generated by

gradually adding input features in order of decreasing at-

tribution scores and evaluating the model’s performance at

each step. A faithful attribution method should lead to a

rapid increase in performance as the most important fea-

tures are added first. Sec. A.1 in the appendices explains

these metrics in more detail.

True Token Masking. Instead of simply overlaying a

color mask, we choose to completely exclude the masked

patches from the model’s input [15]. At the same time,

we preserve accurate positional encodings for the unmasked

patches. (cf. Sec. A.2 in the appendices)

4.2. Human Interpretability Evaluation

Although lacking a strong theoretical justification, human

interpretability evaluations serve as effective sanity checks

and provide a quantitative measure that aligns with intuitive

inferences drawn from qualitative examples of attribution

methods. Following the zero-shot segmentation setup pro-

posed by [10], we report the Average Precision (AP) metric.

This evaluation requires a dataset with ground truth labels

for the target class. Notably, AP is invariant to shift and

scale transformations, mirroring the properties of our faith-

fulness metrics.

4.3. Models, Task, and Datasets

We assess three models on two datasets. First, we em-

ploy EVA Large (Patch Size 14) [22], a top-performing ViT

model in the timm library [73]1, pretrained on image-text

reconstruction and finetuned on ImageNet [17]. Second, we

use ViT Base (Patch Size 8) [19], pretrained and finetuned

on ImageNet, choosing a model size (Base) and a patch size

(8) to maximally differ from our previous choice of EVA

1EVA2 and EVA Giant outperform EVA Large, but our fork of timm

did not support them. We also lacked the resources for evaluating on

the Giant variants. (cf. https://github.com/huggingface/

pytorch-image-models/blob/main/results/results-

imagenet-real.csv)

Large (Patch Size 14); this aligns with prior work [10, 75]

that evaluate attribution methods on the vanilla ViT. Third,

following [15], we use MURA ViT Base (Patch 16), trained

on the MURA dataset. MURA [57] contains bone X-rays

labeled as normal or abnormal.

All models serve as image classifiers, and the attribution

target is set to the ground truth label for a better assess-

ment of class discriminativity [10]. We use ImageNet due to

its prevalence in prior work, the availability of high-quality

ViT finetunes in timm, and its challenging 1000-class set-

ting. We randomly select 5000 images from the ImageNet-

1k validation set and 2000 images from the MURA training

set, using fixed seeds for reproducibility.

For segmentation evaluations, we use ImageNet-S [29]

ground truth segmentation maps, which encompasses 919

distinct classes, with a random subset of 5000 images from

the validation set. The target is set to the class with the

largest area in the ground truth segmentation map. Token

attribution methods generate token-level rather than pixel-

level maps. Consequently, we apply nearest interpolation to

upscale these token-level maps to pixel-level.

5. Results

5.1. Justification for PLUS and SkipPLUS

Fig. 3 shows that Forward Attention-Based Token Attri-

bution methods, most of which use Rollout, are not com-

petitive with the previous SOTA in ViT-specific attribution

methods. This underperformance can be partially attributed

to the vanishing attributions problem, which arises from the

multiplication of small numbers in each layer, resulting in

nearly zero values in the final aggregated output.

The severity of the vanishing attributions problem varies

depending on the combination of the model and the attri-

bution method used. For example, ALTI-Rollout [26] suf-

fers from severe vanishing attributions on ViT Base due to

the presence of ReLU operations in the layer-wise maps,

resulting in almost all-zero attribution maps (Fig. 5) and

performance worse than the random baseline. However, it

performs competitively on EVA Large. GlobEnc-Rollout

[44], which does not involve ReLU operations, avoids van-

ishing attributions on ViT Base but exhibits the issue on

EVA Large (cf. D.2 in the appendices). Other Rollout-based

methods, such as GenAtt [9], do not encounter the vanish-

ing attributions problem on any of the evaluated models.

