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Abstract
Several companies often safeguard their trained deep

models (i.e. details of architecture, learnt weights, train-
ing details etc.) from third-party users by exposing them
only as ‘black boxes’ through APIs. Moreover, they may
not even provide access to the training data due to pro-
prietary reasons or sensitivity concerns. In this work, we
propose a novel defense mechanism for black box models
against adversarial attacks in a data-free set up. We con-
struct synthetic data via a generative model and train sur-
rogate network using model stealing techniques. To mini-
mize adversarial contamination on perturbed samples, we
propose ‘wavelet noise remover’ (WNR) that performs dis-
crete wavelet decomposition on input images and carefully
select only a few important coefficients determined by our
‘wavelet coefficient selection module’ (WCSM). To recover
the high-frequency content of the image after noise removal
via WNR, we further train a ‘regenerator’ network with an
objective to retrieve the coefficients such that the recon-
structed image yields similar to original predictions on the
surrogate model. At test time, WNR combined with trained
regenerator network is prepended to the black box network,
resulting in a high boost in adversarial accuracy. Our
method improves the adversarial accuracy on CIFAR-10 by
38.98% and 32.01% against the state-of-the-art Auto Attack
compared to baseline, even when the attacker uses surro-
gate architecture (Alexnet-half and Alexnet) similar to the
black box architecture (Alexnet) with same model stealing
strategy as defender.

1. Introduction

Deep neural networks, applied in computer vision [40, 49],
machine translation [3, 33], speech recognition [15, 29],
have exhibited success but face unreliability due to adver-
sarial attacks causing erroneous predictions [2, 22, 45, 48].
These attacks can be categorized into either black box [7,
18, 37, 51] and white box [9, 16, 26, 30] attacks based on
access to model parameters. Black box attacks, more practi-
cal and realistic than white-box attacks, involve stealing the

functionality of target models by training surrogate mod-
els using pairs of (image, predictions). Adversarial samples
crafted using surrogate models can also exploit the property
of transferability to attack the target model. Hence, imme-
diate attention is required to protect against such attacks.

To make it harder for the adversary to craft black box at-
tacks, companies prefer not to release the training dataset
and keep them proprietary. However, recent works have
shown that model stealing can compromise the confidential-
ity of black-box models even without the training data. Ex-
isting works perform generative modeling either with proxy
data [4, 36, 43] or without proxy data [23, 47, 52] and train
the surrogate model with the synthesized data for model
stealing. However, their focus is more on obtaining highly
accurate surrogate models. In contrast to existing works, we
inquire about an important question regarding the safety of
the black box models - “how to defend against black box
attacks in data-free (absence of training data) set up?”

In order to tackle this problem, our proposed method
‘DBMA’ (i.e., defending black box models against
adversarial attacks in data-free setup) leverages the wavelet
transforms [12]. We observe difference between wavelet
transform on adversarial sample and original sample
(shown in Fig. 1 (B)), and notice that detail coefficients in
high-frequency regions (LH, HL and HH regions) are ma-
jorly corrupted by adversarial attacks and the approximate
coefficients (LL region) is least affected for level 1 decom-
position. Similar observation holds even for decomposition
on other levels. To improve the adversarial accuracy, a naive
way would be to completely remove the detail coefficients
which can minimize the contamination in adversarial sam-
ples but it can lead to a huge drop in clean accuracy as the
model predictions are highly correlated with high frequen-
cies [50]. To avoid that, we assign importance to each of the
detail coefficients based on magnitude. The least perturbed
LL region usually contains higher magnitude coefficients
than other regions (Fig. 1 (A)). So, we prefer high magni-
tude detail coefficients. However, taking a large number of
such coefficients can lead to good clean accuracy but at the
cost of low adversarial accuracy due to more contamina-
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tion. On the other hand, taking very few such coefficients
can allow lower contamination but results in low clean ac-
curacy. Our method judiciously takes care of this trade-off,
and carefully selects the required important detail coeffi-
cients (discussed in Sec. 4.2) using the proposed wavelet
coefficient selection module (WCSM).

(B)(A)

Figure 1. The average absolute magnitude of approximate (LL)
and detail coefficients (LH, HL and HH) (via wavelet decomposi-
tion) across samples on a) clean data and b) normalized difference
between wavelet decomposition of clean and corresponding adver-
sarial image. In (a) the lesser contaminated LL coefficients have
higher magnitude. In (b) LL are least affected.

The wavelet noise remover (WNR) removes noise co-
efficients by filtering out only the top-k% high magnitude
coefficients where optimal k is selected using the WCSM
module. As a side-effect, a lot of high-frequency content
of the image gets lost which reduces the overall discrim-
inability and ultimately results in suboptimal model’s per-
formance. To cope up with this reduced discriminability,
we introduce a U-net-based regenerator network(Sec. 4.3),
that takes the spatial samples corresponding to selected co-
efficients as input and outputs the reconstructed image. The
regenerator network is trained by regularizing the feature
and input space of the reconstructed image on the surro-
gate model. In the feature space, we apply cosine similarity
and KL divergence losses to ensure proper reconstruction
on clean and adversarial data respectively. Besides this,
we also regularize the input space using our spatial con-
sistency loss. Finally, the WNR module combined with the
trained regenerator network is appended before the black-
box model. The attacker has black-box access to the com-
plete end to end model containing the defense components.

