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Abstract

Out-of-Distribution (OOD) detection is crucial for en-
suring safety and reliability of neural networks in critical
applications. Distance-based OOD detection is based on
the assumption that OOD samples are mapped far from In-
Distribution (ID) clusters in embedding space. A recent
approach for obtaining OOD-detection-friendly embedding
space has been contrastive optimization of pulling similar
pairs and pushing apart dissimilar pairs. It assigns equal
significance to all similarity instances with the implicit ob-
jective of maximizing the mean proximity between sam-
ples with their corresponding hypothetical class centroids.
However, the emphasis should be directed towards reducing
the Minimum Enclosing Sphere (MES) for each class and
achieving higher inter-class dispersion to effectively miti-
gate the potential for ID-OOD overlap. Optimizing low-
signal dissimilar pairs might potentially act against achiev-
ing maximal inter-class dispersion while less-optimized
similar pairs prevent achieving smaller MES. Based on
this, we propose a reweighting scheme ReweightOOD, that
adopts the similarity optimization which prioritizes the op-
timization of less-optimized contrasting pairs while assign-
ing lower importance to already well-optimized contrast-
ing pairs. Such a reweighting scheme serves to minimize
the MES for each class while achieving maximal inter-
class dispersion. Experimental results on a challenging CI-
FAR100 benchmark using ResNet-18 network demonstrate
that ReweightOOD outperforms supervised contrastive loss
by a whopping 38% in the average FPR metric. In various
classification datasets, our method provides a promising so-
lution for enhancing OOD detection capabilities in neural
networks.

*Correspondence: {sudarshan.regmi}@ucl.ac.uk

1. Introduction
OOD detection refers to detecting the samples lying be-
yond the scope of training distribution. During the infer-
ence phase, it is indeed imperative to prevent the predic-
tion of unknown samples, referred to as OOD samples, as
the model lacks familiarity with such instances, and con-
sequently, they should be accurately flagged. This issue
becomes even more critical in domains like autonomous
driving and medical imaging, where entrusting neural net-
works to handling unforeseen scenarios is detrimental. In
these contexts, either relinquishing appropriate control to
human discretion or flagging the instance becomes essen-
tial. The incorporation of OOD detection mechanisms holds
paramount importance in ensuring safety and reliability.
Rather than solely excelling at the primary task, models are
now expected to possess the capability of identifying OOD
samples effectively too.
OOD samples inherently possess distinct characteristics
that set them apart from in-distribution (ID) data. These
differentiating characteristics can be observed in softmax
probability [15], embedding space [24, 42], or in some
scoring functions [27, 49]. Distance-based methods exploit
the embedding space to quantify the OOD-ness of the sam-
ples. Two popular postprocessing approaches in distance-
based OOD methods are Mahalanobis distance [24] and
K-nearest neighbor [42]. A key assumption of these ap-
proaches is that OOD samples lie far away from ID clusters.
Hence, the focus should be on obtaining such desirable em-
bedding space for superior OOD detection performance.
Training-time regularization techniques can be employed
to regularize neural networks to enhance OOD detection.
Some approaches [33, 50] utilize the hyperspherical con-
straint during cross-entropy-based training to reduce over-
confidence. Contrastive learning, a recent alternative, which
also deals with hyperspherical embeddings to promote
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class-separable representations, as demonstrated by self-
supervised contrastive learning [37], supervised contrastive
learning (SupCon) [19], and CIDER [31]. While these
contrastive-based methods, when coupled with distance-
based postprocessing, show promise, they lack considera-
tion for the current proximity of the contrasting pairs during
training. In essence, they consistently optimize the cosine
similarity without considering whether the pairs have been
adequately optimized. Our proposition suggests reweight-
ing contrastive pairs based on cosine similarity in the em-
bedding space betters OOD performance. Specifically, we
propose prioritizing pair instances where their correspond-
ing embeddings are not aligned, and deprioritizing pair in-
stances that are sufficiently aligned. By dynamically ad-
justing loss weights based on embedding space proximity,
contrastive learning can focus more on challenging or un-
optimized pairs, thereby reducing the Minimum Enclosing
Sphere (MES) for each class and maximizing inter-class
dispersion.