DecompX [46], a successor to older methods such as

GlobEnc and ALTI, does not need to produce layer-wise

attribution maps and aggregate them separately. However,

Fig. 2 shows that when DecompX starts from the initial lay-

ers and propagates attribution scores to the end of the net-

work, it results in noisy attribution maps. Simply starting

later can significantly boost the performance, but choosing

this optimal layer can be challenging. As many leading
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Transformer-specific methods (e.g., GenAtt) aggregate in-

formation across multiple layers using Rollout, one might

be tempted to use Rollout on DecompX. However, this is

not (naively) possible, as Rollout requires a 2D From-To

attribution matrix for each layer, while DecompX simply

produces a 1D From-Target vector with a single target.

These observations lead us to propose Progressive Layer

Unification through Summation (PLUS). PLUS involves

varying the start layer of the underlying attribution method

from the very first layer to the very last and aggregating

the resultant attribution maps through summation. While

PLUS successfully enhances the performance of Forward

Attention-Based Token Attribution methods, surpassing

previous white-box state-of-the-art methods from ViT and

CNN literature, we might wonder what happens if we drop

the noisy layers altogether from our aggregated output. We

conduct evaluations dropping the starting layers one by one

from the layers considered in PLUS (cf. Sec. B in the

appendices). We see that two points emerge naturally to

start the aggregation from: one is the very first layer, and

the other is the middle layer. We name this latter variant

SkipPLUS, which achieves state-of-the-art performance (cf.

Fig. 4).

As PLUS and SkipPLUS have no constraints on the base

attribution method they wrap around, we also evaluate their

compositions with many other methods (cf. Sec. C in the

appendices). This investigation leads to improving several

methods. Notably, even when composing a method with

PLUS does not help, it usually does not degrade perfor-

mance considerably either. This makes PLUS and Skip-

PLUS robust methods that can be used with other methods

without thorough evaluations.

5.2. Comprehensive Benchmark of White­Box At­
tribution Methods on Vision Transformers

Having enhanced several underperforming and underrated

methods, we now present a thorough and modern bench-

mark of the best versions of all the methods studied

in Fig. 4. DecompX◦SkipPLUS outperforms all other

methods, including its original version DecompX, by a

significant margin, except in the Insertion faithfulness

tests on EVA Large, where it remains competitive with

the best method, AttIxG◦PLUS. In general, the top-

performing methods are compositions of PLUS and Skip-

PLUS, with some even incorporating classic methods such

as IxG◦SkipPLUS.

Another interesting observation is the high performance

of the random baseline on the insertion faithfulness tests,

which signifies the robustness of Vision Transformers to

random token omissions. In insertion tests, the goal is to

insert patches so that the model reaches the correct target

class faster; as the model is robust against random omis-

sions, this happens quickly. However, the random baseline

does not fare well in the deletion faithfulness tests. In dele-

tion tests, the aim is to adversarially delete strategic tokens

to change the model’s decision. Here, the model’s robust-

ness acts against the random baseline.

In general, we observe a trade-off between insertion per-

formance and deletion, and a positive correlation between

deletion performance and segmentation performance (AP).

This trade-off can also be seen when selecting which layers

to drop from PLUS in Sec. C in the appendices. Prior work

has also reported similar trade-offs [60]. However, a strong

method such as DecompX◦SkipPLUS manages to achieve

almost optimal performance in all metrics, highlighting the

possibility of attaining high performance despite the trade-

offs.

6. Conclusion

We conducted a comprehensive evaluation of white-box to-

ken attribution methods for Vision Transformers (ViTs).

We compared Forward Attention-Based Token Attribu-

tion methods, originally developed for Text Transformers,

against state-of-the-art input attribution methods from the

ViT and CNN literature. Our analysis revealed the limita-

tions of these methods due to improper aggregation of in-

formation across layers.

To address these limitations, we introduced Progressive

Layer Unification through Summation (PLUS) and Skip-

PLUS, two general techniques that can be combined with

any input attribution method to more effectively aggre-

gate information across layers while handling noisy layers.