We summarize our contributions as follows:
• In this work, we investigate the largely underexplored

yet critical challenge of defending against adversarial at-
tacks on a black box model without access to the network
weights and in the absence of original training samples.

• We propose a novel strategy to provide adversarial robust-
ness against data-free black box attacks by introducing
two key defense components:
i.) We propose a wavelet-based noise remover (WNR)
containing selective wavelet coefficient module (Sec. 4.2)
that aims to remove coefficients corresponding to high
frequency components, which are most likely to be cor-
rupted by adversarial attack.

ii.) We propose a U-Net-based regenerator network
(Sec. 4.3) that retrieves the coefficients that are lost af-
ter the noise removal (via WNR) so that the clean high-
frequency image content can be restored.

• We demonstrate the efficacy of our method via exten-
sive experiments and ablations on both the components
of proposed framework, viz., wavelet noise remover
(Sec. 5.1, 5.2) and the regenerator network (Sec. 5.3),
which are appended before the black box target model.
The resulting combined model used as the new black box
(as seen by attacker) yields high clean and adversarial ac-
curacy on test data (Sec. 5.4).

2. Related Works
Our work is closely related to model stealing and wavelets,
hence we briefly discuss their related works.

Data-efficient Model stealing: Based on the availability
of training data, we categorize model stealing works below.
Training data - On full training data, knowledge distilla-
tion [21] is used to extract knowledge using soft labels ob-
tained from the black box model. With few training sam-
ples, Papernot et al. [37] generates additional synthetic data
in the directions (computed using jacobian) where model’s
output varies in the neighborhood of training samples.
Proxy data - In the absence of training data, either natural
or synthetic images are used as proxy data. Orekondy et
al. [36] query the black box model on the natural images
using adaptive strategy via reinforcement learning to get
output predictions and use them to replicate the function-
ality of the black box model. Barbalau et al. [4] use evo-
lutionary framework to learn image generation on a proxy
dataset where the generated images are enforced to exhibit
high confidence on the black box model. Sanyal et al. [43]
use the GAN framework with a proxy dataset composed of
either related/unrelated data or synthetic data.
Without Proxy data - Kariyappa et al. [23] proposed an
alternate training mechanism between generator and surro-
gate model, where generator is trained to produce synthetic
samples to maximize the discrepancy between the predic-
tions of the surrogate and the black box model. Truong et
al. [47] also train generator and surrogate model alterna-
tively but they replace discrepancy loss computed using KL
divergence with L1 norm over logits approximated from
softmax. Similarly, Zhou et al. [52] also formulate a min-
max adversarial game but they additionally enforce the syn-
thetic data to be equally distributed among the classes using
a conditional generator.

Unlike these existing works, we use model stealing only
as a means to obtain the surrogate model and synthetic data.
Unlike them where they steal as an adversary, our goal is
to provide robustness against black box attacks i.e. to re-
duce the effects of the adversarial samples on the black box
model that are crafted using the surrogate model.
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Wavelet in CNNs: Before the CNNs, the wavelets
had been used for noise reduction and denoising [13, 14].
Prakash et al. [38] used pixel deflection technique followed
by adaptive thresholding on the wavelets coefficients for de-
noising. Unlike these works, our setup is more challenging
due to no access to both the training data and the model
weights. Mustafa et al. [34] utilized wavelet denoising with
image superresolution as a defense mechanism against ad-
versarial attacks in grey-box settings. Different from this
work, our approach utilizes the wavelet with a proposed re-
generator network for defense against adversarial attacks in
a black-box setting.

Data and Training Efficient Adversarial Defense:
Adversarial Defense techniques can be broadly classified
into two categories: Adversarial Training (AT) and Non-
Adversarial Training (Non-AT) based methods. AT-based
methods [8, 16, 28, 30] rely on adversarial samples dur-
ing training to improve performance on perturbed samples.
However, these methods are computationally expensive and
often require high-capacity networks for achieving signif-
icant gains in robustness [53]. On the other hand, Non-
AT-based methods like JARN[5], BPFC[1], and GCE[6] of-
fer faster training but perform inadequately against a wide
range of strong attacks [20].