Hence, we present an effective OOD detection framework
ReweightOOD based on loss reweighting. Our reweight-
ing mechanism consists of a linear transformation of the co-
sine similarity followed by the application of the reweight-
ing function. We employ scaling and shifting operations
to achieve the desired range, and we employ the sigmoid
function as reweighting function. This approach improves
the OOD detection by a significant 38% improvement in
FPR metric in a challenging CIFAR100 benchmark using
ResNet-18 network. Our approach outperforms the current
approaches making it a promising approach for detecting
OOD samples. We summarize our contributions in the fol-
lowing points:

• We propose a similarity reweighting framework
ReweightOOD in contrastive optimization for supe-
rior distance-based OOD detection. We show a simple
reweighting mechanism can outperform supervised
contrastive loss by 38% in the average FPR metric in
challenging the CIFAR100 benchmark.

• We provide the design of the reweighting mechanism for
the first time in OOD detection by coupling linear trans-
formation and sigmoid weighting function. We illustrate
that our domain for the reweighting mechanism can be
flexibly adjusted by scaling and shifting using hyperpa-
rameters.

• We reveal the implication of the reweighting in achiev-
ing an MES of a smaller radius for all classes and
higher class-centroid dispersion in the embedding space.
Specifically, in a challenging CIFAR100 benchmark, the
reweighting mechanism reduces mean MES radius by
14.28% and increases mean inter-class dispersion by a
factor of ⇠2.

2. Preliminaries
2.1. Out-of-Distribution Detection
We consider multi-class classification scenario, wherein
Pin = (xi, yi)

N
i=1 represents the training distribution, com-

monly referred to as the In-Distribution. In this context, the
tuple (xi, yi) signifies an image-label pair, where yi is an
element of the set {1, 2, . . . , C}, with C representing total
number of classes. During the testing phase, samples from
a distribution Pout, differing from the training distribution
Pin, are encountered. Out-of-distribution (OOD) detection
is framed as a binary classification task, where a scoring
function SC(x) and a threshold � guide the decision pro-
cess with those exceeding � labeled as ID and the rest as
OOD. The threshold � is often set for a 95% true positive
rate on training data.

2.2. Hyperspherical Embeddings
The embeddings lying on the surface of the hypersphere
of radius rh are known as hyperspherical embeddings. An
embedding can be transformed into a hyperspherical one
by employing L2 normalization. We employ our reweight-
ing mechanism in contrastive training after transforming the
raw embedding into the hyperspherical one.

3. Method
3.1. Contrastive optimization
Contrastive learning aims to learn useful representations by
maximizing within-class cosine similarity sw and minimiz-
ing between-class cosine similarity sb. If

⇣
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j
pos

⌘

and
�
xi
anchor, x

i
neg

�
are pairs of images of the same class

and different classes respectively, any given instance of
within-class cosine similarity sjw and between-class cosine
similarity sib can be expressed as sjw = ˆhj

anchor ·
ˆhj
pos and

sib = ˆhi
anchor · ˆhi

neg where h denotes latent representa-
tion of respective inputs. Considering the availability of
n between-class similarity sb and o within-class similar-
ity sw, loss formulation for a sample k in a batch of size
(n+ o+ 1) with temperature ⌧ can be expressed as:

Lk = log
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� log
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Assumption of Equation 1 : This (unweighted) opti-
mization assumes an equal role of each between-class simi-
larity sb and within-class similarity sw in obtaining optimal
embedding space for distance-based OOD detection. In the
subsequent section, we delve into the implication of this as-
sumption.
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Figure 1. Comparison of (a) Unweighted optimization and (b) Reweighted optimization leading to different extents of overlapping with
OOD samples in the embedding space.