Through extensive quantitative evaluations of faithfulness

and human interpretability on various ViT architectures and

datasets, we demonstrated the effectiveness of PLUS and

SkipPLUS. We also conducted thorough qualitative com-

parisons, including an analysis of multi-class qualitative ex-

amples to assess class discriminativity. Our comprehensive

approach, combining quantitative and qualitative analyses,

establishes a new state-of-the-art in white-box token attri-

bution.

Future work could explore the application of these tech-

niques to other domains (e.g., text Transformers) and inves-

tigate combining them with other explainability methods to

further improve the interpretability of Transformers.
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Figure 3. Composing PLUS and SkipPLUS with Forward Attention-Based Token Attribution methods is helpful in increasing performance

across all metrics.
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Figure 4. Best versions of methods compared against each other. The axis hidden under the legend corresponds to Deletion Accuracy. (cf.

Sec. 5.2 for analysis)

Input (Sloth Bear) DecompX DecompX SkipPLUS GlobEnc (Rollout) GlobEnc PLUS ALTI (Rollout) ALTI SkipPLUS GenAtt (Previous SOTA)

Input (Hard Disk Drive) DecompX DecompX SkipPLUS GlobEnc (Rollout) GlobEnc PLUS ALTI (Rollout) ALTI SkipPLUS GenAtt (Previous SOTA)

Input (Miniskirt) DecompX DecompX SkipPLUS GlobEnc (Rollout) GlobEnc PLUS ALTI (Rollout) ALTI SkipPLUS GenAtt (Previous SOTA)

Input (Cocktail Shaker) DecompX DecompX SkipPLUS GlobEnc (Rollout) GlobEnc PLUS ALTI (Rollout) ALTI SkipPLUS GenAtt (Previous SOTA)

Input (Cannon) DecompX DecompX SkipPLUS GlobEnc (Rollout) GlobEnc PLUS ALTI (Rollout) ALTI SkipPLUS GenAtt (Previous SOTA)

Figure 5. The SkipPLUS method can be applied in conjunction with any attribution technique to improve its performance. In contrast, the

Rollout aggregation approach is not robust; its multiplicative properties frequently lead to suboptimal interactions with the ReLU operation

in ALTI, resulting in attribution maps that are largely composed of zero values. Further qualitative examples are provided in the appendices.

The model employed in this figure is ViT Base (Patch Size 8).
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Input (Zebra) DecompX DecompX SkipPLUS FullGrad FullGrad+ SkipPLUS GenAtt (Previous SOTA)

Input (Elephant) DecompX DecompX SkipPLUS FullGrad FullGrad+ SkipPLUS GenAtt (Previous SOTA)

Input (Zebra) DecompX DecompX SkipPLUS FullGrad FullGrad+ SkipPLUS GenAtt (Previous SOTA)

Input (Elephant) DecompX DecompX SkipPLUS FullGrad FullGrad+ SkipPLUS GenAtt (Previous SOTA)

Input (Zebra) DecompX DecompX SkipPLUS FullGrad FullGrad+ SkipPLUS GenAtt (Previous SOTA)

Input (Elephant) DecompX DecompX SkipPLUS FullGrad FullGrad+ SkipPLUS GenAtt (Previous SOTA)

Figure 6. This figure presents a preliminary qualitative evaluation of the class discriminativity of various attribution methods applied to the

EVA Large model. Theoretically class-insensitive methods such as ALTI and GlobEnc have been excluded from this analysis. The images

selected for this evaluation are among the few suitable instances in the COCO 2017 training set [41] that contain both zebras and elephants

within the same frame, with the animals mostly visible and not cropped out. We chose zebras and elephants because prior work, such as

[33], has also used these animals in their evaluations. Additionally, ImageNet has a single class for zebras and three classes for elephants

(we chose “African Elephant” as the target class here), which is in contrast to most other animals that can have tens of different fine-grained

ImageNet classes.
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