In recent years, researchers have proposed adversarial
defense methods that do not require re-training a model for
providing robustness, thus making them train efficiently.
This has immense practical benefits as unlike most state-
of-the-art defenses that necessitate model re-training, such
approaches can be seamlessly integrated with already de-
ployed models. One such method, namely Magnet[32],
first classifies inputs as clean or adversarial and then trans-
forms the adversarial inputs closer to the clean image man-
ifold. Another approach, Defense-GAN by Samangouei
et al.[42], uses Generative Adversarial Networks to learn
the distribution of clean images and generate samples sim-
ilar to clean images from inputs corrupted with adversarial
noise. Sun et al.[44] introduced the Sparse Transformation
layer (STL) which maps input images to a low-dimensional
quasi-natural image space, suppressing adversarial contam-
ination and making adversarial and clean images indistin-
guishable. Theagarajan et al.[46] presented a defense proto-
col for black-box facial recognition classifiers consisting of
a Bayesian CNN-based adversarial attack detector and im-
age purifiers trained using the data from similar domain to
the original training data. They used ensemble of image pu-
rifiers for removing the adversarial noise and attack detector
for validating the purified image. However, a key limitation
of these methods is their reliance on the original training-
data for training the defense components, which hinders
their use in scenarios where training-data/statistics are not
freely available due to proprietary to privacy reasons, etc.

Consequently, recent advancements have redirected fo-

cus towards tackling the limitations of training data depen-
dency in defending neural networks against adversarial at-
tacks. For instance, Mustafa et al.[34] provide defense on
pretrained network without retraining or accessing training
data, but have additional dependency on pretrained image
super-resolution networks. Moreover, their approach can
only be integrated with the target networks that are capa-
ble of handling multi-scale inputs, thus making them in-
feasible on the pretrained networks incapable of handling
multi-scale inputs. To avoid these problems, Qiu et al.[39]
proposed the RDG (Random Distortion over Grids) pre-
processing operation, randomly distorting input images by
dropping and displacing pixels. Guesmi et al.[17] presented
SIT (Stochastic Input Transformation), applying random
transformations to eliminate adversarial perturbations while
maintaining similarity to the original clean images. How-
ever, the stochastic nature of SIT without guidance nega-
tively affects the clean accuracy of the target model. In con-
trast, our proposed Data-free Black-Box defense method,
DBMA, better preserves clean-accuracy while also achiev-
ing higher robustness.

3. Preliminaries
Notations: The black box model is denoted by Bm which
is trained on the proprietary training dataset Otrain

d . We de-
note the surrogate model by Sm. The generator G produces
synthetic data Sd = {xi

s}Ni=1 containing N samples. The
logit obtained by the model Sm on input x is Sm(x). The
softmax and the label predictions on sample x by model Sm

are represented by soft(Sm(x)) and label(Sm(x)).
The set Aa = {Ap

a}Pp=1 contains P different adversar-
ial attacks. The adversarial sample corresponding to the
nth sample of test dataset Otest

d (i.e. xn
o ) is denoted by

xn
oa which is crafted with a goal to fool the network Bm.

Similarly, Sda is the set of crafted adversarial samples cor-
responding to the synthetic data Sd where the adversarial
sample xn

sa ∈ Sda is obtained by perturbing the synthetic
sample xn

s ∈ Sd using an adversarial attack Aj
a ∈ Aa.

We denote the discrete wavelet transform and its inverse
operation by DWT (.) and IDWT (.) respectively. The
wavelet coefficient selection module is denoted by WCSM.
The regenerator network is represented by Rn.

Model Stealing: Model stealing involves extracting the
black box model’s (Bm) functionality by inputting images
into its API to gather outputs, used subsequently to train
a surrogate model (Sm). When no training data Otrain

d is
accessible, this scenario is termed data-free model stealing.

Adversarial Attacks: An adversarial attack Ai
a ∈ Aa

is a human-imperceptible noise (∥δ∥∞ < ϵ) crafted to alter
model’s predictions on the perturbed sample (i.e. adversar-
ial sample) xoa from the original sample xo. In black box
adversarial attacks, the surrogate model Sm creates adver-
sarial samples, transferable to the black box model Bm.
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Figure 2. An overview of our proposed approach DBMA. In step 1, we obtain the defender’s surrogate model Sd
m and synthetic data Sd

by model stealing from the victim model Bm. In step 2, we use the Wavelet Coefficient Selection Module (WCSM) that gives the optimal
% of coefficients (k̂) to be selected by the Wavelet Noise Remover (WNR) which are likely to be least corrupted by adversarial attacks. In
step 3, we train a regenerator network Rn using different losses (Lcs, Lkl, Lsc) such that the model Sd

m yields features on the regenerated
data (clean Rn(S̄

k
d ) and adversarial Rn(S̄

k
da)) similar to the features on clean data Sd. Finally in step 4, we evaluate our DBMA approach

on test clean (Otest
d ) and adversarial samples (Otest

da ) where the WNR (with k = k̂) and trained Rn are prepended to Bm.

Wavelet Transforms: Wavelets represent the time series
signal using linear combinations of an orthogonal basis de-
pending on which there are different types of wavelets such
as Haar, Cohen and Daubechies [11]. The 2D DWT on an
ith image xi for level 1 yields low pass subband (i.e approx-
imation coefficients - denoting by LLi

1) and high pass sub-
band (i.e. detail-level coefficients - denoting by LHi

1, HLi
1,

HHi
1). In multi-level DWT, the approximation subband is

further decomposed (for e.g. on a 2-level decomposition,
LLi

1 is also decomposed to LLi
2, LHi

2, HLi
2, HHi

2).