3.2. Implication of unweighted optimization

Contrastive learning attempts to map all the instances of a
category to its ideal centroid. However, as shown schemati-
cally in Figure 1 (a), the complexities inherent in real-world
images make the idealistic goal of mapping all instances of
a class very close to its ideal centroid in contrastive learning
impractical. We define samples that are easy to pull near the
centroid as easy positives and those samples that are diffi-
cult to pull near the centroid as hard positives. The compact
clustering of easy positives around the centroid, as shown
in Figure 1 (a), adds practically no value in OOD separa-
tion. However, as shown in Figure 1 (b), trading off the
easy compact clustering with more weightage given on op-
timizing (pulling) hard positives around the centroid has a
potentially beneficial effect on obtaining the Minimum En-
closing Sphere of smaller radius for all classes. Obtaining
a smaller MES radius has a direct advantage linked with
a smaller possibility of ID-OOD overlapping, as shown in
Figure 1 (b).
Furthermore, given an anchor sample, samples that are eas-
ily distinguishable from the anchor can be referred to as
easy-negatives. Conversely, samples that are similar and
not easily distinguishable from the anchor sample can be
referred to as hard negatives. In a multi-class setup, there
is a greater presence of easy-negatives that don’t provide
useful learning signals. Optimizing these easy negatives
can rather be a noisy process that potentially hinders the
maximal inter-class dispersion. Furthermore, hard nega-
tives are more informative for maximizing inter-class dis-
persion. From a separate perspective, hard negatives have
a greater likelihood of getting overlapped with OOD in-
stances. Hence, suppressing the effect of easy negatives and
prioritizing hard negatives seem to be of utmost importance
for maximizing the inter-class dispersion.

3.3. ReweightOOD

An overview of the proposed OOD detection framework
ReweightOOD is shown in Figure 2. ReweightOOD con-

sists of backbone (encoder) network f✓ and projection head
g✓. The hyperspherical representation ĥi = g✓ (f✓ (xi))
is obtained from ReweightOOD framework for each im-
age xi. Hyperspherical representations {ĥi}

N
i=1 form con-

trastive pairs that are weighted on the basis of their respec-
tive cosine similarities prior to contrastive optimization.

3.4. Reweighting mechanism for similarity scores
A requirement for the optimum embedding learning for
OOD detection is: to give more importance to samples
that are difficult to align (hard negatives and hard posi-
tives). Since similarity during optimization can convey the
difficulty of the sample, the requirement for designing the
reweighting mechanism is to make it the function of the
similarity score. We use the linear transformation of the
score and apply the sigmoid function to obtain the reweight-
ing factor. Linear transformation basically consists of two
operations:
Scaling The original range of cosine similarity is [�1, 1].
The scaling operation is utilized to rescale the similarity
scores prior to the weighting function. Specifically, the
scaling enables adjustment of the slope of the weighting
function, thereby controlling the rate of increase in the
reweighting factors based on the similarity scores. Scaling
similarity scores s with scalar m resulting in the domain
[�m,m] from [�1, 1], the weighting factor can be given as:
S ! s ·m
Shifting Shifting allows shifting of the domain of rescaled
similarity S by given scalar c to determine the desirable part
of the weighting function depending on the nature of simi-
larity score s. T ! S + c, T ! s ·m+ c
Final Linear Transformation Hence, the final linear trans-
formation can be expressed as T = s · m + c. As the
two similarity scores might have different optimal hyper-
parameters, we allow defining different sets of linear trans-
formation. So, we denote two such linear transformations
as TB = sb ·mb + cb and TW = sw ·mw + cw for between-
class and within-class similarities.
Reweighting function The scaled similarity scores are then
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Figure 2. The figure shows an overview of the optimization process in ReweightOOD. ReweightOOD uses encoder (backbone) and the
projection head to generate raw embeddings, which are subsequently converted into hyperspherical embeddings. The thickness of the
depicted lines in the hypersphere visually represents the strength of the reweighting factor during pair optimization.

passed through the weighting function, which maps them
to values in a predefined range to obtain reweighting fac-
tors. Since we already established in the previous section
regarding the unequal role of various similarity scores in
obtaining optimal embedding for OOD detection, we need
to impose the increasing importance of between-class simi-
larity sb as it progresses towards positive value from nega-
tive value. Since the range of similarity scores due to linear
transformation can be both negative as well as non-negative,
we propose sigmoid function for obtaining its reweighting
factor as shown in Figure 3. The sigmoid function can be
expressed as : �(TB) = 1

1+e�TB
= 1

1+e�sb·mb�cb

Similarly, we have already established the decreasing im-
portance of within-class sw similarity scores as it progress
towards positive value from negative value, we need the
reweighting function for sw to possess such characteris-
tics. Hence, we propose reverse-sigmoid function for sw
reweighting as shown in Figure 4. It is basically the modi-
fied version of the sigmoid function which can be expressed
as : �0(TW) = 1

1+eTW
= 1

1+esw·mw+cw

So, accommodating the reweighting mechanism in Equa-
tion 1, the optimization then can be reformulated as:
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B
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⌘⌘
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·
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Reweighting flexibility and bounded range The trans-
formation consisting of scaling and shifting allows flexible
control over reweighting specific to the nature of similarity

(between-class and within-class). This allows a better bet in
obtaining optimal embedding for OOD detection. Further-
more, the sigmoid function exhibits a bounded range that
lies within the interval [0, 1]. The bounded range makes the
weighting mechanism controlled and stable.

4. Experiments
Datasets The ID datasets CIFAR10 and CIFAR100 [21]
are used for the training models from scratch while Ima-
geNet100 is used for fine-tuning pretrained models. The
OOD detection performance of CIFAR datasets is evalu-
ated in the following datasets: MNIST [8], iSUN [52],
LSUN-r [53], LSUN-c [53], SVHN [32], Textures [22], and
Places365 [54]. For ImageNet100, the OOD datasets used
are iNaturalist [45], SUN [51], Places365 [54], and Tex-
tures [22], NINCO [2], OpenImage-O [49], and Semantic
Shift Benchmark (SSB) [46].

Metrics We mainly use two OOD metrics (AUROC and
FPR@95) to quantify the OOD detection performance. AU-
ROC stands for the Area Under Receiver-Operator Charac-
teristics, and FPR@95 stands for False Positive Rate @ 95.
A higher AUROC score quantifies a higher probability of
correct OOD/ID classification, and a lower FPR suggests
a lower probability of ID samples getting misclassified as
OOD.

Training pipelines Similar to previous approaches
KNN+ [42] and CIDER [31], we perform experiments with
non-contrastive approaches for 100 epochs and contrastive
approaches for 500 epochs. For posthoc methods, we train
a standard model using vanilla cross-entropy loss. We train
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Figure 3. Reweighting mechanism for sb Figure 4. Reweighting mechanism for sw

our model with a learning rate of 0.5 using a cosine an-
nealing decay schedule with a batch size of 512 and 0.0001
weight decay. The temperature parameter ⌧ is set to 0.1.
The hyperparameters are optimized with respect to the val-
idation set (Gaussian noise). For a fair comparison, we
train all the methods in the same setting. We use ResNet-
18 architecture for CIFAR-10/100 experiments. The linear
transformation hyperparameters (mb, cb,mw, cw) for CI-
FAR100 and CIFAR10 experiments using ResNet18 net-
work are set to (5,�2, 2, 1) and (5,�4, 2, 1) respectively.
We also use WideResNet and DenseNet architecture to test
architectural compatibility. The ablation regarding the lin-
ear transformation of the reweighting mechanism is pro-
vided in the appendix.

OOD detection scores Since we focus on learning a suit-
able embedding for OOD detection, we use two distance-
based OOD scores in the embedding space: KNN and Ma-
halanobis distance. We use the KNN postprocessor by de-
fault and also investigate the performance with Mahalanobis
distance (MDS). Like the previous approach CIDER, we
use K=100 for CIFAR-10 experiments and K=300 for
CIFAR-100 experiments for KNN postprocessor.

4.1. Quantification of embedding quality for OOD
detection

Minimum Enclosing Sphere The concept of radius of the
Minimum Enclosing Sphere (MES) serves to characterize
the overall radius of a class while downplaying the signifi-
cance of achieving a compact representation for easily dis-
tinguishable positive instances. This emphasis on class ra-
dius rcl is motivated by the observation that embeddings as-
sociated with samples far from its ideal centroid tend to in-
tersect with OOD samples, thereby compromising the per-
formance of OOD detection. In essence, from the lens of
ideal perspective, the ID samples residing at the periphery
of a class should ideally be closer to the empirical centroid
to avoid compromise in OOD detection performance. This
notion can be effectively encapsulated through the concept
of MES radius. Thus, from the perspective of ID-OOD sep-

arability, the MES radius emerges as a suitable metric for
quantifying the effective compactness of class embeddings.
It follows that the smaller the MES radius, the greater the
effective compactness of class cl for OOD detection pur-
poses. The empirical centroid, denoted as µcl, is a straight-
forward computation involving the summation of all em-
beddings corresponding to category cl over the entire set
of samples, given by µcl =