4. Proposed Approach
In this section, we first discuss the model stealing method
(Sec. 4.1) that we use to train the surrogate model Sm

(as proxy for black box model Bm) and generate synthetic
data Sd (as proxy for original training data Otrain

d ). Next,
we propose our method to remove the detail coefficients
(Sec. 4.2) that can be most corrupted by an adversarial at-
tack and select the important coefficients to preserve the
signal strength in terms of retaining feature discriminabil-
ity. We dub this approach as wavelet noise remover (WNR)
and the coefficients are selected using the wavelet coeffi-
cient selection module (WCSM). To boost the performance,
we propose a U-Net-based regenerator network (Sec. 4.3)
that takes the output of WNR as input and is trained to
output a regenerated image on which the surrogate model
would yield similar features as the features of the clean sam-
ple. The different steps involved in our proposed method
(DBMA) for providing data-free adversarial defense in the
black box settings are shown in Fig. 2.

4.1. Obtain Proxy Model and Synthetic Data

Given a black box model Bm, our first step is to obtain a
proxy model Sm which can allow gradient backpropaga-
tion. To steal the functionality of Bm, Sm can be trained us-
ing a model stealing technique. But we also do not have ac-
cess to the original training samples Otrain

d . Hence, we use
a data-free model stealing technique [4] that trains a gener-
ator using proxy data to produce synthetic samples (Sd) on
which the black box model Bm gives high-confident pre-
dictions. The surrogate model Sm is then trained on syn-
thetic data Sd under the guidance of Bm, where the model
Sm is enforced to mimic the predictions of model Bm. The
trained Sm and the generated data Sd are used in next steps.

4.2. Noise Removal with Wavelet Coefficient Selec-
tion Module (WCSM)

For an ith sample of the composed synthetic data Sd (i.e.
xi
s), its corresponding wavelet coefficients are obtained by

DWT operation on it. The approximate coefficients are
the low frequencies that are least affected by the adversarial
attack (shown in Fig. 1 (B)). Thus, we retain these coeffi-
cients. For e.g. on level-2 discrete wavelet decomposition,
LLi

2 (approximate coefficients for ith sample) is kept. As
the adversarial attack severely harms the detail coefficients,
we determine the coefficients that can be most affected by
it using WCSM for effective noise removal.

Based on our observation that the least affected approx-
imate coefficients often have high magnitude coefficients,
indicating that the high magnitude detail coefficients can be

257



a good measure for choosing which coefficients to retain.
Thus, we arrange the detail coefficients based on magnitude
(from high to low order) and retain the top-k % coefficients.
The efficacy of choosing top-k compared to different base-
lines (such as random-k and bottom-k) is empirically veri-
fied in Sec.1. However, determining the suitable value of k
is a challenge and, if not properly chosen, can lead to a ma-
jor bottleneck in clean/adversarial performance. To handle
it, we propose a wavelet coefficient selection mechanism
that carefully selects the value of k so that decent perfor-
mance can be obtained on both clean and adversarial data.

We empirically estimate optimal k using all the crafted
synthetic training samples Sd and their corresponding ad-
versarial counterparts. We define a quantity label consis-
tency rate (LCRk) which is calculated for a particular value
of k using the following steps:
1. Construct adversarial synthetic samples ({xi

sa}Ni=1) by
using an adversarial attack Aj

a ∈ Aa on the surrogate
model Sm.

2. Obtain approximate and detail coefficients for each ad-
versarial synthetic sample using DWT (xi

sa, l),∀i ∈
(1, . . . , N) where l is the decomposition level.

3. Craft spatial samples (S̄k
da = {x̄i

sa}Ni=1) using IDWT
operation on complete approximate and selected top-k
detail coefficients corresponding to each adversarial syn-
thetic sample (i.e. Sda = xi

sa,∀i ∈ (1, . . . , N)). For
simplicity, we envelop the operations (2) and (3) and
name them ‘wavelet noise remover’ (WNR). In general,
for a given input image and k value, WNR applies DWT
on input where the approximate coefficients and the cho-
sen top-k % detail coefficients are retained, whereas the
non-selected detail coefficients are made to zeros. These
coefficients are then passed to IDWT to obtain the fil-
tered spatial image.

4. Perform WNR by repeating the steps 2 and 3 on clean
samples xs to obtain S̄k

d .
5. Compare the predictions of black box model Bm on

samples of S̄k
d and the corresponding samples in Sd.

LCRk
C denotes the fraction of clean samples whose pre-

dictions match when top-k % coefficients are selected.
6. Compare predictions of black box model Bm on samples

of S̄k
da and the corresponding samples in Sd. LCRk

A de-
notes fraction of adversarial samples whose predictions
match when top-k % coefficients are selected.