P
hi2Hcl

hi

Ncl
where Hcl denotes

normalized embedding representation of all samples in cat-
egory cl and Ncl is the total number of samples in category
cl.

rcl = max
hi2Hcl

|hi � µcl|2 (#) (2)

Centroid Dispersion To enhance OOD detection perfor-
mance, it is essential to ensure that centroids are distributed
sufficiently far apart, allowing for the effective delineation
of OOD samples within the unoccupied space between
these centroids. This notion of centroid dispersion can be
precisely quantified by measuring the angular distance be-
tween the empirical centroids of two distinct categories.
Mathematically, we represent the centroid dispersion be-
tween two categories, denoted as cla and clb, as follows:

dab =
µa · µb

|µa|2 · |µb|2
, a 6= b (") (3)

Overall embedding quality can be assessed by computing
the mean dispersion value across all category pairs and the
mean MES radius across all categories.
Embedding observations: Table 1 and Table 2 present
statistics on MES radius and centroid dispersion.
ReweightOOD objective optimizes for a smaller over-
all radius across all CIFAR100 categories, as evidenced in
Table 1 which reduces ID-OOD overlapping. Additionally,
higher dispersion due to ReweightOOD indicates that ID
classes are sufficiently spread apart, facilitating meaning-
ful distance mapping for OOD samples. Consequently,
reweighted optimization yields improved embedding
quality. Furthermore, the qualitative UMAP visualization
comparing the embedding space obtained with the CE
objective and ReweightOOD objective is shown in Figure

135



Table 1. MES radius for first 10 classes and mean over 100 classes of CIFAR100 datasets in unweighted and weighted optimization.

Method Apples Aquarium Fish Baby Bear Beaver Bed Bee Beetle Bicycle Bottles ... Mean

Baseline 1.09 1.11 1.07 0.93 0.97 1.07 1.03 1.07 1.10 1.07 ... 1.05
SupCon 0.97 1.01 0.97 1.00 1.00 0.98 0.99 0.97 1.04 1.03 ... 1.01
CIDER 0.96 0.94 0.89 0.91 0.86 0.88 0.87 0.88 1.04 0.99 ... 0.92

(ReweightOOD) Ours 0.95 0.90 0.90 0.89 0.84 0.90 0.89 0.91 0.99 0.96 ... 0.90

Table 2. Average centroid dispersion over 100 classes in CI-
FAR100 datasets.

Method Mean dispersion (")

Baseline 0.29
SupCon 0.42
CIDER 0.64

(ReweightOOD) Ours 0.63

5. It shows uniformly dispersed and highly separable
embeddings without class-overlapping.

4.2. Empirical Analysis
Quantitative results Quantitative results including the
extensive comparisons of current approaches along with our
approach are presented in Table 3. For all experiments in
Table 3, ResNet-18 is trained with CIFAR-100 as the ID
dataset. The OOD performance is shown in two metrics
(FPR and AUROC) only. We compare our results with cur-
rent contrastive approaches as well as non-contrastive ap-
proaches. Posthoc methods are applied to the classifica-
tion model trained with vanilla cross-entropy. All the ex-
periments assume the unavailability of OOD / outliers dur-
ing the training time. Posthoc methods include MSP [15],
ODIN [25], Mahalanobis [23], DICE [40], Activation Shap-
ing (ASH) [10], React [41], GradNorm [18], RankFeat [39]
and Energy [27]. Two non-contrastive training-time regu-
larization approaches are GODIN [17] and LogitNorm [50].
We use default hyperparameters provided in the original
work whenever required. In contrastive approaches, we
compare our method with ProxyAnchor [20], CSI [43],
SSD+ [37], KNN+ [42], and CIDER [31]. Our approach
leads to the best performance in both metrics. Furthermore,
we present the OOD detection performance in CIFAR-10
experiments in the appendix which also shows our approach
being highly performant in comparison to both contrastive
as well as non-contrastive approaches. We present the sen-
sitivity study of the linear transformation hyperparameters
in terms of average FPR in Table 5.

Comparison with hard negative mining We compare
our approach with vanilla hard negative mining to verify
the superiority of the reweighting mechanism. Specifically,

we ignore the optimization for between-class cosine simi-
larity scores sb lying in the range [�1,↵] to perform hard
negative mining. The comparison of OOD detection perfor-
mance of our approach with hard negative mining strategy
for the CIFAR-100(ID) dataset in terms of FPR/AUROC us-
ing ResNet18 is given in Table 4. Though hard negative
mining benefits OOD detection performance to some extent
in comparison to the baseline, the results in Table 4 estab-
lish the superiority of the reweighting mechanism.

Compatibility with Mahalanobis distance (MDS) In
addition to the non-parametric method KNN, we also an-
alyze the empirical quality of the embedding produced by
various contrastive approaches by the use of Mahalanobis
distance. As can be observed from Table 6, the superiority
of the embedding quality produced by our method is evident
from FPR/AUROC scores.

Accuracy While improving OOD detection performance,
neural network-based OOD detectors ideally should not
compromise in accuracy. Training linear classifier on
frozen features obtained from WRN-40-2, pretrained on
ReweightOOD objective, we obtained a 75.54% accuracy
on CIFAR100, similar to the 74.96% accuracy from the
cross-entropy objective, demonstrating the effectiveness of
ReweightOOD in both OOD detection and category classi-
fication.

Compatibility with various backbones In addition to
ResNet-18, we experiment with diverse backbones, includ-
ing WideResNet (WRN-40-2) and DenseNet architectures,
to assess the adaptability of our method. As depicted in Ta-
ble 8, in comparison to the baseline (unweighted formula-
tion) and SupCon, our approach consistently leads to supe-
rior performance across various architectures in terms of all
OOD metrics. Specifically, compared to the baseline, our
approach leads to 10% and 20% performance improve-
ment in WRN-40-2 and DenseNet architectures.

Evaluation on large-scale ImageNet-100 dataset In ad-
dition to conducting experiments on the CIFAR datasets,
we assess the efficacy of our approach on the large-scale
ImageNet-100 dataset within the context of fine-tuning pre-
trained models. We use the ImageNet-100 dataset, a sub-
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Figure 5. UMAP [28] visualization of embedding space (CIFAR10) obtained from (left) CE objective and (right) ReweightOOD objective.
The ReweightOOD objective allows the embeddings to be uniformly distributed and highly separable without class overlapping.

Table 3. Mean OOD detection performance for CIFAR-100 (ID) with ResNet-18.

Method
OOD Dataset Average

MNIST iSUN LSUN LSUN-r SVHN Texture Places365

FPR# AUROC" FPR# AUROC" FPR# AUROC" FPR# AUROC" FPR# AUROC" FPR# AUROC" FPR# AUROC" FPR# AUROC"

Without Contrastive Learning
MSP 86.05 78.75 66.97 84.91 78.21 80.84 68.19 84.36 63.87 86.42 79.88 79.12 80.98 78.92 74.88 81.92
ODIN 73.64 84.61 40.07 92.54 72.70 85.75 42.38 92.23 74.80 84.45 72.22 81.63 81.05 79.06 65.27 85.75
Mahalanobis 81.91 77.22 95.23 59.99 95.45 56.16 95.14 61.16 92.47 64.96 75.55 73.95 92.84 62.89 89.90 65.19
Energy 88.57 79.05 63.27 88.05 78.04 84.63 63.95 87.56 59.09 89.84 78.94 80.68 83.58 79.02 73.63 84.12
DICE 81.96 79.46 67.60 87.04 67.11 86.97 70.25 86.00 60.45 89.78 76.01 80.17 83.76 78.76 72.45 84.03
React 88.29 78.55 63.22 87.85 77.73 84.89 63.89 87.23 58.06 90.16 78.35 81.75 83.47 79.17 73.29 84.23
ASH 78.75 81.14 70.04 81.92 77.26 83.31 70.72 80.54 57.94 88.22 76.10 81.14 82.55 77.53 73.34 81.97
GradNorm 86.54 63.98 68.82 78.28 71.14 84.48 70.75 75.27 60.92 83.80 77.96 69.68 84.79 69.29 74.42 74.97
RankFeat 95.62 61.39 87.99 74.29 95.73 67.85 88.66 73.81 79.82 80.68 91.63 66.11 91.17 66.41 90.09 70.08
GODIN 48.88 92.09 22.14 96.00 63.91 85.55 19.05 96.72 70.66 86.74 56.49 89.37 78.95 78.12 51.44 89.23
LogitNorm 51.65 90.28 92.84 69.00 15.52 97.23 92.68 70.77 73.71 84.15 86.85 71.27 77.98 80.77 70.18 80.50