7. Compute LCRk = LCRk
C + LCRk

A

8. Calculate the rate of change of LCRk (i.e. ROCk) as
ROCk = LCRk+1 - LCRk

Using above steps, we calculate LCR for different val-
ues of k ∈ [1, · · · , kmax]. As shown in Fig. 3, we observe
that as we increase the value of k, initially LCRA increases
and reaches its maximum value, and then it starts decreas-
ing. High LCRA implies that the predictions of the Bm

model on S̄k
da and Sd have a low mismatch. Similarly, with
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Figure 3. Label consistency rates (LCRA , LCRC and LCR) vs
detail coefficients (k%) plotted using prediction from black-box
model Bm on CIFAR-10 dataset.

R
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Figure 4. Rate of change (ROC) of LCR vs detail coeffi-
cients (k%) plotted using prediction from black-box model Bm

on CIFAR-10 data. As we increase value of k, ROC becomes
negligible. At k = 16 it is close to zero.

the increase in value of k, LCRC keeps increasing which
implies as we add more coefficients, model discriminabil-
ity increases. The value of LCR increases with the value
of k, but the rate of increase of LCR keeps decreasing.
Refer Fig. 4 where we plot the rate of change (ROC). We
choose k̂ at which ROC saturates. Here ROC is negligible
at k = 16. This value of k gives the best trade-off be-
tween clean and adversarial accuracy (empirically validated
in Sec. 5.1). Thus, wavelet noise remover (WNR) is applied
on input at estimated optimal k (k̂).

4.3. Training of Regenerator Network
After the noise removal using the WNR at optimal k (i.e. k̂
obtained by WCSM), there is also loss in the image signal
information as a side effect. Thus, we further regenerate
the coefficients using a regenerator network (Rn) that takes
input as the output of WNR at k̂ and yields reconstructed
image which is finally passed to the black box model Bm

for test predictions. The architecture of our Rn network is
a U-net based architecture with skip connections which is
inspired from [41]. For more details on the architecture of
regenerator network, refer Supplementary (Sec.5).

k̂ = WCSM(Sd, Sm)

x̄i
s = WNR(xi

s, k̂); x̄i
sa = WNR(xi

sa, k̂)
(1)
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For training, we feed the output obtained from the WNR
at k̂ as input to the network Rn and obtain a reconstructed
image which is passed to the frozen surrogate model Sm for
loss calculations. The losses used to train Rn are as follows:
Cosine similarity loss (Lcs): To enforce similar pre-
dictions from Sm on the regenerated synthetic sample
and the corresponding original synthetic sample. Lcs =
CS(Sm(Rn(x̄

i
s)), Sm(xi

s)).
KL divergence loss (Lkl): To align the predictions of Sm

on the regenerated sample and its adversarial counterpart
Lkl = KL(soft(Sm(Rn(x̄

i
sa))), soft(Sm(Rn(x̄

i
s)))).

Spatial consistency loss (Lsc): To make sure that the spa-
tial reconstructed image (clean and adversarial) and the cor-
responding original synthetic image are similar in the image
manifold Lsc =

∥∥Rn(x̄
i
s)− xi

s

∥∥
1
+
∥∥Rn(x̄

i
sa)− xi

s

∥∥
1
.

Here, CS and KL denotes cosine similarity and KL di-
vergence respectively. Overall loss used in training Rn:

L(Rθ
n) = −λ1Lcs + λ2Lkl + λ3Lsc (2)

Finally, the black box model Bm is modified by prepend-
ing the WNR (with k = k̂) and the trained Rn network to
it. The resulting black box model defends the adversarial
attacks which we discuss in detail in next section.

5. Experiments
In this section, we validate the effectiveness of our proposed
method (DBMA) and perform ablations to show the im-
portance of individual components. We use the benchmark
classification datasets i.e. CIFAR-10 [24] and SVHN [35],
on which we evaluate the clean and the adversarial accuracy
against three different adversarial attacks (i.e., BIM [27],
PGD[31] and Auto Attack [10]). Unless it is mentioned, we
use Alexnet [25] as black box Bm (results on a larger black-
box model are in Sec. 8 in supplementary) and Resnet-
18 [19] as the defender’s surrogate model Sd

m, which the
defender uses to train the regenerator network Rn as ex-
plained in Sec. 4. In the black-box setting, attackers also
do not have access to the black-box model’s weights, thus
restricting the generation of adversarial samples. So similar
to the defender, we leverage the model stealing techniques
to get a new surrogate model Sa

m, which the attacker uses
for generating the adversarial samples. While evaluating
against different attacks, we assume the attacker has access
to defense components, i.e., the attacker uses model steal-
ing methods to steal the functionality of the defense com-
ponents along with the victim model.