With Contrastive Learning
ProxyAnchor 65.96 78.93 88.90 77.71 57.29 88.28 86.30 77.60 31.16 93.47 57.54 88.30 77.25 79.69 66.34 83.43
CSI 75.27 82.20 68.37 81.91 49.43 89.11 66.19 83.17 65.83 81.21 77.53 75.13 79.11 79.80 67.74 81.22
SSD+ 82.52 76.80 79.71 83.85 49.86 89.91 78.00 85.19 23.03 95.70 59.72 88.22 77.80 80.86 64.38 85.79
KNN+ 76.21 83.06 67.44 85.12 55.09 86.30 67.59 85.59 44.03 91.85 47.91 90.08 78.63 78.19 62.42 85.74
CIDER 63.24 85.64 73.78 77.96 26.51 93.37 75.98 78.03 17.58 96.33 34.15 92.34 78.56 73.04 52.83 85.24

Baseline 78.91 69.01 85.09 84.28 41.09 91.93 79.90 85.07 25.25 94.63 46.38 90.33 74.44 80.50 61.58 85.11
(ReweightOOD) Ours 19.24 96.86 57.56 87.54 19.59 96.86 56.31 88.23 8.39 98.31 28.72 94.11 78.70 76.01 38.36 90.91

Table 4. Comparison of our approach with hard negative mining
strategy for CIFAR-100(ID) dataset in terms of FPR/AUROC us-
ing ResNet18.

Ignored range for sb FPR (#) AUROC (")

[�1,�0.3] 61.18 86.33
[�1,�0.1] 54.20 85.84
[�1, 0.1] 58.03 85.76
[�1, 0.3] 54.44 86.51
Baseline 61.58 85.11

(ReweightOOD) ours 38.36 90.91

mb FPR # cb FPR # mw FPR # cw FPR #

4 51.01 1 44.96 1 69.10 1 38.36
5 38.36 2 38.36 2 38.36 2 67.63
6 39.14 3 52.66 3 43.44 3 70.84

Table 5. Sensitivity of linear transformation hyperparameters with
CIFAR-100 as ID in terms of average FPR.

set of ImageNet, as the ID dataset for finetuning the pre-
trained ResNet-50 model. ImageNet-100 consists of images

from 100 randomly sampled categories from the ImageNet
dataset. The projection head is a non-linear MLP with a pro-
jection dimension of 128. The first three layers of ResNet50
are frozen and only the last layer along with the projection
head is fine-tuned for 10 epochs with a learning rate of 0.01
and weight decay of 0.0001 using cosine annealing. The
linear transformation hyperparameters (mb, cb,mw, cw) are
set to (5,�4, 2, 1). The performance is evaluated with KNN
postprocessing (K=300). We compare the OOD detection
performance of our method with baseline and SupCon loss
in terms of FPR and AUROC metrics as shown in Table 7.
It depicts the superior performance of our approach in com-
parison to compared losses. It provides further empirical
justification for producing superior embeddings for OOD
detection.

5. Related Works

OOD detection Posthoc approaches of OOD detection
derive scores from pretrained models without any retrain-
ing. Some of these approaches deal directly with output
space [10, 15, 27, 30, 40] while recently more approaches
have attempted to exploit the information from embedding
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Table 6. Compatibility with MDS using CIFAR-100 (ID) dataset in terms of FPR using ResNet18.

Method MNIST iSUN LSUN LSUN-r SVHN Texture Places365 Average FPR #

ProxyAnchor 75.48 88.94 52.78 87.62 7.69 58.21 74.85 63.65
SSD+ 82.52 79.71 49.86 78.00 23.03 59.72 77.80 64.38

CIDER 76.82 74.10 21.40 75.40 9.78 45.27 74.37 53.88

Baseline 80.68 88.95 21.31 85.63 5.83 40.51 66.83 55.68
(ReweightOOD) Ours 51.58 62.91 17.00 62.00 5.89 44.29 74.83 45.50

Table 7. OOD detection performance in large-scale experiments (ImageNet-100) in terms of FPR by fine-tuning pretrained ResNet50.

Method iNaturalist SUN Textures Places SSB Hard Ninco Openimage Average FPR #

Baseline 3.07 2.39 4.57 5.47 35.39 29.15 7.05 12.44
SupCon 2.43 1.98 2.59 5.43 34.25 25.58 5.28 11.08
CIDER 5.07 1.85 1.77 5.70 37.35 27.93 5.73 12.20

(ReweightOOD) Ours 2.18 1.97 2.73 5.29 32.00 24.63 5.06 10.55

Table 8. Architecture compatibility of various methods with CI-
FAR100 (ID) datasets.

Method
Architectures

WRN-40-2 DenseNet

FPR# AUROC" FPR# AUROC"

Baseline 53.55 87.07 39.03 91.11
SupCon 49.95 87.75 44.28 90.10

(ReweightOOD) Ours 47.94 88.45 31.36 92.21

space [11, 24, 29, 31, 35, 37, 42, 43, 55] for OOD detec-
tion. OOD detection has also been explored by dealing with
both feature and output spaces [49]. Furthermore, some
works [39, 41, 56] deal with feature activations. The gradi-
ent information [18] has also been used for OOD detection.
LogitNorm [50] and T2FNorm [33] make use of normal-
ization in logit and feature space respectively to mitigate
the overconfidence issue in neural networks. Few works
[9, 16, 17] propose various ways of regularizing neural net-
works during training to enhance the OOD detection per-
formance. Furthermore, temperature scaling [13] has been
widely used as a simple postprocessing technique to im-
prove neural network calibration.

Deep Metric Learning A fundamental focus of deep
metric learning is to learn highly discriminative features.
Research areas such as face recognition and face verifica-
tion have seen the introduction of many useful loss func-
tions on hyperspherical embeddings [7, 26, 47, 48] to sati-
ate this objective. Techapanurak, et. al. [44] deals with
cosine loss to achieve hyperparameter-free OOD detection.

Contrastive Learning Chopra et al. [6], Schroff et
al. [36], and Sohn et al. [38] were the earliest works
that explored the concept of contrastive loss. In recent
years, contrastive learning has garnered significant atten-
tion in the domain of vision representational learning, en-

compassing both unsupervised and supervised paradigms
[3, 5, 14, 19, 34]. While the majority of these approaches
explicitly formulate positive and negative pairs, some recent
works [1, 4, 12] exclusively concentrate on positive pairs
only. Few works [19, 31, 37, 43] have explored the use of
off-the-shelf contrastive learning in the context of OOD de-
tection. However, it should be noted that contrastive learn-
ing in OOD detection has remained relatively understudied.
Our work deals with the contrastive approach in OOD de-
tection.

6. Conclusions

In summary, this study introduces ReweightOOD, a
reweighting mechanism, aimed at enhancing embedding
quality to improve OOD detection performance. Our ap-
proach focuses on optimizing the cosine similarity of con-
trasting pairs by considering their current proximity, assign-
ing higher priority to less-optimized pairs and lower pri-
ority to well-optimized ones. Experimental results across
various classification datasets demonstrate non-trivial per-
formance enhancement in OOD detection resulting from
our approach. Furthermore, we reveal that our reweighting
method reduces radius of the Minimum Enclosing Sphere
for each class and increases inter-class dispersion, thereby
enhancing the separation between ID and OOD samples in
the embedding space.
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