We perform experiments with two different architectures
for Sa

m: Alexnet-half and Alexnet, which are similar to
the black-box model (Alexnet), making it tough for the de-
fender. Ablation for different combination of Sd

m and Sa
m

are in Sec .7 in supplementary. The attacker uses the same
model stealing technique [4] as used by defender. It is im-
portant to note that our rigorous approach; we grant the at-

tacker access to our exact model-stealing technique, archi-
tecture, and related details to ensure that any performance
improvement is not attributed to differences in techniques or
architecture between the attacker and defender. We use the
Daubechies wavelet for both DWT and IDWT operations.
Refer to supplementary (Sec. 2) for experimental results on
other wavelets. The decomposition level is fixed at 2 for all
the experiments and ablations. The value of kmax is taken
as 50. We assign equal weights to all the losses with weight
as 1 (i.e. λ1 = λ2 = λ3 = 1) in eq. 2.

Figure 5. Defense module Dm consisting of Wavelet Noise Re-
mover (WNR) and Regenerator Rn is prepended before the victim
model Bm in our approach (DBMA). The Dm and Bm are com-
binedly considered as the black-box model by the attacker.

The defender constructs a defense module (Dm) using
Sd
m. In subsections 5.1 and 5.2, the defense module only

consists of the WNR , whereas subsections 5.3 onwards,
both Rn and WNR are part of the defense module as shown
in Fig. 5. We prepend the defense module before the Bm to
create a new black box model that is used to defend against
the adversarial attacks. To show the efficacy of defense
components used in our method (DBMA), we consider the
most challenging scenario, where the attacker uses the same
model stealing technique as defender, and considers the de-
fense module also a part of the black-box model while gen-
erating adversarial samples.

5.1. Ablation on quantity of coefficients
Table 1. Investigating the efficacy of our proposed WCSM in de-
termining the quantity of detail coefficients to retain. The case
(No-k) yields poor results justifying the need to preserve detail
coefficients. Unlike, low and high values of k, we obtain better
trade-off between clean and adversarial performance on our-k.

Amount of
detail

coefficients (k)

Black Box Model : Alexnet
Surrogate Model (defense): Resnet-18
clean BIM PGD Auto Attack

No k 31.19 5.88 4.68 9.35
low-k (k=1) 42.75 10.2 8.72 15.8
low-k (k=2) 50.17 15.37 14.14 21.92
low-k (k=4) 59.14 17.54 16.03 25.08

high-k (k=50) 82.58 5.58 3.33 10.44
our-k (k=16) 77.92 15.98 14.04 21.34

In Sec. 1 and 4, we discussed the importance of selecting
the optimal number of detail coefficients (k̂) and proposed
the steps to find the value of k̂ using the WCSM module. In
this subsection, we do an ablation over the different choices
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for values of k (i.e., the number of detail coefficients to se-
lect) and analyze its impact on clean and adversarial ac-
curacy. Specifically, we consider six distinct values of k
across a wide range i.e. 0 (no detail coefficients, only ap-
proximate coefficients), 1, 2 and 4(small k), 50(large k), k̂
(optimal k given by WCSM). Fig. 4 shows the graph of the
rate of change of LCR for different values of k. We select
the value of k at which the ROC starts saturating, i.e. k
with value 16 as k̂. The results corresponding to the differ-
ent values of k are shown in Table 1. We observe poor per-
formance for both adversarial and clean samples when no
detail coefficients are taken. On increasing the fraction of
detail coefficients (k = 1, 2, 4), an increasing trend for both
clean and adversarial performance is observed. Further, for
a high value of k clean accuracy improves, but with a sig-
nificant drop in the adversarial performance. Our choice of
k (i.e., k̂) indeed leads to better clean accuracy with decent
adversarial accuracy, hence justifying the importance of the
proposed noise removal using WCSM component.

5.2. Effect of wavelet noise remover with WCSM

In this section, we study the effect of prepending the WNR
module to the black-box model Bm. WNR selects the ap-
proximate coefficients and optimal k̂% detail coefficients
(obtained by WCSM). It filters out the remaining detail
coefficients, which helps in reducing the adversarial noise
from the samples. We evaluate the performance of the Bm

with and without the WNR Module and present the results
in Table 2. When the attacker’s surrogate model is Alexnet-
half, adversarial accuracy improves by ≈ 19 − 22% across
attacks using the WNR module. Similarly, when the at-
tacker’s surrogate model is Alexnet, the adversarial accu-
racy improves by ≈ 11− 12%.

Table 2. Our wavelet noise remover using WCSM yields improve-
ment in adversarial accuracy with small drop in clean accuracy.

Surrogate
model

(attacker)

Noise Removal
using WCSM

Black Box Model : Alexnet
Surrogate Model (defense): Resnet-18
clean BIM PGD Auto Attack

Alexnet-
half

No 82.58 7.02 4.53 11.65
(Ours) Yes 77.92 26.66 24.55 34.02

Alexnet No 82.58 4.17 2.19 8.55
(Ours) Yes 77.92 15.98 14.04 21.34

5.3. Ablation on losses

Until now, we performed experiments by using only the
WNR defense module. Now, we additionally attach another
defense module (Rn) to WNR (refer Fig 5). In this subsec-
tion, we perform ablation to demonstrate the importance of
different losses used for training the Regenerator network
Rn. As shown in eq. 2, the total loss L is the weighted sum
of three different losses (i.e., Lcs, Lkl, and Lsc). To de-
termine the effect of each of the individual losses, we train
Rn using only the Lcs loss, Lkl loss and Lsc loss. Further

to analyse the cumulative effect, we train Rn with different
possible pairs of loss i.e., Lcs + Lsc loss, Lcs + Lkl loss,
Lkl + Lsc loss, and finally with the total loss (Lcs + Lkl +
Lsc) respectively. The results are displayed in Table 3.

Table 3. Contribution of different losses used for training Rn.The
loss (Lcs + Lkl + Lsc) gives the best improvement in adversarial
accuracy with decent clean accuracy.

Surrogate
model

(attacker)

Losses to train
Regenerator

network (Rn)

Black Box Model : Alexnet
Surrogate Model (defense): Resnet-18
clean BIM PGD Auto Attack

Alexnet-
half

Lcs 78.96 26.33 24.75 33.81
Lsc 78.85 27.38 25.75 35.51
Lkl 9.82 6.56 6.54 8.98

Lcs + Lsc 79.75 27.70 25.34 34.64
Lcs + Lkl 62.06 36.03 35.93 43.05
Lkl + Lsc 65.94 37.72 37.62 46.14

Lcs+ Lkl + Lsc 73.77 42.71 42.71 50.63

Alexnet
Lcs 78.96 16.34 14.57 21.81
Lsc 78.85 17.68 15.97 23.77
Lkl 9.82 6.61 6.38 8.98

Lcs+ Lsc 79.75 17.28 15.6 23.59
Lcs+ Lkl 62.06 24.86 25.91 32.26
Lkl+ Lsc 65.94 31.04 31.05 38.26

Lcs+ Lkl + Lsc 73.77 33.31 31.72 40.56

Compared to the earlier best performance with WNR de-
fense module (Table 2), we observe Rn trained with only
Lcs loss gives no significant improvement in both the ad-
versarial and clean accuracy. Similar trend is observed for
Rn trained with Lsc loss. However, using only the Lkl loss
shows a deteriorated clean and adversarial performance of
Rn. Further, using the combination of both Lcs and Lsc

loss also does not show much improvement. Combining the
Lkl with Lcs and Lsc loss improves the adversarial perfor-
mance of Rn appreciably, but with a drop in the clean ac-
curacy. Lkl with Lcs loss shows a consistent improvement
of ≈ 9 − 11% in adversarial accuracy across attacks using
both the Alexnet and Alexnet-half. Similarly, the combina-
tion of Lkl with Lsc loss improves the adversarial accuracy
of Rn by ≈ 11− 13% and ≈ 15− 17% against the attacks
using Alexnet-half and Alexnet respectively. When Rn is
trained with all three losses gives the best adversarial ac-
curacy across all the possible combinations. We observe an
overall improvement of ≈ 16−19% across different attacks
using both Alexnet and Alexnet-half with a slight drop in
clean accuracy (≈ 4%). Regenerator network regenerates
the lost coefficients, but as explained in section 4.2, detail
coefficients also cause a decrease in adversarial accuracy.
When we train a regenerator network using the combina-
tion of Lcs, Lsc, and Lkl loss, the Lcs and Lsc loss help
to increase clean accuracy, but at the same time Lkl loss
ensures regenerated coefficients do not decrease the adver-
sarial accuracy. To achieve best tradeoff between clean and
adversarial accuracy, Rn gets trained to increase adversarial
accuracy at the cost of decreased clean accuracy compared
to Rn network trained with only Lcs loss.
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Table 4. Utility of each component used in our method (DBMA)- Wavelet Noise Remover (WNR) and Regenerator Network Rn on SVHN
and CIFAR dataset. WNR with Rn yields huge gains in adversarial performance compared to baseline and WNR alone.

Surrogate Model
(attacker) Dataset Method

Black Box Model : Alexnet
Surrogate Model (defender) : Resnet-18

clean BIM PGD Auto Attack

Alexnet-half

SVHN

Baseline
SIT[17]
RDG[39]
WNR (Ours)
WNR+ Rn (Ours)

94.49
68.72
92.68
94.21
90.91

44.26
46.76 (↑ 2.5)
55.01 (↑ 10.75)
55.42 (↑ 11.16)
68.63 (↑ 24.37)

44.21
46.21 (↑ 2)
54.62 (↑ 10.41)
55.70 (↑ 11.49)
68.60 (↑ 24.39)

46.79
50.57 (↑ 3.78 )
58.35 (↑ 11.56)
58.47(↑ 11.68)
71.71 (↑ 24.92)

CIFAR-10

Baseline
SIT[17]
RDG[39]
WNR (Ours)
WNR+ Rn (Ours)

82.58
51.16
67.58
77.92
73.77

7.02
22.05 (↑ 15.03)
19.99 (↑ 12.97)
26.66 (↑ 19.64)
42.71 (↑ 35.69)

4.53
21.68 (↑ 17.15)
18.97 (↑ 14.44)
24.55 (↑ 20.02)
42.71 (↑ 38.18)

11.65
29.08 (↑ 17.43)
29.64 (↑ 17.99)
34.02 (↑ 22.37)
50.63 (↑ 38.98)

Alexnet

SVHN

Baseline
SIT[17]
RDG[39]
WNR (Ours)
WNR+ Rn (Ours)

94.49
68.72
92.68
94.21
90.91

38.14
43.48 (↑ 5.34)
50.28 (↑ 12.14)
48.98 (↑ 10.84)
63.13 (↑ 24.99)

38.19
43.77 (↑ 5.58)
50.29 (↑ 12.1)
49.02 (↑ 10.83)
63.12 (↑ 24.93)

40.16
47.63 (↑ 7.47)
53.79 (↑ 13.63)
51.49 (↑ 11.33)
66.18 (↑ 26.02)

CIFAR-10

Baseline
SIT[17]
RDG[39]
WNR (Ours)
WNR+ Rn (Ours)

82.58
51.16
67.58
77.92
73.77

4.17
18.64 (↑ 14.47)
15.54 (↑ 11.37)
15.98 (↑ 11.81)
33.31 (↑ 29.14)

2.19
18.43 (↑ 16.24)
14.50 (↑ 12.31)
14.04 (↑ 11.85)
31.72 (↑ 29.53)

8.55
26.23 (↑ 17.68)
24.01 (↑ 15.46)
21.34 (↑ 12.79)
40.56 (↑ 32.01)

5.4. Comparison with existing Data and Training
efficient defense methods

In this subsection, we validate the efficacy of our proposed
method DBMA by comparing it with two other state-of-the-
art defense methods: SIT[17] and GD[39]. For compar-
ison, we do experiments on two benchmark datasets, i.e.,
SVHN and CIFAR-10. We obtain the optimal k̂ as 20 us-
ing the WCSM module for the black box model trained
on the SVHN dataset. In Table 4, while defending with
SIT, the adversarial accuracy improves by ≈ 2 − 3% and
≈ 5−7% across attacks crafted using different Sa

m (Alexnet
and Alexnet-half) with a corresponding drop of ≈ 2 − 3%
in clean accuracy. On the other hand, defending with GD,
improves adversarial accuracy by ≈ 2 − 3% across attacks
with a marginal drop of 1.66% in clean accuracy. While
defending with only WNR in the defender module, the ad-
versarial accuracy improves by ≈ 10 − 11% across attacks
crafted using different surrogate architectures Sa

m (Alexnet
and Alexnet-half). The clean accuracy, however, experi-
ences a minor drop of less than 1%. By utilizing both the
WNR and Rn in the defender module, the adversarial per-
formance further improves by ≈ 13−14% across the attacks
with a drop of ≈ 4% in clean accuracy. Overall, we observe
a gain of ≈ 24 − 26% in adversarial accuracy compared to
the baseline model, at the cost ≈ 5% drop in clean accuracy.
Similarly, for the CIFAR-10 dataset, we observe an overall
improvement of ≈ 35 − 38% and ≈ 29 − 32% against at-
tacks crafted using Alexnet-half and Alexnet, respectively.
However, defending with SIT and RDG only improves the
adversarial accuracy by ≈ 12−17%. Additionally, the clean
accuracy drops by ≈ 31% and ≈ 15% when using SIT and

RDG, respectively. In comparison, when using DBMA, we
observed a relatively small drop of ≈ 8% in clean accuracy,
which is reasonable considering the challenging nature of
our problem setup. Even in traditional adversarial training
with access to full data, clean performance often drops at
the cost of improving adversarial accuracy [31]. In our case,
neither the training data nor the model weights are provided.
Moreover, the black-box model is often obtained as APIs,
and re-training the model from scratch becomes unfeasible.
Considering these difficulties, the drop we observe on clean
data is small with respectable overall performance.

6. Conclusion
We introduced DBMA, a novel defense strategy to defend
black-box models from adversarial attacks without relying
on training data. DBMA incorporates two defense compo-
nents: a) Wavelet Noise Remover (WNR) that removes the
most contaminated areas by adversarial attacks while pre-
serving less affected regions b) a Regenerator network to
restore lost information post WNR noise removal. Through
various ablations and experiments, we demonstrated effi-
cacy of each defense component. Our method DBMA sig-
nificantly enhances robustness against data-free black box
attacks across datasets and against diverse model-stealing
methods. Similar to adversarial defenses in white-box se-
tups, we observe that significant gains in robust accuracy
come at the cost of a slight drop in clean accuracy. In future
work, we plan to work on further mitigating this trade-off.
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